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THE INTERACTION OF THE 3D NAVIER-STOKES EQUATIONS
WITH A MOVING NONLINEAR KOITER ELASTIC SHELL*
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Abstract. We study a moving boundary value problem consisting of a viscous incompressible
fluid moving and interacting with a nonlinear elastic solid shell. The fluid motion is governed by the
Navier—Stokes equations, while the shell is modeled by the nonlinear Koiter shell model, consisting
of bending and membrane tractions as well as inertia. The fluid is coupled to the solid shell through
continuity of displacements and tractions (stresses) along the moving material interface. We prove
existence and uniqueness of solutions in Sobolev spaces.
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1. Introduction.

1.1. The problem statement and background. Fluid-solid interaction prob-
lems involving moving material interfaces have been the focus of active research since
the nineties. The first problem solved in this area was for the case of a rigid body
moving in a viscous fluid (see [11], [15] and also the early works of [19] and [17] for
a rigid body moving in a Stokes flow in the full space). The case of an elastic body
moving in a viscous fluid was considerably more challenging because of some apparent
regularity incompatibilities between the parabolic fluid phase and the hyperbolic solid
phase. The first existence results in this area were for regularized elasticity laws, such
as in [12] for a finite number of elastic modes, in [2], [4], and [3] for hyperviscous
elasticity laws, and in [16], in which a phase-field regularization “fattens” the sharp
interface via a diffuse-interface model.

The treatment of classical elasticity laws for the solid phase, without any regular-
izing term, was considered only recently in [7] for the three-dimensional (3D) linear
St. Venant—Kirchhoff constitutive law and in [8] for quasi-linear elastodynamics cou-
pled to the Navier—Stokes equations. Some of the basic new ideas introduced in those
works concerned a functional framework that scales in a hyperbolic fashion (and is
therefore driven by the solid phase), the introduction of approximate problems either
penalized with respect to the divergence-free constraint in the moving fluid domain or
smoothed by an appropriate parabolic artificial viscosity in the solid phase (chosen in
an asymptotically convergent and consistent fashion), and the tracking of the motion
of the interface by difference quotients techniques.

The complimentary fluid-solid interaction problem, studied herein, consists of the
motion of a viscous incompressible fluid enclosed by a moving thin nonlinear elastic
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solid shell. The main mathematical differences with respect to the previous problem
of a deformable solid body moving inside of the fluid is that the shell encloses the
fluid and is mathematically the boundary of the fluid. Our companion paper [5] treats
the case of a viscous incompressible fluid enclosed by a moving thin nonlinear elastic
fluid shell. In that paper, a moving boundary problem that models the motion of
a viscous incompressible Newtonian fluid inside of a deformable elastic structure of
Willmore type was studied. The shell model comprises degenerate elliptic operators
which provide the regularity in only a variable direction, the normal direction of the
moving shell. With the exception of [5], the only cases considered until now consisted
of regularized problems, wherein the elliptic degeneracy occurs along a fized direction,
such as in [4] or [14].

We are concerned here with establishing the existence and uniqueness of solutions
to the time-dependent incompressible Navier—Stokes equations interacting with an
elastic solid shell of Koiter type (see [1], [6] for a detailed account of Koiter shells).
The solid shell energy is a nonlinear function of the first and second fundamental
forms of the moving boundary.

The Koiter shell produces a boundary condition, consisting of degenerate elliptic
(hyperbolic with inertia) operators that do not provide optimal regularity. In par-
ticular, our estimates require short time, and additionally for the 3D case we also
require a small shell thickness £. The main results of this paper can be summarized
as follows.

Main result. For the two-dimensional (2D) fluid, we assume the Koiter shell
has inertia and an arbitrary shell thickness. For the 3D fluid, we assume the Koiter
shell does not have inertia and require the shell thickness to be much smaller than the
kinematic viscosity of the fluid. Under these assumptions, given sufficiently smooth
initial data that satisfy compatibility conditions, there exists a unique solution on a
short time interval [0, 7], where T' depends on the initial data.

The precise statements of the theorems for existence and uniqueness for the 2D
and 3D fluid cases are given in Theorems 4.1 and 4.2, respectively.

We now introduce the precise mathematical statement of the problem we are
interested in. Let n = 2 or 3 and 2 C R" denote an open bounded domain with
boundary I' := 99Q. For each ¢t € (0,7, we wish to find the domain Q(¢), a divergence-
free velocity field w(t,-), a pressure function p(t,-) on Q(t), and a volume-preserving
transformation 7(t,-) : Q@ — R" such that

(1.1a) Q) = n(t, ),
(1.1b) mo(t,z) = u(t, n(t, 7)),

(1.1c) ur + Vyu —vAu = =Vp+ f in Q(t),
(1.1d) divu =0 in Q(t),
(1.1e) —(vDef u — pld)n = tspen on I'(t),
(1.1f) u(0,2) = uo(x) Vo € Q,
(1.1g) n(0,x) =z Vo e Q,

where v is the kinematic viscosity; n(t, -) is the outward pointing unit normal to T'(¢);

I'(t) := 08)(t) denotes the boundary of Q( ); Defu is twice the rate of deformation
tensor of u, given in coordinates by u 4 u , where g denotes 2 9.7 1d is the identity
matrix; and tgney is the traction 1mparted onto the fluid by the elastic solid shell,
which we describe next.
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Let gop denote the induced metric and b, denote the covariant component of the
second fundamental form on T'(¢), and let g and b denote the induced metric and the
covariant component of the second fundamental form of the equilibrium configuration
I', respectively. With

¢ denoting the thickness of the Koiter shell,

the energy required to deform a Koiter shell I' from the equilibrium state to the
3

location I'(t) is € Emem + % Epen, where Eyer and Epe, are the so-called membrane

and bending energies, respectively. The membrane energy Fy,cn, is

1
(1.2) Emem = 7 /F a®*""(gap — 9ap) (95 — 945)dS

and the bending energy Fpe,, is
(13) Epen = /F 0P (bag — bap)(bys — bs)dS,

where, with A/2 and j/2 denoting the Lamé constants, the elasticity tensor a®#7? is
defined as

A\p
1.4 apys — T qaBavd | 9 (g Bt 4 g9 gBTY
(1.4) a N2 +2pu(g*7g”® + g*%g"")

We will use ¢ as a parameter denoting either the absence or the inclusion of
inertia in our shell model. In particular, we define

_ 0, no inertia present,
g = . .
1, inertia present.

The traction vector tgpe;; can then be expressed as

3

_ e
tshelt = ctine + etmem + Etben )

where t;,. is the traction due to the inertia, given in Lagrangian coordinate by
tine = Mt -

tnem and tyep, are the traction due to the membrane and bending energies, respectively,
and can be computed from the first variation of the energy function Egpe;;. We will
provide an explicit form for both of these traction vectors in section 2.1

1.2. Notation.

1.2.1. Einstein summation convention. Repeated Latin indices are summed
from 1 to n, while repeated Greek indices are summed from 1 to n — 1. For example,

n—1 n
[P = f"9a and  flgi:=> flgi.
a=1 i=1
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1.2.2. The tangential derivative. Let {U;}X | denote an open covering of T,
such that for each ¢ € {1,2,..., K}, with

Ve = B(0, 1), denoting the open ball of radius r, centered at the origin,
Vvt =V,n{z, > 0},
V, =Vin{zs <0},

there exist for s > 3 H®-class charts 6, which satisfy

0p: Vy — Uy is an H® diffeomorphism,
05(V£+) =U,NQ,
GZ(VZQ{QJH ZO}) =U,NT.

Next, for L > K, let {Us}}_j 41 denote a family of open balls of radius 7, contained
in Q such that {U,}_, is an open cover of €, and let

{&}F_, denote a C* partition of unity subordinate to this covering of Q2.
For a differentiable function f on Q, we use 0f if n = 3 or f’ if n = 2 to denote the

tangential derivative of f in U, N Q). The ath component of the tangential derivative
of f is given by

E

5 00
f,azaafz [foae]oazlz (Dfo@g)ﬁ} 0951.

o)

Lo

When no chart is specified, the notation df is used to denote the tangential derivative
of f in some coordinate chart.

We use f; to denote the ith component of D f, where Df is the gradient of f, or

_9f

f’i n (92131 '

1.2.3. The identity map e. The identity map on R"” is denoted by e so that
e(x) = z. For @ = 1,2, we use the notation e , to denote the two tangent vectors to
the reference material interface I'; more specifically, in any local coordinate chart V,

90,

e,, denotes the tangent vectors 7z Note that

[(Df)obi-eaq=faocbe or (fjo Og)efa =fa0b.

1.2.4. Sobolev norms on © and I". We will use the notation H*(Q2) (H*(T"))
to denote either H*(2;R) (H*(T;R)) for the Sobolev space of scalar functions or
He(Q;R™) (H*(T'; R™)) for the Sobolev space of vector valued functions.

For s > 0 we denote the H*(2)-norm and H*(I')-norm by

lwlls = lwllze@  and  |wls = [wlz=),

with s = 0 denoting the L?-norm. For s = —1, ||w||_; is defined as the norm of the
dual space of H'(Q), that is, |w|—1 = |||z 0y -
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1.2.5. The functional framework for solutions. For T' > 0, we set

VI(T) = {U € L2(0,T; H'(Q)) | v, € L2(0,T; H (Q)’)}
VA(T) = {v € L2(0,T; HX(Q)) | v € L2(0, T; LA(Q }
V(T = {v € L2(0,T; H3()) | v € L2(0,T; HY( }
VR(T) = {v € L2(0,T; H*(Q)) | v, € VE-2(T )} for k>4
with norms
”’UH%ﬂ(T) = HU||2L2(0,T;H1(Q)) + |\Ut||2L2(o,T;H1(Q)/) )
”’UH%}?(T) = HU||2L2(0,T;H2(Q)) + HUt||2L2(0,T;L2(Q)) ;
”’UH%}?’(T) = HU||2L2(0,T;H3(Q)) + |\Ut||2L2(o,T;H1(Q)) )
”vH%}k‘(T) = |\U||2L2(0,T;Hk(n)) + Hvt”%’k*?(T) for k > 4.

We then introduce the space (of vectors with vanishing Lagrangian divergence)
v, = {w e H'(Q) ‘ we HAT), Al(t)w, =0V t € [o,T]}

and

Vo(T) = {w € L2(0,T; HY()) } w e LX(0,T; HA(T)), Al (tyw!, =0V t € [o,T]} :

where the matrix A is defined by (2.4) with n(t) = e+ fot v(s)ds. We remind the
reader again that e is the identity map satisfying e(z) = x.

1.2.6. The functional framework for the forcing function f. As explained
below, we have to assume that f(¢) is defined on an open set which properly contains
Q(t), and without loss of generality, we may assume that f(¢) is defined on R™.

For T' > 0, we set

FUT) = {f € L2(0,T; H'RY) | £, € L2(0, T; H'(R )')}
2(T) ={feL20TH2(]R N | £ € L0, T; L2(R™)) }
Tz{feLQOTH?’(]R)) fo e LX0,T; H'(R }
= {f € L2(0,T; H*(RY) | f; € F*=%(T )} for k>4
with norms
||f||_27-'1(T) = ||f||2L2(0,T;H1(Rn)) + ”ftH%?(O,T;Hl(R“)’) ;
||f||_27-'2(T) = ||f||2L2(0,T;H2(Rn)) + ||ft|\%2(o,T;L2(Rn)) ;
1 sy = 1F17200,7: 08y + 1 Fell B2g0 7m0 oy

||f||_27-‘k(T) = ||f||2L2(o,T;Hk(Rn)) + HftH_2F’<—2(T) for k > 4.

1.2.7. Inner products and duality pairings. Given a Hilbert space X, we
let (+,-)x denote the inner product in X, and let (-, )x denote the X-X’ duality. In
particular, without specifying X, (-,-) is used to denote (-, ) y1(q), and (-,-)r is used
to denote the duality pairing between H?(T') and H~%(T).
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1.2.8. H*-norm of T'. We defined the H¥-norm of T' to be

K -1
IT[% = Z/R §€|5§1.,.ak6’e|2d$1 coedra_q .
=1

The H*-norm for any real s > 0 is defined by interpolation. We say that I' is of class
H*® (or I € H®) whenever |I'|; < .

1.2.9. Inner products and contractions. Given two vectors v and w in R",
the inner product of v and w is denoted by v - w, which in component is defined as

n
0 _ %
veow=v'w; = E viw; .

i=1

For two matrices A and B, the contraction between A and B, denoted by A : B, is
the trace of the product of A and B, which in component is defined as

n
A:B=Ti(AB) = AlBj = Y AiBJ.

ij=1

1.2.10. The transpose of matrices. Given any matrix A, we use A’ to denote
its transpose.

1.2.11. The temporal trace of functions at ¢ = 0. Throughout the paper,
almost all of the functions that we consider are functions of both « and t. Given such
a function h(z,t), we will often drop the explicit dependence on the variable x when
expressing the restriction to ¢t = 0. Specifically, we will write

h(0) to denote h(z,0).

1.3. Outline of the paper. In section 2, t,,em and tpe, are computed in La-
grangian coordinates (which is widely used in the theory of elasticity) for n = 2 and
n =23, and (1.1) is reformulated in Lagrangian coordinates.

Section 3 is devoted to a number of technical lemmas that will be used repeatedly
throughout the paper. Of significant (and perhaps independent) interest is a new set
of estimates for Stokes-type elliptic equations with Sobolev-class coefficients. Such
estimates are vital to our subsequent analysis.

The main theorems concerning existence and uniqueness of solutions are presented
in section 4, wherein we first provide a detailed discussion of compatibility conditions.

In section 5, we introduce the linearized and regularized problems. The regular-
ization requires smoothing certain variables as well as the introduction of a certain
artificial viscosity term on the boundary of the fluid domain. Weak solutions of this
regularized problem are established via a penalization scheme which approximates the
incompressibility of the fluid.

In section 6, we establish the regularity theory for our weak solution using en-
ergy estimates for the regularized problem with constants depending on the artificial
viscosity.

Section 7 is devoted to obtaining improved elliptic-type estimates for the first and
second fundamental forms, g and b; more precisely, we analyze the boundary condition
(1.1e) and use energy estimates to find the optimal regularity of g and b. In the case
that n = 2 we require that 7" > 0 be taken sufficiently small, while in the case that
n = 3, we additionally require the shell thickness € to be taken much smaller than v.
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Having these estimates, we turn to section 8, wherein we establish that our a
priori energy estimates are indeed independent of the artificial viscosity parameter x,
and are thus able to pass to the limit as k — 0.

Section 9 is devoted to the proof of the uniqueness of solutions to the fluid-shell
interaction, and section 10 provides a list of notation.

1.4. User’s guide for the reader. Our analysis makes use of rather technical
and nonstandard compatibility conditions, solutions of nonlinear parabolic equations
with nonlinear time-dependent constraints, and elliptic-type estimates, wherein the
inequalities rely crucially on the small thickness of the shell €, as well as time 7" > 0
taken sufficiently small.

In order to introduce these ideas in the simplest possible settings, we have included
the sections 4.1, 5.3, and 7.3 as a user’s guide for the reader.

We encourage the reader to read these sections in detail before proceeding with
the more complicated subsequent (analogous) treatment of the solid-shell model.

2. The Lagrangian formulation.
2.1. The computation of the traction vector.

2.1.1. The case n = 3. In this subsection, we compute the variation of (1.2)
and (1.3). We first note that if ¢ is a differential operator, then

on=—g""n- (10
Therefore,
3@ (105 - m) (15 - )|
= 20905 - 7) [(80) 5 - 7+ s - 6
= 2005 1) [0+ (80) 5 — 977 (s - 1) (- (d0,0))]

Since bag = 1,05 - 1, we find that

Q/F aa675ba,@b75d5' = Q/Fa“ﬂw(ﬁ,aﬂ 'n)(77775 -n)dS
2
= | = apfys aBys o .
/F \/E{ [\/Ea b“'@n} e [\/a“ 97" bap(n,46 777o)nL}éndS.

Similarly,
5 [ [0 bus(.5 - m]as
T

- /F%{{\/Eaaﬁ’yébaﬁn} T [\/Eaaﬁv‘;g”baﬂ(n,w'77,0)”} }éndS-

Y T

As a consequence, the bending traction is

(2.1) £an) = % (Va5 bas — bas)n]

2
+ % [\/Eaaﬁ’)’égo‘l'(baﬁ — baﬂ)("]ﬁé . 77,0)”:| .

6
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As for the membrane traction, by gog = 1.4 - 1,8,

51a*""(gap — 9ap)(gys — gvt?)} = 407" (gag — Gap) (M, - O05),

and hence the membrane traction is

(2.2 L) = == [Vaa"™ (05 = g0 -

Remark 1. In complying with the standard notation of the shell theory, we use
Va instead of /g in (2.1) and (2.2) to denote the square root of the determinant of
the metric tensor on I'.

2.1.2. The case n = 2. For the case n = 2, the bending energy (1.3) and
membrane energy (1.2) are expressed as

Eyepn, = / |e/|_3(b - b)QdS07 Erem = / |e/|_3(g - g)zdS(J’
T T

where g = €’-€’ is the first fundamental form and b = €”-ny is the covariant component
second fundamental form of the unstressed initial boundary. Similar computations
show that the bending traction £, is given by

3 " 3 -1 !
Lo(n) =2[| 20— b)n| + [|e'] 91 (b~ b)n]
and the membrane traction £, is
!/
Lon(n) = —41e/| (/12 = &/ -

2.2. Lagrangian formulation of the fluid-shell interaction problem. Let
n(t, z) denote the Lagrangian particle placement field, a volume-preserving embedding
of 2 onto Q(t) C R" satisfying

(23) 77t(337t) :u(n(xvt)at) = (Uon)(l’at),
and denote the inverse deformation matrix, the inverse of Vn(x,t), by
(2.4) A(z,t) = [Vn(z, )] .

Let v = won denote the Lagrangian or material velocity field, ¢ = pon the Lagrangian
pressure function, and F' = f on the forcing function in the material frame. The
coupled fluid-structure problem has the following Lagrangian description:

(2.5a) N =10 in (0,7)%xQ,
(2.5b) i — vAJ(AfVY); + Abqp = F in (0,7) xQ,
(2.5¢) Alvl; =0 in (0,7) xQ,
5 .
. i g 3
25d)  —[v(Dav)! - quJ}AﬁNg - [aﬁm(n) + gﬁb(ﬂ)} on (0,T)xT,
+ 5'57];
(2.5¢) v(0) = ug on {t=0} xQ,
(2.51) n(0) =e on {t=0}xQ,

where (Dav)! = Afvjk + A?Ufk. We also note that in order to have F' well-defined,

f has to be defined on a domain QF containing  (or in other words, Q@ cc QF).
Without loss of generality, we may assume that f is defined on R".
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3. Preliminary results.

3.1. Differentiating the inverse deformation matrix A. In this subsection
we list a very useful identity concerning the differentiation of the cofactor matrix A
for reference. Let 0 be a differential operator such as 9; or D,; then

347 — — LB A2
For example, when § = 0,
(A = —AJol A3

3.2. Velocity and pressure estimates at time t = 0. Before stating the
main theorem, we provide estimates for the time derivatives of the velocity and pres-
sure at t = 0; these quantities are important in the statement of the main theorems,
as well as in the proof. We denote 9F¢(0) and 9Fv(0) by gx and wy, respectively. Note
that in particular ug = v(0) and go = p(0).

The case without inertia is much simpler than the case with inertia, so we first
describe how ¢ and wy, are computed in this case. Evaluating (2.5b) at ¢t = 0, it is
easy to see that wy satisfies

(31) W1 = VAUO - qu + f(O)
Since divw; = (A{U%)(O), by the incompressibility condition (2.5¢),
(32) (Afvf ;)(0) = [A]v):(0) — [(A):0};](0) = [AJwr, A3v’}](0) = uj juf
Taking the divergence of both sides of (3.1), we find that gy satisfies
—Agqp = ué)iué)j —div f(0) in Q.

In order to invert —A, a boundary condition is needed. By letting ¢ = 0 in (2.5d)
and projecting the resulting equation onto the normal direction, we find that gy must
satisty

qo = V(Def uO):ZN'LNj on F,

where the fact that £,,,(n) and £,(n) both vanish at time ¢ = 0 is used. Therefore, go
solves the elliptic equation

(3.3a) —Aqp = ué)iué)j —div £(0) in Q,
(33b) qo = Z/(Def UO)leNJ on T.

By elliptic regularity, for k£ > 2,
lqollz < C ||U%,iué,j||zf2 + || div f(0)[Z_ + |(Def UO)gNiNjﬁfoﬁ}
(3.4) < P(lluollr+1, 1f (Ol r—1, Tlr+0.5)

where P denotes a polynomial of its arguments. Therefore,

[willf_, < O[”“OH%JA + llaoll7 + ||f(0)||i71]
(3.5) < P(lluollkr1, | £ (O)][k—1, IT[k+0.5) -
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For the case with inertia, go satisfies (3.3a) and the boundary condition
(3.6) qo = v(Def uo){NiNj +ewr - N on T,

while w; is unknown; therefore, the Dirichlet boundary condition cannot be used to
solve for qp. Instead, using (3.1) in (3.6), we find go by solving the following equations:

(3.7a) —Aqp = “é,i“é,j —div f(0) in Q,
(3.7b) 5% + qo = v(Def ug)) NyN; + evAug - N +ef(0) - N on TI.

Equation (3.7) is a Robin-type problem for ¢, and there exists a unique solution ¢
satisfying

o ) 1 )
laolli: < € {llup o illi—2 + | div FO)E -2 + 5 |(Def uo); NiN; iy 5

+ [Aug - N|g—1.5 + | f(0) - N|g—15

(3.8) < P, Nuollk+ s 1£ () k=15 [Tli+o.5)
and consequently
(3.9) IwillZ_1 < Pl lluolli+, | £ (O)lk-1, [Tliro.5)-

Remark 2. Estimates (3.4) and (3.5) are e-independent, while (3.8) and (3.9)
depend on e. This is due to the different boundary conditions (3.3b) and (3.7b) used
to solve for qq.

Time differentiating (2.5b) and then evaluating the resulting equation at ¢t = 0,
it is easy to see that wy satisfies

i_ _ k i E i E i i i
(3.10) wy=—q;+ U 4o,k — V| U U kg T U, U0,k + U0, U0,k — Awl} + F/(0).

Similarly to (3.2), we find that

divwa = (Afvy, ;)(0) = [A]v}](0) — [(A])erv5)(0) — 2[(A])svf ;1(0)

)
_ i, .k J i
(3.11) = —2u07ju0)ku0)i + 3u0,iW 1,5°

Taking the divergence of both sides of (3.10), as well as time differentiating the bound-
ary condition (2.5d) and evaluating at ¢t = 0, we find that ¢; satisfies

(3.12a) -Aq = (?)W{)l- - 2ué)ku§)i)u6)j + u’&iiqu + u'&iqui + vAdivw,
—v {2ué)iku6)kj + ug,ijjuak} + div F3(0) in Q,
P , _ .
(3.12b) 588—?\17 +q = {I/(Def w)l — 2Vu§7ju6)k + qou%ﬂ} N;N; + 65u§7iq0,kNi

— ove [2ué)ku6)kj + u’é)jjué)k} N; + oveAwy - N 4+ 5eF(0) - N
3 i .
+ [acm(n) + %cb(n)} (0N on T.

Therefore, solving for ¢; by a Dirichlet problem if & = 0 or by a Robin problem if
o = 1, we find that for k& > 4,

il _sis + IWalli_ars < P luollkrt, 1flzxy)
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where || f[| 77y is defined in section 1.2 with R™ replacing (2. Later on we will
use M(e,uo, f) to denote the quantity P(e™*,||ugll2n—1, || f||F2e-2(1)), and by the
argument above,

Hq0|‘§nf2 + ”WlH%nfB + (11 - 2) quH%nf5+6 + ”W?H%nfGJr& < CM(Ea Uo, f) .

Remark 3. For the case without inertia, the estimates for ¢; and wy are indepen-
dent of e.

3.3. Elliptic regularity results for Stokes-type systems. In establishing
the regularity theory of the Navier—Stokes equations, the regularity result of Stokes-
type problems in Lagrangian coordinates is crucial for our analysis. The usual Stokes
problem, set in Eulerian variables, is a constant-coefficient elliptic PDE set on the
moving domain Q(t). When we fix the domain, using the Lagrangian flow map 7(t),
we map the moving-domain elliptic equation to a Stokes-type system set on the fixed
domain €2, but the change of variables maps the Laplace operator into a second order
elliptic operator with Sobolev-class coefficients which depend on both space and time.

While estimates for solutions to the Eulerian Stokes equations on a fixed domain
are classical, the estimates for the remapped Stokes-type systems are not very well
studied, and we are not aware of a reference for such equations in the literature. As
such, we develop the necessary elliptic regularity estimates for Stokes-type systems
with incompressibility constraints and set in Lagrangian variables.

To provide a general presentation, we begin our estimates with some basic as-
sumptions. Later, we will verify that these assumptions hold for our remapped and
Lagrangian Stokes equations.

Basic assumptions. Suppose that n : @ — R" is given with the following
properties: for some fixed s € N with r = max{3, s},

1. (smoothness) n € H"(Q),

2. (invertibility) n is a diffeomorphism onto its range with detVn = 1,

3. (inverse matriz) A(z) := (Vn)~1(z),

4. (near identity map) ||A —Id||,—1 < s < 1,

3.3.1. The Stokes problem set on n(£2). Our first objective is to obtain the
elliptic estimates of the solution of the Stokes problem on the domain 7(2) (here we
do not assume that 7 is the flow of ), with bounds that depend on assumption 3. In
particular, we are concerned with the following problem:

(3.13a) —-Au+Vp=f in n(Q),
(3.13b) dive =0 in n(Q),
(3.13c¢) u=yg on n(T).

Letting v =uwon and ¢ = pon, we use n to change variables and set the problem on
the domain  as follows:

(3.14a) —[AJApVL )k + Afqr=F  in Q,
(3.14b) Alvl; =0 in Q,
(3.14¢) v=G_G on I',

where FF'= fonand G = gon, and g, G satisfy the solvability condition

/ yM&z/@MM%zU
n(T) r
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If n = e and ) is a smooth domain, then the standard elliptic regularity results for
(3.13) are that for s > 1,

(3.152) lal? + l1pll3 < C[I1£12: + lgf3 5]
(3.15b) el + Pl < O [+ lofoos)

see [18] for the existence, uniqueness, and regularity. In the case that the domain
has specified Sobolev regularity, C; depends on |I'|3, while Cy for s > 2 depends on
IT'|;—0.5, where r = max{3, s} is defined above.

Remark 4. If g =0 in (3.15a), then (3.15a) can be refined as

(3.16) lull? + 1IplI§ < ClLIF-1(q) -

LEMMA 3.1 (existence, uniqueness, and regularity for (3.14)). Suppose that n
satisfies the basic assumptions stated above, F € H*(Q), and G € H**(T'). Then for
€s > 0 taken sufficiently small, there exists a unique weak solution (v,q) € H'(Q) x
L2(Q) of (3.14), which satisfies, for a generic constant C' > 0,

(3.17) Iloll3 + lalld < C[IFI2, + G135
Furthermore, if F € H*"2(Q) and G € H*=°5(09), then
(3.18) loll? + llall2-y < CIFIZo + G o] -
Proof. We employ a topological fixed-point argument. We rewrite (3.14) as
—Av+ Vg = [(AJAf —1dJ1d} )0’ ] . + (AY —1df)gr + F in Q,
dive = (Id — A7), in Q,
v=_G on I'.
Let (9,G) € H*(Q) x H*~1(2) be given so that
15012 + llgllZ -y < M,

where M will be determined later (in (3.22)). Let (v, ¢) be the unique solution to

(3.19a) —Av+ Vg = [(AJAf —1dJ1d})o ] + (AF —1df)gr + F  in Q,
(3.19b) dive = (Id] — A])®", in Q,
(3.19¢) v=_G on I'.

Let ¢ be a scalar function so that

Ap = (Id] — A))D, in Q,

1 , .y
3_53 - /Q(Idg — AD)idz  on T,
and set w = v — V. Then w satisfies
(3.20a) ~Aw + Vg = [(AJA} — 1dJ1d5)e") ] 5 + (AF —1dF)g,  in Q,
—VAp+ F
3.20b divw =0 in 0,
(3.20b)

(3.20¢) w=G -V on I'.
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For s > 2, it follows from (3.15b) that
j AP LAY k\ ~
ol + Nall2-y < CUICALAE — Tafaf)s] all2os + 11 (AF — 1a)gul2_
+IVAGIE s + I FIZ, +1G = Vol
< CfllATA —1d"al_J7l12 + A = A2 (13112 + l2)
+ lellZn + P22 + 1G5 -
Hence, for s > 2, by ||¢l| gs+1(0) < Ces||9]s,
ol +llall2-y < ClUFIZ + G5+ eM]

For s = 1, we decompose w as w = w; + wa, where wy € H} () is the unique
weak solution to

(3.21a) —Aw; + Vg = [(A;QA;? —~ Idgxdﬁ)ﬁfj} T (A —1d)Gr — VAe in Q,
(3.21b) divw; =0 in Q,
(3.21c¢) wy =0 on T',

and wy € H'(Q) is the unique weak solution of

—AU)2+Vq2:F in Qa
divws =0 in Q,
wy=G—-Vy on T.

The estimate for wq is an immediate consequence of (3.15a); we find that
w1 + lla2li3 < ClIFIZ, +1G = Vel s| < C[IFI2, +1GIE 5+ e l513)

The estimate of w; follows from (3.16):

. . . 2
ol + sl < O [azaf —1agrafyat] o+ (af ~tabias —vae|
< c[llata - 1a 13|13 + 114 - 113103 + I Agl3]

< Ce[|13] + 3]
where we have estimated the H~1(2)-norm using a test function in Hg(£2) which
removes potential boundary contributions. Combining the estimates for wi, we, g1,
and g2, we find that
el +llall3 < CIFIZ, + IG5+ eM]

Forszl,let0<es§%and

(3.22) M =2C[|[FI5 + |G o5
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We find that
ol 2+ llgll?_, < M.

The map (0, §) — (v, q) is easily seen to be weakly continuous, and by the Tychonoff
fixed-point theorem (see [10]), there is a fixed point (v,q) to (3.19) with estimates
(3.17) and (3.18). The uniqueness follows from the linearity of the equation and
(3.17) or (3.18). O

3.3.2. The case of time-dependent domains 7(t)(£2). In the time-dependent
setting, we have a material velocity field v € L2(0,T; H3(2)) and the associated La-
grangian coordinate

t
n(xz,t) =x —|—/ v(x, s)ds .
0
Since A; = —AVvA,
t
A(t) =1d — / AVvAds.
0
Therefore, by Holder’s inequality,

t t
sup [[A(Oll2 < vl +C [ [AIZIVollads < w2+ C[ sup [A@IE] [ lollads
t€[0,T] 0 t€[0,T] 0
<njQf+ | swp [AD I VEllvl o, -
te[0,T

Choosing T > 0 so that \/T||UHL2(Q7T;H3(Q)) < 401Mo’ where C' is the constant from
the inequality above, we conclude that

sup ||A(t)||2 S 2M0 .
t€[0,T]

Therefore,
t
[A®) -1l £ € [ 14 Blo(s)lads < 4CMEVEol oo rimsn,
0

If T > 0 is chosen sufficiently small such that \/T”UHLz(QT;HS(Q)) < 1, then the basic
assumption 4 holds and (3.17) and (3.18) are verified for (v(¢), ¢(t)) for t € [0,T].

3.4. Pressure as a Lagrange multiplier. In the following discussion, we de-
fine

HY2(Q:T) = {w e HY(Q) ‘ we H?(r)} .
With the norm
[l Fe oy = llullf +[ul3,

the space H2({;T) is a Hilbert space.
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LEMMA 3.2. Let n be given as in section 3.3.2. There exists a T > 0 depending
on ||77t||2L2(0 T.13(0)) S0 that for all q(t) € L?(Q), t € [0,T], there exists a constant

C > 0 and a vector field ¢(t) € H¥*(Q;T') such that A{(t)gbfj =gq and
(3.23) 18]l 2y < Cllallo -
Proof. We write ¢(x,t) = ¢(z,t) + n(z,t)q(t), where
Alt)e'y=q—q  in Q,
©'=0 on I',

and ¢(t) = Wll Joa(z, t)dz. Let o' = o' + AF® ;. where ® satisfies

(AFAl® ) =q—q¢ in Q,

AF® L N; =0 on I',
and 1 satisfies
(3.24a) Al =0 in Q,
(3.24b) i =—A¥®,  on T.

By standard elliptic estimates and the Sobolev embedding theorem we find that
@12 < CP(lAll2)lla(®)lo

for some polynomial function P.
A solution of (3.24) can be obtained by considering the following Stokes problem:

_(AfAzd’lak )7] +A']L€T;k =F in €.
Ayl =0 in Q.
P = —AfCI{k onl,

where F' is a smooth vector field. By (3.17),
1911 + (171§ < CIFIZ, + VO3 5] -

Estimate (3.23) follows immediately from all the estimates above with F' = 0. O

Define a linear functional on H%?(;T) by L(p) = (p, A](t)¢";)r2(a) for ¢ €
HY2(Q;T). By the Riesz representation theorem, there is a bounded linear operator
Q(t) : L?(Q) — HY2(Q;T) such that for all p € HY2(Q;T),

(P, A1) 12() = (Q(D)p, @) 2 (eury == (Q()p, @) () + (QE)D, ) 121y
Letting ¢ = Q(t)p shows that

Q) rr2(ir) < Cllpllo

for some constant C' > 0. By Lemma 3.2, for every p € L2(2), there exists ¢ €
H'?(Q;T) such that Ao"; = p with estimate ||¢]| g12(q;r) < C|[pllo; hence

P15 < QWP Hr2@r el me@r) < CIQE)P| mz@r)lplo,
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which shows that R(Q(t)) is closed in H*2(;T). Since V,(t) € R(Q(t))* and R(Q(t))*
C Wy (t), it follows that for each t > 0,

(3.25) H2(Q:T) = R(Q(t)) Bz Volt).

We can now introduce our Lagrange multiplier.

LEMMA 3.3. Let £(t) € H¥2(;T) be such that L(t)e = 0 for any ¢ € V,(t).
Then there exists a unique q(t) € L*(Q), which is termed the pressure function, sat-
isfying

Ve HP(D), L1)(0) = (a(t), A (0)¢l) 20 -

Moreover, there is a C' > 0 (which does not depend on t € [0,T] and on the choice of
v e Cp(M)) such that

la@®llo < CILE 1z ey -

Proof. By the decomposition (3.25), for given A, let ¢ = v1 +v2, where v € V,(t)
and vy € R(Q(t)). It follows that

L(#)(#) = L) (v2) = ($(1), v2) g2 (ir) = (1), ©) (e

for a unique ¥ (t) € R(Q(¢)).

From the definition of Q(t) we then get the existence of a unique ¢(t) € L%*(Q)
such that

Ve H2(QT), L)) = (at), AL (D)) 12)-
The estimate stated in the lemma is then a simple consequence of (3.23). O

3.5. A polynomial-type inequality. For a constant M > 0, suppose that
f(t) >0, t— f(t) is continuous, and

(3.26) [y < M+ CtP(f(1)),

where P denotes a polynomial function and C'is a generic constant. Then for ¢ taken
sufficiently small, we have the bound

f(t) <2M.

This type of inequality, introduced in [8], can be viewed as a generalization of standard
nonlinear Gronwall inequalities.

4. Statement of the main results. In order to state our main theorems, it
is necessary to explain the compatibility conditions which we require the initial data
to satisfy. Because these conditions are somewhat novel, relative to compatibility
conditions for standard parabolic evolution equations, we include the first section of
our user’s guide to explain the derivation of the compatibility conditions in a simpler
linear setting.
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4.1. User’s guide, part I: The specification of compatibility conditions
for parabolic equations.

4.1.1. A toy linear model. In this first section of our user’s guide, we propose
a relatively simple linear parabolic problem to illustrate the issue of compatibility
conditions. Suppose that Q = T! x (0,1). Given a’(t) a smooth matrix that only
depends on time with a{ (0) = Id{, let u € R?, p € R satisfy

(4.1a) b — vaf(aju’;) ), +alpy =0 in Qx(0,T),
(4.1b) alu’; =0 in Qx(0,7),
(4.1c) - y(a{uf“j + aiufj) — pId¥ |al N, = h(t) on 00 x(0,T),
(4.1d) u = ug on Qx{t=0},

where h(t) is a vector-valued boundary forcing function. Let u; = u¢(0); then

(4.2) divar = (aduf ;)(0) = (alu’;)o(0) — ()] (O)ufy; = —blu ;.

1] 7

where the notation b = a,(0) is used. Letting ¢ = 0 in (4.1a) and then letting div act
on both sides of the resulting equation, we find that po = p(0) satisfies

—Apy = —bguaj in Q.
In order to invert —A, a boundary condition is required. By (4.1c),
(4.3) poN = vDef ugN + h(0) on 0N.
Therefore, py satisfies

(4.4a) —Apy = —bgu&j in Q,
(4.4b) poN = vDef ugN + h(0) on JN.

Equation (4.4) in general is not solvable unless v Def ug N — h(0) points in the normal
direction; nevertheless, if there is a solution to (4.4), then py must satisfy a standard
elliptic equation:

(4.5a) —Apy = —bguaj in Q,
(4.5b) po = v(Def ugN) - N + h(0) - N on Jf.

Therefore, in order for problem (4.1) to have a strong solution (so that the boundary
condition (4.1c) makes sense), ug must at least satisfy a constraint—the so-called first
order compatibility condition (to (4.1))—that

v Def ugN + h(0) is parallel to N,

or, equivalently,
(4.6) Pian | Def ugN + h(O)} —0,

where Py, is the orthogonal projection onto the tangent plane of I'; that is, for a
vector w defined on T,

Pionw =w — (w- N)N .
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Now suppose that uy € H*(Q) satisfies the first compatibility condition. Then
by elliptic regularity, po € H3(£2). Suppose that a strong solution u is continuously
differentiable in time. Then it makes sense to talk about u; and, by (4.1a), u; €
H2(). Let ug = uy(0). Similarly to (4.2),

divuz = (afuj, ;)(0) = (alul;)ee(0) — (an)] (0)uh ; — 2(ar)] (0)ui
= —c{uaj — 2b{u§7j ,
where the notation ¢ = ay(0) is used. Therefore, time differentiating (4.1a) and

letting ¢ = 0 and then letting div act on both sides of the resulting equation, we find
that p; = p;(0) satisfies

—Ap; = divus — vAdivu; + bfpo,ki

J

= _cl

u&j — be-uij + Vb{uédkk + blpo ki in Q,
while time differentiating (4.1¢) and letting ¢ = 0 lead to
—u[(Deful)ﬁ; +bluf; + blup; — plldﬂ Ny —v [(Def o)k — poldi | bEN, = hy(0)7.

As a consequence, p; satisfies

(4.72) —Ap; = —cguaj — be-ui?j — be-ui?j — beuédkk + bFpo ki in Q,
p1N; = hy(0)" + v[(Def uy) + bluf ; + blup jIN;
(4.7b) + [v(Def ug)}, — pold; bk Ny on 09Q.
Therefore, in order to have a strong solution with better regularity, that is, a solution
that is continuously differentiable in time, the identity
(4.8)
Pian | he(0)" + v[(Def uy)i, + b{ulg)j + biuaj]Nk + [v(Def ug)s — poldi]bLNy| =0

must hold. Equation (4.8) is called the second order compatibility condition to (4.1).
We emphasize that the second compatibility condition is needed only when looking for
solutions that are continuously differentiable in time.

4.1.2. A regularization of our toy linear model. Now suppose that we
want to add an artificial viscosity on the boundary 9€2. An intuitive way of adding
the viscosity on the boundary is to modify the boundary condition as

—(vDefu — pId)N = f(t) + kAZu,

where A denotes the surface Laplacian (and in our example, Ay = 88—52); however,
1
for this kind of artificial viscosity, even though wug satisfies (4.6), in general it does not

satisfy the corresponding compatibility condition

Pian |:V Def ugN + f(0) + ﬁAguo =0.

Moreover, adding this artificial viscosity requires more regularity on the initial data.
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Suppose that wug is smooth enough and satisfies (4.6). To overcome the issue of
compatibility, we instead consider

(4.9a) U — ua’j(aﬁufj),k +afpr=0 in Qx(0,7),
(4.9b) alu’; =0 in Qx(0,7),
(4.9¢) — [u(aguf;. +ajul) — pld¥|al Ny = £(t) + A2 (u—ug) on IQ x (0,T),
(4.9d) u = ug on Qx{t=0}.

Then at time ¢ = 0, we essentially add nothing on the boundary, and the first order
compatibility condition to (4.9) is the same as (4.6).

However, in general uy does not satisfy the second order compatibility condition
to (4.9); that is, in general the quantity

Pian [ft(O)i + ,%Agul + V[(Deful)?c + b{ul&j + biu&ﬂNk
+ [v(Def ug)t — polds bk Ny

does not vanish. In order to introduce an artificial viscosity in which the first and the
second order compatibility conditions (of the approximated problem) both hold, we
modify the boundary condition (4.9¢) as

(4.9¢") —(vDefu — pld)N = f(t) + AL (u — ug — tuy).

Note that the first and the second order compatibility conditions to (4.9”) (that is,
(4.9) with (4.9¢") replacing (4.9¢)) is the same as (4.6) and (4.8).

4.2. Compatibility conditions for the real fluid-shell problem (2.5). As
discussed in section 4.1, we now state the first and the second order compatibility
conditions to (2.5).

4.2.1. The case n = 2. When n = 2, only the first order compatibility condi-
tion is needed for the existence of the solution to (2.5). As discussed in section 4.1,
the first order compatibility condition is equivalent to the validity of the boundary
condition (2.5d) at time ¢t = 0. Since L,,(n) and L,(n) both vanish at time ¢ = 0, the
first order compatibility condition to (2.5) is then

(4.10) Pian |:V Def ug + ge(vAug — Vo + f(0))| =0,

where ¢ is the solution to (3.3) or (3.7).

4.2.2. The case n = 3. When n = 3, the first and the second order compat-
ibility conditions are both needed for the existence of a solution to (2.5). The first
order compatibility for the case n = 3 is the same as (4.10). To obtain the second
order compatibility condition, suppose that the solution is continuously differentiable
in time; then time differentiating (2.5d) and setting ¢t = 0 in the resulting equation
lead to

Q. N; = gews + {V(Def wi)] — V(u’é)jué)k + 2u§7iué)k + uakué)k) + qgujoﬂ} N;

3 i
+ [aﬁm(n) + %Eb(n)}t(()) on I,
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which in turn implies that
P {V(Def wl)fNj — V(ug)juak + 2u’§)iug7k + ué)kué)k)]\fj + qou&iNj
(4.11) + (s.cm(n) + ?ﬁb(n))i(O) + 5’W2:| =0,
where wy is defined in (3.10). Equation (4.11) is the second order compatibility

condition to (2.5).

4.3. Existence of initial data satisfying the compatibility conditions.
In this subsection, we show that the set of velocity fields satisfying the first (and the
second) order compatibility conditions is not empty. In fact, there are many such
vector fields satisfying these two compatibility conditions.

4.3.1. The case n = 2. We will construct a vector ug satisfying the first order
compatibility condition (4.10). In fact, a vector ug satisfies (4.10) if and only if

(4.12a) —vAug+Vrg=h+ f(0) in Q,
(4.12b) divuy =0 in Q,
(4.12¢) (—v Defug + rold)N = geh on I

for some h. Since (4.12) is always solvable as long as h and f(0) are smooth enough, we
conclude that there exists ug satisfying (4.10) for any external forcing f(0) € H(Q)’
and equilibrium state IT.

4.3.2. The case n = 3. For n = 3, we consider only the case without inertia.
We first claim that ug satisfies the first order compatibility condition (4.10) if and
only if

(4.13a) —vAug + Vrg = hy in Q,
(4.13b) divuy =0 in ),
(4.13¢) (—vDefug + rold)N =0 on T

for some ry and hy. The “if” part is straightforward, and we only need to prove the
“only if” part. Suppose that ug satisfies the first order compatibility condition (4.10).
Let ro be the scalar function solving
—Arg =0 in Q,
ro = v(DefugN) - N on I'.
Then hy = —vAug + Vrg in (4.13) will produce this desired ug. Given such a uyg,
we will use Agug to denote this hq, and given hy, the solution ug to (4.13) will be
denoted by A;1h;.
Similarly, the second order compatibility condition (4.11) holds if and only if
(w1,71) solves
(4.14a) —vAwq + Vry = ho in Q,
(4.14b) divwy = —ul uf ; in Q,

(—vDef wy + rId)N; = v [ul&jué)k + 2“571'“%,1@ + uakué)k} N;

. 3 i
(4.14c) + roug ;Nj + {aﬁm(n) + %Eb(n)}t(O) on I
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for some ho. Note that the last term in (4.14¢) involves only the derivatives of ug and
I', and r¢p on I' depends only on ug. By the superposition principle, the solution wy
to (4.14) can be expressed as wi = A hy + Fi(ug) for some map Fj.

Let F be a map defined by

F(hi,hs) = hy + FL(AT hy) + A hy

If £(0) is in the image of F, then there exist hy and ho so that the solution ug and wy
to (4.13) and (4.14) satisfies the first and the second order compatibility conditions.
In particular, f(0) satisfying Pian(Def f(0)N) = 0 is in the image of F.

Conversely, if the first and the second order compatibility conditions hold for the
initial data ug, f(0) must be in the image of F.

4.4. The main theorems. Having defined the compatibility conditions for the
fluid-shell interaction problem, we now state the main theorems.

THEOREM 4.1 (the casen =2,5 =0or 1). Letv > 0,e >0, f € FX(T), and
I be of class H*®. If ug € H*t9(Q) is divergence-free and satisfies the first order
compatibility condition (4.10), then there exists a solution of (2.5) with v € V3(T) for
some T > 0 depending on €, v, |uol|l215, and || f|| 72(r), and T'(t) is of class H*® for
almost all t € (0,T).

Furthermore, if in addition T is of class H®®, f € FXT), and ug € H°(Q) and
satisfies the second order compatibility condition (4.11), then the solution is unique,
with v € V3(T) and T'(t) of class HSS for almost all t € (0,T).

THEOREM 4.2 (the case n = 3, ¢ = 0). Let v > 0 so that £ <1, ¢ < 1,
f e FYT), and T is of class HS. If ug € H>(Q) is divergence-free so that the first
and the second order compatibility conditions (4.10), (4.11) hold, then there exists a
unique solution v € V?(T) for some T > 0 depending on €, v, ||luglls, and || f||7s(1).
and T'(t) is of class HS5 for almost all t € (0,T).

Remark 5. Surprisingly, we are unable to establish continuity-in-time for solutions
to (2.5). The derivative loss can clearly be seen in estimates for the time derivatives
of the initial data. To be precise, the fundamental new feature of this particular
Navier—Stokes systems is the effect on the pressure (and its time derivatives) by the
shell traction; specifically, the reader should observe that

(4.15) Lo(M)i=0 =0 and L,,(n)]t=0 =0,
while
(416) 3t/3b(7])|t:0 7& 0 and 8t£m(77)|t:() 7é 0.

For the 3D fluid, this means that if u(0) € H5(Q), because of (4.15) and the
elliptic estimate, the initial pressure ¢(0) € H*(Q); on the other hand, from the
Navier-Stokes equations at time ¢ = 0, we then see that v;(0) € H3(£2), but due to
(4.16), elliptic estimates show that ¢;(0) € H*(£2). We hence observe that while ¢(0)
loses one derivative with respect to v(0), we see that ¢:(0) loses two derivatives with
respect to v¢(0).

Again, the Navier-Stokes equations at time ¢ = 0 show that v (0) € L?(Q), and
hence derivative loss ensues. We have the following initial regularity:

v(0) € H3(Q) —> v,(0) € H3(Q) —> vy(0) € L2(Q).

The three-derivative loss of vy (0) implies that vy (t) cannot be better than L?(),
and we are consequently unable to establish the type of parabolic regularity expected
of parabolic systems, from which continuity-in-time of solutions would follow.
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Remark 6. For the 2D fluid, we require more regularity on the initial data to
establish uniqueness. The uniqueness argument relies on closing energy estimates
in the space V3(T), but in order to control certain error terms, we require more
regularity on the supposed solutions whose difference we are estimating. Due to
the nonlinearities of the bending energy of the Koiter shell, we are unable to close
estimates in V¥(T) for any even integer k > 4. As such, for the uniqueness proof, we
are forced to assume that the two supposed solutions are indeed in V3(T), and thus
require the extra regularity on the initial data.

For the 3D fluid, the Sobolev embedding theorem forces us to prove existence in
V5(T), but we are able to prove our uniqueness assertion, by comparing two solutions
in the larger space V3(T'), and thus control all error terms in our energy estimates
thanks to the added spatial regularity of the two supposed solutions, already imposed
for the existence theory.

Remark 7. When n = 3 and @ = 1, Theorem 4.2 is also valid if the initial data
up is more regular, or to be more precise, ug € H3(Q); however, we do not know if
in general there are ug and w; satisfying the first and the second order compatibility
conditions. Nevertheless, the first and the second order compatibility conditions hold
for some specific cases. For example, if ug = 0 and f(t) = f(0) +t2g for some smooth
g, where f(0) is the solution to

vAf(0) +Vrg = —h in Q,
div £(0) = 0 n Q.
(v Def f(0) + rold)N = ¢h in T

for some function h, then w; = —f(0) and wo = h so that the first and the second
order compatibility conditions are valid.

Remark 8. For the case n = 2, the existence of a solution is guaranteed indepen-
dent of the thickness e; however, when n = 3, v has to be much larger than ¢ in order
to develop the existence theory.

Remark 9. For the case n = 2, the first order compatibility condition guarantees
only the existence of a solution. In order to obtain the uniqueness of the solution, the
initial data wg must satisfy the second order compatibility condition, as for the case
n=3.

5. The linearized and regularized problem. One potential solution strategy
for (2.5) might be to linearize the nonlinear equation and apply some fixed-point
arguments; however, linearizing £,,(n) and L£y(n) destroys the structure (see Remark
15 in section 7.2 for reference) and prevents the normal vector from gaining regularity.
Therefore, we introduce a regularized version of the linearized problem by adding an
extra artificial viscosity on the boundary for the purpose of smoothing the normal
vector, and we prove that the estimate is independent of this artificial viscosity.

5.1. Regularizing the initial data. As discussed in section 4.1, in order to
introduce the artificial viscosity of the type kKAZv on the boundary, the initial data
has to be more regular than the regularity stated in Theorem 4.1 or 4.2; moreover,
the initial data has to be regularized in a specific fashion to ensure the compatibility
conditions. In this section, we regularize the initial data in a way that the first and
second order compatibility conditions still hold.

We first regularize the boundary. There are many ways of regularizing the bound-
ary, and we choose the following approach. Let Qz, C € denote a (nested) sequence
of monotone increasing open sets with smooth boundary I'z;, that is, Qz, C Qg if
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i < j, and Uj Q%, = Q (which is conceptually the same as lim; ;o Qz, = Q). We will
then study (2.5) with Q and I" replaced by %, and I'z; for some fixed j.

To regularize the initial velocity, we need to introduce the mollifiers and an exten-
sion operator. Let y be a nonnegative, smooth function supported in the unit ball so
that ||x|[z:®s) = 1, and the sequence of mollifiers is defined by xe(z) = é "x(¢ 'z).
We use &; to denote a Sobolev extension operator extending a vector field H*(Qz,)
to a vector field in H*(R") for some s > 0.

For the sake of notational simplicity, from sections 5.1.1 through 8.7 we continue
to use 2 and I' to denote )z, and I'z,, and use £ to denote &;. Beginning with section
8.8, having already passed to the limit lim; o, Q7 = €2, the notation Q and I' once
again refers to the actual domain and boundary.

5.1.1. The regularization of the velocity for the case n = 2. Suppose that
the first order compatibility condition (4.10) holds for the initial data ug. Compute
qo and w; accordingly. Let fo = e * f(0) and Wy = xe * Ewq, then define a smooth
function hy = —W;1 + fo. Let @p = A7 h; be the unique solution to (4.13). It is easy
to see that @iy — ug in H3(Q) as € — 0, and

(5.1) ldolls+s < CE*[luolls -

The regularized forcing F' is defined by ye * F.

5.1.2. The regularization of the velocity for the case n = 3. When taking
the second compatibility condition into account, we cannot regularize f(0) in the way
we did for the case n = 2 since xe * f(0) in general is not in the image of F.

Suppose that the compatibility conditions (4.10) and (4.11) hold for the initial
data up. Compute qo, w1, and ¢ accordingly. Let hy = xe * E(—vAug + Vo) and
ho = xe * E(—vAwy + Vq1); then hy and hs are smooth functions. Let @g = A hy,
Go and W1 = A;'hy + F(A7'hy), i be the unique solution to (4.13) and (4.14),
respectively. By the virtue of the mollification,

(5.2) liolls+s < C&*[Jluolls + llaolla| < C&~*[1+ uo2] .

and @y — ug in H°(Q) and w; — wy in H377(Q) as é — 0.
Define fy = —vAug + Vo + W,

(5.3) F=fo+xex& </Ot Ft(s)ds> .

Finally, define W) = hy +af ,qo.x — v [{f 0 g+ ;0b , +f ;i ;] +F{(0) . Then F
is smooth, F' — F in F4(T), and %, — w» in H7(Q) as é — 0. Note that F(0) = fo.

Remark 10. All the regularized variables, such as @y and fy, depend on two
parameters, k£ and é. The dependence on ¢ is through the convolution, while the
dependence on £ is through the regularization of the geometry of the domain, such
as the outer normal N to %, in the boundary condition (4.13c) or (4.14c).

5.2. The linearized problem with artificial viscosity. For initial data uo,
we introduce smooth vectors g, W1, W2, and F as above. Given v € V2"~ 1(T) with
9(0) = @g, OFv(0) = Wy, k= 1,n — 1 so that

n—2 T
112017y + Z |07 0(t) 3152k dt < M
k=070
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for some M determined later, let v = x; * v if n =2 or
t s
(5.4) 0 =1 +twy +xexE </ / vtt(s’)ds’ds)
o Jo

if n = 3 with associate 7, let A be the inverse matrix of V1, let n be the associate
normal vector, let jo,3 be the associate metric tensor defined by gog = 7o - 7,8, and
let bap be the associate covariant component of the second fundamental form defined
by bas = 7,ap - . We consider the following linear problem:

(5.5a) =1 in (0,7)xQ,
(5.5b) vl — VAZ(A?U?,C)J + qu,k = F* in (0,7)xQ,
(5.5¢) Alvl; =0 in (0,7) %,
. . ~ 3 i
(5.5d)  —|v(D)! — quﬂAﬁNg - [Ecm(f;) + %L‘b(ﬁ) on (0,7)xT,
+ Geny + ke*L(v)’
(5.5e) v(0) = 1o on {t=0}xQ,
(5.5¢) n(0) =e on {t=0}xQ,

where the smooth parameter ¢ is fixed to be k'/4, F = f o, L,(77) and Ly(7}) are
treated as given forcing terms defined by

1
va

£3(0) = = [Vaa™ by = bu)i]_ +

Lon(il) = == [Vaa*®" (Gas — 8as)ils |
2

7

5
[\/Eaaﬁ'ﬂs(l;ag - bag)f;yi} ~ s

and the operator £, following [9], is defined as

1 1

- afydo o afyo(~ o ~

L(v) 7 [\/Ea U7a3} T {\/Ea (G + (n 2)tw1)7a3] .

1

= — apys —Ly.
\/E |:\/aa v,aﬂ:| Yo 0

Note that £(v) satisfies
L(v) =0 if n=2,3 and [L(v)] =0 if n=3,
t=0 t=0

and L, (7)) satisfies

n—1 T
(5.6) > / 0 Ly () 295 alt < C
k=0

n—1 .7

~ ke~

15]1S2n1 7y + Z/o |0; 7]|§n+1.52kdt‘| ;
k=0

where we assume T (depending on M) is chosen small enough so that ||7j —el|2,_; <
CV/T for some constant C' independent of M.

Remark 11. As we explain in section 4.1, £(v) is designed in such a way that (5.5d)
and its time derivative hold at time ¢ = 0. Therefore, ug satisfied the corresponding
compatibility conditions to (5.5). Note that (5.3) and (5.4) are also used in order to
guarantee the compatibility conditions.
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Remark 12. An elliptic-type estimate from the study of (5.5d) is important to
close the estimates (see section 7 for details). Therefore, the extra forcing term xLg
appearing in (5.5d) have to be as smooth as the normal traction. Since we are looking
for solutions v € V2"~ YT), kLo must be an L*(0,T; H?>"~23(T))-vector, which is
not the case if up € H"(2) for some 2n — 1 < r < 4n — 2. Therefore, uy has to be
regularized.

Suppose that ¢ = k*. By (5.1) and (5.2), we find that for the case n = 2,

o202 < Cr 2V Juglls < Cr™3* |Jug|3 ,

while for the case n = 3,
Jiiollon+s < k=29 1+ lugllf] < Ok 1+ Jjuoll3] -
Therefore, |kLglan—2.5 — 0 as k — 0 for o« = 1/4 since

[KLolza-2.5 < Ok |ollantz + (0 = 2t ]l2ns2]

C/i_3°‘|\u0|\3 if n=2,

gcn[ﬂ + (n = 2)t||ao||2 }g
|| O||2n+2 ( ) H OH2l1+4 C/{lfSO‘ |:1+||’U,0||§:| 1f 1’1:3.

5.3. User’s guide, part 1I: The penalization for our toy model. In this
subsection, we again use our toy model to illustrate the methodology of constructing
a solution to (5.5). We first remind the reader that for the case a] = Id] for all
t > 0, (4.1) is a standard Stokes problem, and a weak solution to the problem can
be constructed by the Galerkin scheme. For simplicity, let (4.1") denote (4.1) with
a=1Id for all ¢ > 0. A vector-valued function u is called a weak solution to (4.1’) if,
for all p € H}, (),

(5.7) (ut,cp>—|—%/Defu:Defgoda:—/f(t)-cpdSzO,
Q r

where H}, () is a subspace of H!(Q) with zero divergence. Let {e,}?°, be a basis
of H, () that is orthonormal in L?(2). The Galerkin scheme states that the weak
solution to (4.1') can be approximated by wu,(z,t) = di(t)e;(z), where d) solve the
ODE

%d@(t) + gdﬁ(t)/ Def e;j(x) : Def e;(x)dx = / f(t)-edS Vitel0,T)
Q r
with initial condition dj(0) = [, @o(2)e¢(z)da. We note that the time independence
of e; is important in obtaining the ODE above.
Another way of solving (4.1") is to introduce a penalized problem. Letting 6 be
the penalization parameter, we look for uy € L?(0,T; H'(Q)) satisfying that for all
p e H'(),

1
(5.8) (ugt, @) + g/ Def ug : Def pdx + 7] / divug diveds = 0.
Q Q

Note that in this formulation, the divergence-free constraint is removed from the space
of test functions. A wg satisfying (5.8) can be obtained by the Galerkin scheme, and
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one can show that % div ug has #-independent estimate, and hence possesses the weak
limit g. On the other hand, ug has a weak limit u, and by the existence of the weak
limit of  divug, divu has to vanish. Therefore, the solution of (4.1’) can be obtained
by finding the (weak) limit of weak solutions to (5.8) as the penalization parameter 6
approaches zero. Detailed arguments can be found, for example, in [18].

When al is time dependent, the Galerkin scheme stated for solving (5.7) fails to
work. The main reason is that in order to satisfy the condition aju’; = 0, one needs
to impose the same condition on the basis functions e;, which is generally not possible
(unless ey is time dependent). Therefore, we consider the following penalized scheme.
Let 6 denote the penalization parameter, and let ug € L2(0,T; H*(Q)) satisfy that

for all o € H'(Q),
v , . , . 1 .
(o) + 5 [ (@bl + ) alh + ad)do + 5 [ aluly jalicludn =o0.

Similarly, one can show that %af ul ; has #-independent bound, and the limit of ug
satisfies the constraint aju’; = 0.

5.4. Weak solutions to (5.5).
DEFINITION 5.1. A vector v € Vi(T') with vy € V5(T') is a weak solution to (5.5),
provided that

]/ . .
(5.92) (1) (ve,0) +0e(vr@)r + 3 /Q Djv: Dpde + ke’ / a0 g5

3
— (F.0) — (@), ) — S (o) + [ S Lalas,
r

(5.9b) (i) v(0,-) = dg

for almost all t € [0,T], where {-,-) denotes the duality product between V;(t) and its
dual Vi(t)', and {-,-)r denotes the duality product between H?*(T') and H2(T).

As discussed in section 5.3, the nonlinear divergence-free constraint in Lagrangian
coordinate creates technical difficulties in the construction of a weak solution to (5.5).
Therefore, we introduce the following penalization approach to the problem.

DEFINITION 5.2 (the penalized problem). Letting 8 > 0 denote the penalization
parameter, a vector vy € L2(0,T; H¥2(Q;T)) with vg, € L2(0,T; HW2(T)) is a
weak solution to the penalized problem if, for all p € HY?(Q;T),

. _ v o i i
(i) (vot, p) + de(vor, p)r + §/QDA”9 : D jpdr + /%‘?’/F@ P1005 050’509

(5.10a)  — (g0, Af) 120
_ ~ g3 _ i
= (F,¢) — (L (), )1 — §<£b(77)7‘P>F + /F ke Lo p'dS

(5.10b) (ii) ve(0,-) = g

for almost all t € [0,T], where (-,-) denotes the pairing between H'?(;T) and its
dual, and qop = Go — %Agv;j ifn=2orqy=qo+tg — %Aﬁvé)j ifn=3.

The goal of the following four sections is to establish the existence of a weak
solution v to the problem (5.5) (or the weak formulation (5.9)), as well as the energy
inequality satisfied by v and v; via the study of (5.10). It is done by first finding a
solution to the penalized problem (5.10) for all # and proving that the solution has
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f-independent estimates. This f-independent bound enables us to pass to a weak
limit which we show satisfies (5.9).

5.5. Weak solutions for the penalization of (5.5). In the following, we
assume that n = 3. The argument for the case n = 2 is similar, and it requires the
study of only one time derivative of (5.10).

We start with finding v By introducing a (smooth) basis (e¢)52, of H'2(Q;T),
and taking the approximation at rank m > 2 under the form vy (¢, z) = Zi:l di(t)ex(x)
and satisfying on [0, T, for all ¢ € span(ey,...,ez),

(5.11a)

. _ v « i i
(l) <U€ttt7 (p> + 0'€<Ugttt, QO>F + 5 /Q ngétt : DA(,Od{E + 553 ‘/F a 'BwsUEtt,aB(pﬁédS

3
. . - - € -
- ((AZJ-Qe)th @fj)w(ﬂ) = (Fit, 0) — (L (M)et, P)T — §<£b(77)tt7 ©)r

— I// {(ATAf)ttvz,m + (A.ani;c)ttvzm} (p;]kdx
Q

— 2w [ (AP At (A A vl ]
Q

(5.11b)
(i) vt (0) = (W2)e s ver(0) = (Wi)e,  ve(0) = (tp)e in 2,

where ¢, = Go + tG1 — %szzj, and (7g)¢, (W1)e, and (W2)e denote the H%2(Q;T) pro-
jections of @, W1, and Wo on span(es, ea, ..., ep), respectively. Note that d(t) satisfies
an ODE of the type

d"(t)+ Ci(t)d" (t) + Co(t)d' (t) + Cs(t)d(t) = F(t) te(0,T),
d(0) = ((@o)esex),  di(0) = ((W1)esen),  di(0) = ((W2)e, ex)

where C;’s € C*([0,7]) and § € L*(0,T). The existence and uniqueness of the
solution to this ODE can be proved by Picard’s iteration scheme as the proof for the
fundamental theorem of ODE.

Remark 13. The process above is used to obtain a weak solution vg; to the
second time differentiated problem of the original penalized problem (5.10), that is,
to obtain a weak solution to (5.10),,. In fact, a weak solution vy to (5.10) can be
obtained by a similar Galerkin approximation, and as suggested by the notation,

t t s
Vo (t) = ’110 + / Vot (S)ds = ’110 + tV~V]_ + / / Vott (s/)ds'ds .
0 0 JO

The advantage of constructing the solution wvgs prior to vy is that it clarifies why
compatibility conditions are required, and it is also clear how the estimates are ob-
tained.

Since

—((Alqe)et, iy ) r2(e) = Ollaeells — 2(AD)qe + (AD)eeae, vy ;) 120
— (qetes (fli)ttvzj - 2(A¥)tvét,j)m<n> )
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the use of the test function ¢ = vy in (5.11a) leads to the inequality
(5.12)
t
l[vee (1|3 + Felvere (8) |3 + / [IIVvenII% + ke’ |ven 3 + 9||‘]Ett||(2J:| ds
0
2 2 Loz 2 ‘11 2 e 2
< 0|l + oetialt + [ 1Futdas] + € [ | Llen@uls + Stk
0 0 RE K
+ 1(AA) |1 (@ IV 0I5 + 1(AA) 17 0 () IV 01§ + (getes (AD)2evf ;) 120

+ 2(qeee, (Al )22 () + 20(AD)qer, Vi ;) r20) + (A, U@tt,j)m(ﬂ)] ds.

By the inequality

(513) 1701 < C[ls B+t [ 1las).

we find that

(5.14a) okom i3 < O|l(oFomn) ()3 +t / Jokomulias)
(5.14b) oV ol < CIGET 0O +1 [ 1085 s
As a result,

1 Aeel|F oy < CLHTl13) . 143 < Cllal3 < O(l|oll3 + M) -

Therefore, using q¢ = Go + tq1 — %flgvzj in the last two terms of (5.12), Young’s in-
equality and (5.14) imply that

t
[vees (D)5 + Felvess (£)]5 + / [IIvaH% + ke vl + 0||QZtt||(2):| ds
0
t
< CuM(e,u0, f) +C / [CAA) 0] ) 00l + NCAAY e )| Ve 3] s
t t
+3 [ Ollanslds + s [ [1Aul~ 19013 + 1411~ [ Vo3 s
— t t ~ ~
+8 [ 1Vomlids + Cs [ (1A oyl + e ol s
t t
< Gl o, )+ Cost™M [ [ Vonalfds +8 [ (190l + Ol s,
0 0
and consequently, for T' = T'(0, k,e, M), we find that the quantity

T
sup [fowe(®lF +oelone (@] + [ [Vl + 52lorals + Bl ]
te[0,7) 0

is bounded uniformly in ¢, and this implies the weak compactness of the sequences
vere and qug. By (5.13), OFny is also uniformly bounded in L2(0,7T; H%2(Q;T')) for
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k = 0,1,2 and 9Fq, is uniformly bounded in L2(0,T; L%(Q2)) for k = 0,1 as well.
Therefore, there exists a subsequence of ¢, still denoted by ¢, so that

(5.15a) Ofne — OFny in L2(0,T; H*?(Q;T)) for k=0,1,2,3,

(5.15b) gy — dFqp in L%(0,T;L*(Q)) for k=0,1,2.

From the standard procedure for weak solutions, we can now infer from the weak con-
vergence and the definition of v, that veuy € L*(0,T;HY(Q)") (and wver €
L2(0,T; H=%(I")) if & = 1), which in turn implies that vg;: € CO([0, T]; H*(Q)), ve: €
CO([0,T); L3(82)), vg € CO([0, T); HL(2)), with ve(0) = g, ve:(0) = W1, vest(0) = Wa,
and

T
/ [||U9tt||% + 5€|U9tt|3 + /€83|U0tt|§ + 9”%#”8} dt < Cy,.cM(e,uo, f).
0

Moreover, time integrating (5.11a) from 0 to ¢, we have for vy,
(5.16)

v . .
(vert, ) + T (vert, )1 + 3 /Q D zvg : D zoda + ke /F aamavét,aﬁ%ﬁ,zyéds

~ . ~ 3
~ (Aa0)e, )12 = (Fr9) = (L@ ) = 5 (LoD o)

— V/Q {(/Nl;”[li)tvzm + (A?Ai)tvﬁ,m} tpfjda: + ke? /F ao‘ﬁ'y‘sﬁvaaﬁwfwd;g + co(p),

where
0r(¢) = ((F2)ese) + ae((2)es e + 5 [ Def(in)s s Def g
— (@) div )y + (0l — iv(F1)es v o) (e
+ ((Go)es @ 40" ) r2 () — %(div(ﬂo)e, @ 0 ) r2 o)
— (F4(0),0) + (Lo (7)e(0), o)1 + 6—;<ﬁb(ﬁ)t(0), @)r
+v /Q (6 i . + b 73, . + (Def o), o
+ red /F a®Pre {(VNVli)g,a,@ - Wi,aﬁ} gof,y(;dS.

Note that as ¢ — oo, div(iig)e — 0, div(wy)e — ﬂ&iﬂée,j — 0. Therefore, by the
definition of g and Wi and the second order compatibility condition, c,(p) — 0 as
{— 0.

Time integrating (5.16), we find that

v . .
(vet, @) + Te{vee, ©)r + 3 /Q D jve : D jedx + ke /F aaﬁ"*‘svz’aggof,yédS
3
iy i - - € .
(5.17) = (A, ¢! )2 = (F,9) — e(Lm(), ¥)r — 5 (Lo(@), )r

+ /%3/ LoigoidS + (@)t + de(p)
r
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where

Def (), : Def pdx
Q

= ((q0)e,dive)r2() + = (le( 0)e, div o) r2(q) — (£(0), »)

de() = ((W1)e, ) + Te((W1)e, )T +

[NIIN

et [+ 850 )an — (@) + t5)) aa il 508
r

and again by the definition of g and wj and the first order compatibility condition,
dz((p) — 0.

Time integrating (5.16) and (5.17), and passing ¢ — oo, by virtue of weak con-
vergence we find that

T
14 . .
/o |:<'U9tt7 ©) + Ge(vgu, P)r + 3 /Q D jvg: : D jpdx + ke® /r aaB’YéUét,aﬁsp,l'yédS
~ (Ao )z |

T
= [ ()~ elentieie —v [ (GG A8+ (AP At ) e
0
3
_%<Lb(ﬁ)ta@>1‘+/€€3/r aﬁ'yﬁwl aﬁ(ﬂ 5dS:|dt

and
T y , '
/0 |:<’U9t, ) + aelver, o)r + 5 /Q D zu9 : D jpdx + ke’ /F a"“m‘svéya,@gofwdS

— (Al gy, Sp,ij)L2(Q):| dt
3

= [ [0 ctemtin e - St e + [ neroptas] a

Choosing ¢ to be independent of time, then for almost all ¢ € [0,7] and ¢ €
HE2 (1),

14
<U9tt7 (,O> + a'€<’U9tt, (p>1‘ + 5 /{; DA’Ugt : DA(PCL’IJ =+ /153A aﬁ’y%et aB(p yéds
3

J i ~ ~ g ~
(5.18)  — ((A7q0)t, ¥'j) L2 () = (Fiy ) — (Lo (M)t o)1 — 5 (Lo p)r
— 1// {(/H”flf)tvéym + (A?[l?)tvé,m} wfkdx + /4:53/ By i W oa »ysds
Q I

and

(5.19)

14
<’U9t,(,0>+5€<v9t,g0>r+5‘/QDAU9:DA(pdx—i-/ia‘i?‘/F a,@wi laBSO 5dS
B 3

— (Alge, ¢'))r20) = (F, ) — (Lo (i), o)1 — —<£b( ), P)T +/FH€3L0iSOid5-
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5.6. Strong convergence of vy, vet, and vege. Since vy € L2(0,T; HY2(;T)),
we can use it as a test function in (5.19) and obtain (after time integration)

N | =

[0l + oetua@s] +5 [ 10 )1

t
+ e / / aaﬂv%é,agvé,wdes L6 / (46(5), 90(5) — o — 5i0) 2y ds
0 r 0
3

6200 = 5[l +oeliofd] + [ [(Fﬂw—E<£~m(ﬁ)7ve>r—%@b(ﬁ)avwr

+ / /-;53L0ivgd8] ds.
r
Consequently, for T'=T'(k,e, M),

T
sup[Ioo(0)15 -+ oeluo (8] + [ I 9uo(o) e

te[0,7]

T
b [ [ en(e)3 + Blan 0] < CM o, £)

0

(5.21)

for some C' independent of M, x, and 6.
Similarly, since vy € span(ey,...,e;) for all ¢ € [0,7T], we can use it as a test
function in (5.17a) and obtain

1
5 [lve@®I§ + Felve(t) IIDAve )3ds
2

t
+ n/o 53/Fa“ﬂ”‘5772,a5772,75d5d8 + 9/0 (qe(),qe(s) = Go — sq1)2(e)ds
3

6:22) = g[lold +oelinfd] + | [<F,w>—s<£m<ﬁ>,w>r—%wb(ﬁ),mr

1
2
+ ke’ / Lo"vidS + tee(ve) + dg(vg)] ds.

r
By the compatibility conditions,
tee(ve) + de(ve) — 0 as ¢ — o0.

Therefore, the right-hand side of (5.22) converges to the right-hand side of (5.20), and
by the weak convergence of vy in L2(0,T; H2(2;T)) (which implies that ¢ — gg in
L?(0,T; L*(Q2))) we find that

[t 1_ 1 N ;
lim —Ilw(t)llﬁ + 5ol + —%83/ 1000t ()5 (£)dS
l—00 2 2 T
1 2 1_ 2
HDAW )3ds +6 qu )3ds| = S lve@llo + oelvo(t)fo

+ ghe / aﬂﬁ‘*neag(t)new( s + 5 [ 1D swato)3as +0 [ ool

As a result, vy — vy in L2(0,T; H¥2(;T)). A similar argument can be used to show
that ve — v in L2(0,T; HE2(;1)).
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As for the strong convergence of vy, we use vg as a test function in (5.16) and
vgyt as a test function in (5.19) to show that

kes

t
. _ 14
i | [ ol + oclonlt)ds + 510 om0+ 5
0

{— 00

t 3
- v ke @ i i
= [ [Iwoul + eton] s + S1D z0m (I3 + 55 [ 050k s o015

Therefore, vy — voge in L2(0,T; L%(Q)) (and wveyy — ey also in L2(0,T; L*(T)) if
g=1).

o
[ 600} 1015 (1)d8

5.7. Improved pressure estimates. By Lemma 3.3 (the Lagrange multiplier
lemma), (5.19) implies that

laoll? < [ lvoeli3 + olvorlf + vllvall} + xe?[uol3 + | FII3
+ el L (DIE + 1 £0(7)F + n=tiiol3]
(5.23) < CM(e,ug, f) + C[HU@,:H(QJ + Gelvaeld + |vellF + /<a£3|vg|§} .

Similarly, since (A7qp); = AZqg; + (A7)iqp, by (5.13) and (5.23) we apply Lemma 3.3
to (5.18) and find that

laoell3 < C[llvouel3 + elvould + vlivonl + re?ludl3 + llao I3 + I Fol3
vl + el L (@)l + 22120 )e[3 + = o 3]
(5.24) < CMl(e,ug, f) + C[vattﬂg + Gelvgee|2 + |Jveel|t + n53|v9t|§} )

5.8. Weak limits as § — 0. Since vg; € L?(0,T; HY2(Q;T)), by using it as a
test function in (5.18),

(5.25)
Ld 2 = 2 v 2 3 aBrs, i i
92dt [”W’f(t)no + 05|U9t(t)|0] + b} ”DAUGtHodl" + Ke a Uet,aﬁvet,»yéds
Q Q
3
- , ~ i . N
= ((Aq0)t: vy ;) L2 (0) = (Fty vor) — (Lo (M)e; vor)T — §<Eb(7l)t7vet>1‘

—y /Q (A A8y + (AT )0y o — i /F QI by sdS.

For a #-independent estimate, we need to estimate only the term ((fl{ q0)t, Uét7j)L2(Q).
By the definition of g,

—((Algo)e, vy ;) r2() = —((AD)eq0, Vi ;) 12() + (@or, —(Abvg ;)e + (A ) 12(q)
= 0llqoc 15 — ((AD)eqo, viy ;) L2 + (gor, 001 + (AD)1vh ;) 120 -

For the last term, we study the time integral of it, and integration by parts in time
implies that

t . .
/ (qot, (A7)t ;) 2 () ds
0

s=t

(5.26) .
0_/0 (g0, (A])eevy j + (A])evge ;) r2(0)ds

= (CIe, (Az)tvaj)L%Q)

s=
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By the definition of gy, we find that

(AN ; = 0(G1 — qor) — Alvg, ;-
Using this identity in the left-hand side of (5.26), by (5.13) and estimate (5.21) we
find that

0 t t . ; ~ _
: / lgoel2ds < — / (ALqo)e, vy ) 12yds + Ol|n |2 + C5| Vg2 + Flaoll2
0 0
¢ ot t
G / lgo2ds + 8 / lpe12ds + / VAol 1012
t t
< [ (a0, v emoyds + CM(eco £)+ Cs [ [lvanl + ol ds
0 0

t t
+(Ct+8) [ Noadl3as +5 |l + ocundd + e [ onlas]
0 0

Therefore, time integrating (5.25) and choosing 6 > 0 and 7" > 0 small enough, for
T = T(k,e, M) small enough,

t
Jvor O + otonr @ + [ (1700l + 5foor + Ol s
0

t
< CMevio,£)+C [ [vonl + o=len3] ds
0

and by the Gronwall inequality,

T
sup [lone0)13 + oclun(®] + [ [Vends
te[0,7] 0
(5.27)

T
+/ [ﬁ£3|vgt|§ + 9||q9t||(2)} dt < CM(g,uo, f)
0
for some constant C' independent of M, k, and 6.

Since (5.21) and (5.27) are f-independent, we can extend vy to an interval [0, T
for some T'= T'(k,e, M) and conclude that as 6 — 0,

(5.28a) OFvg — v, in L0, T; H¥*(T)) for k=0,1,
(5.28b) Q0 — G in L*(0,T;L*(Q))

for some vectors v, and v., € L?(0,T; H'?(; 1)) and scalar g, € L*(0,T; L*(Q2));
moreover, (5.21) also shows that ”Agvg,jH%%O,T;L%Q)) — 0 as @ — 0. Therefore the

weak limit v, satisfies the constraint (5.5¢).

The last step in this subsection is to show that v, € L*(0,T; H%2(;T)). By
the strong convergence of dfv, for k = 0,1,2, the weak convergence of gy, and
the property of lower semicontinuity of norms, (5.12) holds with £ replaced by 6 (by
passing ¢ — oo in (5.12)) so that

t
Jouse (013 + oelon @ + [ [Tl + el + Ol ol 3] ds
0
t t _ t
< CoM(eup, f) 1 C / |Voorl|2ds + C / lase2ds + 5 / Vo902
0 0 0

t . . ~ .
+ C/ (qote, (A7) uvp ; + 2(A7)evpe ;) L2(0)ds -
0
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For the last integral, similarly to (5.26), we integrate by parts and find that we
need to estimate the term

t
/ (qot, (A])etevp ;) L2 () ds -
0

By the € regularization, ||/~lm|| L) < Cx. As a consequence,

t t t
| [ o (B ) roiends] < Co [ ualiids +C [ llamlids
(5.29) 0 0 0

t
< CuM(evi £)+C [ [vonll + oo + ol ds.
0

Therefore, (5.13) together with estimates (5.21) and (5.27) implies that
’ / (qott, (A7 )eevp ; + 2(Ag)tvgt,j)L2(Q)ds‘
0
t
< Gy M0, )+ C [ [lowaly + ozl ds + e ()15 + el (1)
0

t
N (Ct+5)/ (19 0000l13 + %foel3] s,
0

which further implies that

t
[veee (E) 13 + Telvare (1[5 + / [vaettng + ke lvgaly + 9||Q9tt||(2J:| ds
0
t _ t
< Gy M0, £) + G [ [lvoulf+ ocluunlf]ds 5 [ [ Vunal3ds
0 0

t
+ 8 llooce (D113 + o=lveuc(t)] + (Ct + ) / (11706213 + £ vo1e[3] ds.
0

By choosing 6 > 0 and T = T(x,e, M) > 0 small enough, with the help of the
Gronwall inequality we find that

T
sup [ ()15 + oclons (0F] + [ 7ot
(5.30) t€(0,T] 0

T
+/ {HEB|’U9tt|§ + 9||q9tt||g} ds < CuM(e,uo, f)
0
for some constants C' and C; independent of § and M.
Remark 14. At the stage of constructing a solution to the penalized problem, we
do not know higher regularity of vg and gg¢, so we need Ay € L°(£2) to estimate the
left-hand side of (5.29), and this is why the input ¥ has to be regularized; however, the

limit (vk,qs) of (vg,qp) as @ — 0 is more regular, so the left-hand side of (5.29) with
(v, qx) Teplacing (vg, gg) can be estimated by the L2-L2?-L>-type Hélder inequality:

t . . t ~
}/ (th(Ag)tttv,l{,j)L%Q)dS} S/ llgutlloll Attello | VUl Loo (2)ds
0 0
t
< O/O (oeells + 19115 + 19el11.518012) 1wt ol villads

t
< [ [Ioulls + €D hgelolflads.
0
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The right-hand side of the inequality above is bounded for the energy estimates for
Vg, S0 no regularization is needed to close the energy estimates for v,,.

Since estimates (5.21), (5.27), and (5.30) are #-independent, by the property of
lower semicontinuity of norms,

2 T
(5.31) Z/ (1003 + n=l0bvul3]dt < CeM (e, uo, 1)
k=0"0

As a summary, v, € V}(T) is a weak solution to (5.5) satisfying estimate (5.31);
moreover, similarly to (5.18) and (5.19), for all ¢ € H2((;T),

v . .
(Viprs @) + € (Vsps, )T + 3 /Q D 0k : D zpda + ke /F CLO‘B'Y‘S’U,Zt,aﬁSOT»Y(;dS

.y , - 3
(5.32) — ((Alan)e, ¥} 12(2) = (Fi, ) — (Lo (s, p)r — %<~Cb(ﬁ)t, )T

_ y/ﬂ [(fl;”flf)tvim + (Aflflf)tvf{m} go{kdx — kel /F aaméﬁvi)aﬁg@f,ﬁdkg

and
(5.33)

v . .
(Vig, ) + Te(Vis, )T + 3 /Q D ;v : D jodx + ked /F aaﬂw“;,aﬂ@?yéds

A0 s ~ e’ ~ i
— (Afa.p)rzi) = (Fy @) = (L), p)r — 5 (Lo(7), @)r + /F ke Lo'p'dsS .

6. x-dependent energy estimates. The energy estimates for the linear prob-
lem are essentially the same as the nonlinear estimates, so we briefly state the com-
putations and results.

6.1. Partition of unity. Since  is compact, by partition of unity, we can
choose two nonnegative smooth functions (y and ¢ so that

G+¢=1 inQ;
supp(¢o) CC €2
supp(¢) CcC Q= {x € R" | dist(z,T") < g}

for some €g. Note that then ¢ =1 while (p =0 on T

6.2. Higher regularity for v, gu, Uk, and q.,. By (3.18), for all 2 < s <5,
(6.1) vl + lgxllZ-1 < C [llonell2—2 + I1F12-0 + |vsl?_o5 ] -

For the regularity of v,,; and g, we time differentiate (5.5b) and obtain

—’/Aﬂﬁ(z‘i?vit,k)a + qum,k = - Ufett - (d’j”fe,j)t + Fti + ’/(Az)t([l?”;i,k),j
+ VA (Ao il g -
Therefore, by (3.18), for s > 2,
onell? + lgwe 31 < CfllvwsellZa + IFl3_2 + | A¢ div(AT Vo )|[3_,

+ |Adiv(AT Vue)||2_, + |Unt|§—0.5} :
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We then conclude from (6.1) that
omell3 + lanell3 < € [omeelld + IEE + I920el13 + Joel3 5]
(6.2) < C[vwaalld + lomelld + 1EE + 113 + 0wl 5 + ol ]
and
lonell3 + a3 < € [lomeel + I + I920]13 + Jve 3 5]
(6.3) < Il + el + 103 + 13 + Jonel3 5+ loel3 s

Combining (6.1) (with s = 5) and (6.3), we find that
t
(1l ol + Nl + N s < CM (e 0.1)

t
(6.49) 4 [ (Il + el + el + Pl
0

for some constant C' independent of M.

6.3. Energy estimates. Let ¢ = (0%((v,) be a test function in (5.33) and ¢ =
CO*(Cviy) be a test function in (5.32), where 0 denotes the tangential differentiation
or the tangential difference quotient. The interior terms can be estimated in the same
way as in [5], and we find that

t
10 (Con(®) I3 + el o (B)F + / IV (Cun)lIf + re®|0%v.f3] s
t
< CuM(e,u0, f) +C / [Hoccall3 + e 13 + [0al3 5+ el 5 + o2 ds

t
6.5) +C&* /O /F %52 [\/aaaﬁv‘s(éaﬂ—baﬂ)ﬁi} 5é%:;ds*ds

Y
t
1 . - 1
3 _— 72 aB'y(Sba_al—\T~z 61dd
—i—Ca/O/F\/a@ [\/Ea (bap — bag) 7(;nLavK Sds
and
t
10%(Cona)I3 + 7=l00na 0F + | (1902 (Conlf + e 0l
t
< CM (o, 1)+ C [ [Iowaliids + fonalt s + nefunal3] ds
0

t
1 - . L
3 afyé _ ~1 4,4
(6.6) +Ce /0 /F NG [\/aa (bas bag)n]wa vi,dSds

t
1 7 ~ ; = .
— ofvé _ 7.5 4 i
+ Cs/o /F NG [\/Ea (bap — bap)L7 570 L,Ta o', dSds .
Passing § — 0 in (5.30), we find that
(6.7)

T
sup [[onu(®f + oelona ()] + | 190l + o3 ds < CuMe 0, 1)
te(0,7 0
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Define &, (t) by

£a(t) = sup [onli+ el + ol + 0=(fosli + ol + [osal3)] ()
se|0,

t
b [ [0+ ol ol + (B + ol + o) s
0

Then (6.5) and (6.6) imply that

t
[ [l + ol e+ o] s
(6.8)

t
S%WM@WJH4Q+®&m+Q§/“%+wﬂ@.
0

Using (6.7) and (6.8), we conclude from (6.4) that

Ex(t) < C5, M(e,u0, f) + (Ot + Cre’t + 0)E,(t)
and by choosing § > 0 and T'= T'(x,e, M) > 0 small enough,
(6.9) Ex(t) < CuM(e, uo, f).

6.4. Elliptic estimates. In order to close the iteration scheme, we need to
have controls on ||UN||2L2(0,T;H7-5(F)) and ||U,§t||%2(0)T;H5,5(F)). By (6.9), v, is a strong
solution to (5.5) and hence (5.5d) holds for almost all ¢ € [0, 7], or

k53% [Vaa 00l o] == (D 50)] — ald | ANy — (L) + ?ﬁb(m}i

— Gev', — kel on (0,7) xT.

By the elliptic regularity,
(6.10) w5 < Ol + el +elCom (@) 5+ Lo () s +oelunl3 s +hel Lol
for some constant C' depending on |a|s.5. Since
t
10 < Clletrs+t [ [ofods] < |ILlns + 0],
0
choosing T' = T'(k,e, M) > 0 small enough, by (6.1), (6.2), and (6.7) we find that
T
(6.11) fﬁ/|m%ﬁ§@M@wjy
0
Similarly, time differentiating (5.5d) and applying elliptic regularity, we find that
T
(6.12) ﬁé/hmmﬁ§QM@wjy
0

Combining (6.9), (6.11), and (6.12), we conclude that

T
(6.13) lonliocry + [ [l + ool < Gt £).
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6.5. Fixed-point arguments. Let M = C, M(g,up, f) from (6.13). Then for
T = T(k,e) > 0 small enough, we conclude from (6.13) that

T
lonliocry + [ [l + ol < Gt £).

Therefore, we established a map ® : ¥ — v mapping from the closed convex set

T
CT(M) = {U S V5(T)‘H/U”$}5(T) +/0 |:|U|$5 + |’Ut|§5:| dt S M}

into itself. As in [5], the map ® is weakly continuous defined on Cp(M). Therefore,
by the Tychonoff fixed-point theorem, there exists a fixed point v € Cp(M) to the
map .

7. Improved regularity for b and g.

7.1. Estimates without considering the artificial viscosity. We want to
study the equation

3

(7.1) S Lo(n) +eLn(n) = h—Gene  on T
given h in L?(0,T; H35(T)), where we remind the readers again that
2
- = afys o — =
L) = = [Vaa" s - n bag)n] (=4)

2
+ % [\/aaocﬁ'yégof(naﬁ -n — baﬁ)(’r],’)’é . T],o)n:| ) (= B)

and

1 afydo
Lnn) = == [Vaa™ (gas — gas)ns ] | (=0).
7.2. Some identities and inequalities. If I':, denotes the Christoffel symbol
with respect to the metric g,

(7.2a) Nap = bagn + T gn
(7.2b) n~y = —go‘ﬁbawn)g .
Define the energy &5 (T') by

E(T) = sup v} +o=([0@I + [0 + [ou()IF) +elg@IF +bO)IE]
te[0,T]

T
[ (1001 + e + w0l + b0 .
Then sup;c(o 7y |7(t) — e[|3 < TE(T) and

sup_[lg(®)lss + b(®)l2.s + In(t) s + In(®)ls.s] < C1+TPE(D))]
t€[0,T)

sup_[lg(t) — af3 5 + b(t) — I3 5] < CTP(E(T)),
te[0,7)

s In(0)s < S5 (6 + &) [1 4 TP
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where the constant C' = C(|T'|4.5). Moreover, by interpolation,

-2 < el ol old, < S5 14 pies ()],
and by (7.2), for 1 < s <6,
(7.3) (®)]ss1 < C L+ b(B)]s1 + |g(ls] [1+ TPE(D))]
(7.4) [n(®)]ss1 < C[1+160)]s +lg(0)ls] [1 + TP(ET))]-

In the following discussion, we use C' (or C5) to denote a constant independent of E5.
From the k-problem, &, (T,) < M, for some constant M,. We further choose T}, > 0

so that T/ SP(E,.(Ty)) < 1. Therefore, the inequalities above become

(7.50) sup |l9(®)|s.5 + ()]s + 1)l + In(B)lss] < C,
te[0,T7]
(7.5b) sup [lg(t) — gl 5 + [b(t) — b3 5| < CVT
t€[0,T]
1/6
(7.5¢) b—b]3, < C; ;
(7.5d) M)t < C[L+ (O] + gDl
(7.5¢) n(®)]s1 < C[L+ PO+ lg(e)l] -

Remark 15. By (7.5), n € H*t(T"), provided that b (= 9*n-n) and g (= dn-0n)
are both H*(I')-functions. On the contrary, 9°n -7 € H*(I') and dn - 05 € H*(I') at
best imply that n € H**1(T), and as a result, n € H*(I'). The nonlinear structure
ensures that n is as regular as n and n € H**1(T') is crucial to close the estimates.

7.3. User’s guide, part III: An illustration of the elliptic-type estimates
on the boundary.

7.3.1. An illustration of the 3D case wherein € must be taken small. In
this subsection, we use a relatively simple problem to illustrate how the elliptic-type
estimate on the boundary for the 3D case can be obtained with ¢ taken sufficiently
small. Note that the 2D case does not require smallness of ¢.

We will use a one-dimensional boundary to illustrate the need for smallness of
¢. We consider the case I' = T! so that at the initial time t =0, b = 0, and g = 1,
and a®?7% = 1. With this assumption on the initial data, the left-hand side of (2.5d)
reduces to —¢[(g — 1)77’]/ + &3[(bn)” + (9~ 'bg'n)']; denoting the forcing function by
h, we obtain

76 <l 1)77/]' 23 [0m)" + (g Mbg'ny ] = b on T x (0,7,

where we assume that h € L?(0,7; HY(T')). Before proceeding, we assume that |g|1,
|bl1, and |n|; are bounded by a generic constant C'. Twice differentiating (7.6) and
then testing the resulting equation against 7", we find that

6/ [g//n/ + 29/7]” + (g _ 1)77///} _n///ds + 63/
r r

"
283/ [gilbgln} 'ﬁlllds—l—/hn-ﬁnds.
r r

[ﬁ +2b'n" + bagn"} -n"dS
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The underlined terms will produce the energy contribution
Es =elgls +€°bl3,

which, by (7.5d) and (7.5¢), implies that e[n|3 and £3|n|% are bounded, and satisfy the
inequality

(7.7) ez +e3n < C(1+&,).

The energy method produces error terms, the worst of which is given by

"
Wy = 5/(g — 1" -n"dsS, W, =é / bn” - n""dS, Wz = 83/ [gilbg'n] n"ds .
r r r
It is easy to see that
(Wil < ellg =z 0l < Cllg = Ul ry (1 +Es) -

To estimate Wa, we integrate by parts and use the embedding H'(I') C L>(T) to
find that

(Wa| < E[bl| oo ry Infslnls < Ce(1+ ).

For W3, when two derivatives hit g=! or n, the estimates are similar to the estimate

for W5, so we concentrate on the terms
W31 _ 83 / g—lb//g/n . ﬁlllds, W32 _ 83 / g—lbg///n . ﬁlllds.
r r

We make use of the important geometric identity

1
n.n///:b/_n//_n/:b/+§g—1bg/

to write the inequality

(7.8)  nen" < C|Ibla+ gl 5 + gl + Plslglis| < |1+ [bla + gl -

Integrating by parts to move one derivative off of ¢"”’ in Wso, we obtain that
|Wa1| + [Wsa| < Ce3|gla|n - 0|1 < Ce(1+E&s).

Collecting all of the above inequalities and using Young’s inequality for the integral
containing the forcing function &, we find that

C
< =

(7.9) £ < —[hi +Cle+llg = Ulpeqry | (L +E).

3

As can be seen from the right-hand side of (7.9), the error term W; produces the
coefficient ||g — 1|/ (1), which must be made small in order to obtain an elliptic-type
estimate which bounds & by the forcing function h.

Clearly, whenever g(t) is continuous in time, the term ||g — 1| Lo (ry can be made
arbitrarily small by taking 7" > 0 as small as necessary. This occurs when the forcing
function h(t) is continuous in time. For us, the forcing h(t) is representing the fluid
traction and, because of the regularity of the fluid velocity, is necessarily continuous
in time.

As a consequence, if ||g — 1|| () and € can be made small enough, then

£ < §|h|%+cs.
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7.3.2. An illustration of the 2D case wherein the elliptic-type estimate
is independent of €. For the 2D case, we obtain two new identities that lead to the

e-independent elliptic-type estimates.
By computing the normal and tangential components of (7.6), we find that

(7.10a) ' =h-n+e(g—1)b+e3g 1v? — 53( “1g'by,
3
(7.10Db) eg =h-n+ 56(9 —1)g+ 3&%'b — a g tg'b? + 3 (g7 g )'D.
Thus, using (7.10a) and (7.10b) we see that b and g verify the inequalities
(710) <03 < CO)[IhfE + 1+ lglts + b1 l92].
(T11b)  elgl3 < CE[IRE +1+ Bl s + (g = 3w qry + 1513 0y) (013 + 1913)]
Again, by continuity-in-time of 7(¢) (which is due to the regularizing effects of the

Navier—Stokes fluid), if we choose T' > 0 sufficiently small, then ||g — 1|[;(r) and
[|6]| .o (r) can be made arbitrarily small, so that (7.11) implies the estimate

elgl3 +€°(bl3 < Ce)(|Alf +1).

7.4. Estimates for b and g without the artificial viscosity. Now suppose
that h € H*) and T' € H” (thus a € H%(T) and b € H?(T)). By the identity
Ly(n) = Ls(n) = [Lo(n) - nln + [Lo(n) - nln,

4
Lb(n) = 7 \/aaaﬁ’ﬂs(baﬁ - baﬁ)} 7”,6 + 2aaﬁ76(baﬁ - baﬁ) N ~ys — (n,'yé : n)n}

a
3
(7.12) + 2a°‘575(ba/3 — bap)lTsm - + gao‘ﬁ'y‘s(gag — gag)bysn
3
+ 6—3(h “n)n — g(vt ‘n)n.

Test (7.12) against £9'%n. First, we note that
L 510
5 Ly(n) -0 ndS

—- / 0PI (b — by5)0%by50dS — / 9 (bas — bag) 201108’“77 50'0"Fn
T k=0

4
/ 2[0535 B (\/aa®P18)dk (b ﬂ—baﬁ)}éﬁ’)bwds
k:

8
- /F a7 g7 (bags — bap) (M55 - M0 {39(377,7 SOEDY 01?3'““77,739’“%] ds

k=0

The first term on the right-hand side will produce the energy |b|2 with error term
[ a®P7205b,30b43dS, which can be bounded by 6|2 + Cs|b|2 for some constant
Cs5 depending on |a|;5 for all > 0. For the second term (on the right-hand side),
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integrating by parts if necessary, with (7.3) and (7.4) we find that

9
/ a0 (bap — bag) > CL0* 450" FndS
r

k=0

< [ (Jalv.slb — bls + lals b — b1 + lalalb — bla.s + lal2.slb — bl ) Inls.
+ laf1.5]b — b|1.5|n|6] Inle + Clalalb — bla||n|a.5]n]s

< s [1+ [al? + [bIZ] + 3[6l2 + C5lgl2 + CVT bl + 1f2]

for some constant C' and Cj depending on |a|4. Similarly, for the last term we integrate
by parts and apply Young’s inequality to obtain

8
\ [ s = bas) 5 1) [a%an,f Y Cza’““nﬁag-kn] ds\
k=0

< C/lals (b = BlalTe s + b = BluslTols + b = BlalT s + b — blas|T.|s)
+ lalalb = Bly5[T |15 ] (1bls + Inle) + C[Jal1.5[6 = Bl1.5|T 1.5l
+ lala (16 = Bl15 T La + 16 = Bl T s + 16 = Blzs|T s + b = BlalT|2.5)
+ |ala.5|b — b|2.5|F:.|2.5|7]|5} |5
< 1+ 1612 + [gI2] + SIbl2 + CVT 102 + 193]
As for the third term, Young’s inequality directly implies that

(7.13)

4
L 55—k afvéy\ ok _ a5 ) 5 -
/F\/Ekz_o [Cka (Vaa®®1%)3* by bag)}a bysdS| < Cs [1+ |b|4} e

for some C depending on |a|s. Combining all the estimates above, by choosing 7' > 0
and § > 0 small enough, for some constant Ay > 0 we find that

(T14) Mo <- / Lo(n) - 0"°ndS + C[1 + lal2 + b3] + Clgl,

where C' and Cj depend on |al4. B

Test the right-hand side of (7.12) against 91%7. For the terms due to the membrane
energy and forcing h, similarly to the argument above, rewriting n - 0'% as 0% —
S, O30 Fy . 9% and integrating by parts imply that

. . 5T a
/F aM‘S(gaﬁ—gambwn-awnds'g S [L+ lal3] + 32 [0f2 + 193]

and

[ n - 0%onas < clnla[1+ 1l + bl
r
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For the term due to the inertia, we study the time integral and integrate by parts in

time to obtain
t=T
/ / n'in? 9107 )edSdt .

ve-n)n-90ndSdt = [ (v-n)(n-0'n)
[ fwen |

By the identity n - 9'%n = 0% — ZZ:O CR09~Fnok+in again,

‘/ /Ut 810nd8dt}<0{|u0|4+|F| +C/ |v|5+|g|5+|b|}

(7.15) + [ ol s + 22 (bl + 19l3s) | (D).

Integrating by parts and applying Young’s inequality for the remaining terms on the
right-hand side, we find that

/ /RHS 0'ndSdt < =2 [1+|a|3+|b|5+6 (luolf +1T[3) +5/ |b|2dt
C
+(C;+CT1/4)/ |g|5dt—|——/ lv|2dt + ‘5/ |h|3dt

Cs _
o[l + 510l + 19| (1)

where Cy, = SCI' Therefore, by choosing § > 0 small enough,

T C T C T
[ ek < S U1l + 68 + (uolt + 10R)] + € [ lgigae+ S [ lofae
0 € 0 € Jo
c (" .
(7.16) 455 [ g+ o[, bl + B0 + 19| ()

for some constant C' depending on |al4.

Remark 16. The above estimate can be obtained by testing (7.1) against (n
o9n)n.

Testing (7.1) against 9%, we find that

i 710, e 5
€ /F 0™ (gag = gap)n, 0" NS + = /F Ly(n) - 9'°ndS
- / RG0S — Ge / 0, 801dS .
T T
Since
2 / a®?°(gas — gap)n’,0"'n’sdS
I

9
= /Fao‘ﬁwgf’(gaﬁ — 8ap)0°gysdS + /F a®""(gap — gap) Z CR9" )t 9 n'sdsS

k=1

4
1 . - _
— | = RO (Vaa®)0" (gap — 8ap)D°grsdS
‘/F\/Ek—o R07 )0%(9ap — 8ap)0”grs
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integrating by parts and Young’s inequality imply that for some Ay > 0,
Xolgl3 < - /Fa"“‘”‘s(gaﬁ — 0ap)n’,0"'1'5dS + Clals [Ig — alsInlsInle + lg — glalgls
< - /Faam‘s(gaﬁ — 9ap)n’,0'0'5dS + C5(1+ VT) + Cslg|3 + 6[bl3 + d]g|3.

Integrating by parts, the last two terms due to the forcing and the inertia satisfy the
following estimates:

_ o _
[ -9 < nlalols < o0 + e 1+ 0 + 19

and

T —
/ / v - 00ndSdt
0 T

Combining (7.14) and the estimates above, by choosing 7' > 0 and 6 > 0 small enough
we find that

T
scb+mﬁ+mﬂ+qmw@ﬁw@M4+A|mﬁ.

T
1 _
7y [ [etlf 0] ar < e[+ lalt+ ouoli + IR + <%(la + o)

= 2 2 c T 2 = g 2
+ Coe gD 5 + [o(D)E 5] + = [ Inlids + Coe | ol

Using (7.17) in (7.16), for ¢ < 1,

T
C
[ b < [+ ol + 6 + <laf + (ol + 112

T C T T
+05/ |v|§dt+—3/ |h|§dt+()a/ |h|3dt
0 " Jo 0
+o [Osleglv(T)I§.5 + 01’ b(T) 55 + (C + 51)63|9(T)Ii.5}

for some constant C' depending on |al4. Since |a|4.5 + |85 < P(|T'|5.5), by interpola-
tion we conclude that

T T C T
= [ W st < M Juolas, Do)+ Ce [ ol gt + 55 [ 1 ot
0 0 0
T
+ CE/ |h|3 5t + 5[051 o(T)|; + 6:°b(T)[7 + (C + 51)83|g(T)|§} :
0

Having h = — [V(Afv{k + Akol) — L]Id{]A;Ng — ke®Lg in mind, since |kLgl35 < 1 for
% small enough, we find that

T CcT
(7.182) élw&wswmwmmmwmm+kﬁ;ﬂwﬂ

+0(Cs,2% + 81+ (C + 81)e%| &5(T),
T C
(7.18D) g/ 1912 5dt < M(e, Juollas ITls.5, || Fll7acry) + <E + Coe + c) £,(T)
0

for some constants C' and Cj, depending on [I'[5.
Remark 17. T is regularized in order to obtain elliptic estimate (6.10).
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7.5. Estimates of b and g with the artificial viscosity. With the artificial
viscosity, we study the equation

3 1
(7.19) eLm(n) + %L’b(n) + ﬁsgﬁ(\/ﬁaamév,aﬁg)ﬁg =h—Geny .

Testing the equation above against 907, it is easy to see that for 7> 0 small enough
(but independent of k)

T
1 _
ket sup () + [ [elgl2 + b a < Cpe 5 + 1ol + a(fuol? + T3]

t€[0,T] 0 5
(7.20) +Ce¥(|al? + b2 + £ITR)] + Coe [lg(DE 5 + (D) 5

c T 2 — T 2 5,3 T 2
+ - |h|5dt + Cae [v|zdt + dke lv|gdt
0 0 0

for some C depending on |al4, since

1 . . s=t t 1 . o
- afyd a5, i 5,0 _ afyd, i 10,4
5 /Fa "1 5(8)0°n’ 5(5)dS o /0 /F \/a(\/aa v'05) 50 n'dSds
t 1 4 B S
+/ /—§ OO (Vaa* 0kl 50%n  5dSds
o Jrva =0 * ( 7V ap0 s

and by Young’s inequality the second integral is bounded by

t t t
Cs [ Insds+3 [ [ofods <Cs+3 [ [In(s)f +10s) s as.
0 0 0
Testing (7.19) against (n - 91%n)n, it remains to estimate
1 . o
/ %(\/aaam&”faﬂ),vmw51077de~
r
Integrating by parts,
1 , o . o
/ —(\/Eaaﬁ"*‘svlaﬁ),vgnlnjaloanS = / aaﬁ"*&v_zaﬁ(nlnjﬁlonj),.ygdS
rva ' r ’
:/ aO"B”‘svfaﬁ [nf,yénjglonj + ninfwglonj + 2nf,ynf'551077j + 2nf,ynj510777j5
r
+ Qnin%élonfé} as + /F a®Pre [(bag)t - nfaﬁnﬂ njélonf,ﬂ;dS.

The worst term in the first integral is the last piece. Similarly to estimate (7.20), by
Young’s inequality we find that

/ aaﬁ’yév)iaﬁnin{’yalon%ds‘ < C{|v|6 + |v|3,5|n|5} |7
r

< Cylnf} + 3ol + Clolf s [1 + bl +1f3]
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and hence the first integral has the same upper bound. Similarly,
' /F aaﬂvén;ﬁn;‘nﬂ'awngéds' < Cllnlz + lmnls + lnlslmanla.s + Inlaslnenla] lnlz
< Cylnf} + 3ol + C 1+ o5 + bf3 + Ig13] -

By the identity njélon)jw = 00,5 — 2.0 RGOy s0%nd | we find that

10

/ a1 (ba)n? 0"’ 5dS = / aaﬁvé(bag)t[alobw—20,10310’“nﬁgaknﬂ]ds
r r k=1
1 - 10 - o
- / ﬁ85[\/5a°‘5"5(ba,3)t]35b75d5—|— / a1 (bag)e Y CRLOM R 9l dS
r r k=1

1d
< _ =
T~ 2dt

As a consequence, by (7.16), for £ small enough,

/Fa“ﬂ”‘sé%agé%wds* +C5 + 5[|v|§_5 + Inlﬂ + C[|b|§ + |g|§} .

T
C,
k sup OB+ [ [bofEdt < [+ o+ [of + <*(fuof} + D)
t€[0,7] 0 €

T T T
(7.21) —|—C£3/0 |g|§dt+C£/0 |v|§dt+6/€£3/0 [|U|§_5+|n|$}dt

c (" _ .
45 [+ 02 [C ol + 810l + affo)] (7).

By interpolation, (7.20) and (7.21) imply that
3 ’ 2 cT
(7.22a) ¢ / B0 st < Me, Juollas [Pl 1/ 71¢r) + [Ce + 5| € (1)
+ 5[05182 + 51 + (C + 51)52 + S}gﬁ(T) )

T
C B
@22) < [ loRsdt < Mt oo Vo 1) + (S + € +5) €6(7).
0

Later on we will denote M(e, [|uoll4, |Tl6.5, | | 74¢1)) by M(e,uo, f) as well for sim-
plicity.

8. k-independent energy estimates. In order to obtain the energy estimate
at the L?(0,T; H5(Q)) level, we test (2.5b) against (0°%(Cv); time differentiate (2.5b)
and test the resulting equations against (9*((v;); and twice time differentiate (2.5b)
and test the resulting equations against v;;. The estimates due to the viscosity and
the pressure terms in the interior are exactly the same as what we have in [5]. The
only difference is the estimates over the boundary. Due to the membrane energy, we
need to estimate

T
I = E/ / a®P(gap — gag)nfwggvfédet,
o Jr
T . — .
I, = 6/ / a®Pre [(gag — gaﬁ)nﬂy} o'l sdSdt,
o Jr Tt '

T
I3 = E/ / B0 {(gaﬁ _ ga,@)n)ﬁy} U;t)(;det,
o Jr it
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while due to the bending energy it is required to estimate
T
I, =3 / / a®P (bap — bag) [nié%fw - I‘,Tyéniggva}dS’dt,
0o JT
1, — & / / 0™ [((bap — bap)n') 8015 — ((bus — bus) T’ ) 9 st
o Jr ¢ ’ ¢ ’

I = &° /O ! /F b K(baﬁ - baﬁ)ni)ttvgw - ((baﬂ - baﬁ)r;;ni)ttvg’m} dSdt .

Furthermore, we also need to estimate the term due to the inertia:

T T T
IIIl = 8/ / Vg * 381)615, IIIQ = 8/ / Vet - 34’Utd8, IIIg = 8/ / UVttt - ’UttdS .
0 r 0 r 0 r

Nevertheless, it is easy to see that
L =& [[o(T)f} = fuol?] , 11T = & [Jor( D)3 — wil3], Ty = e juua (T3 — walf]

8.1. The estimate for I,. By 0,g,s = nf,yv)% + vfy]f[; and the symmetry and
positivity of a®?7% we find that

T
Mla)=si < [ [ a7 g0 = gushil, isasas
0
T 1 3 B B .
(8.1) - / / — > G (Vaa®°) 0" (gap — gap)0* (1), v's)dSdt
o Jrvai= o

T 8
+/ / a®P7(gop — Gap) Z ngg_kvi;gknf,yd,gdt
o Jr i

for some positive constant A\g. The worst term in the second term of the right-hand
side is

T 3
1 _ _ S
— Y Cro*F(Vaa*°)0" (gap — gap)n’, 0" v'sdSdt,
/O A \/E];J k B B~ )
which can be estimated by H%3(T')-H ~%5(T") duality. Therefore,
T 1 3
— Cr*F(Vaa™®)0% (gap — gas)0* (' 0" det‘
e S e a0 s s

T T
<C [ g shsllusdt < OT32 4 C [ o2,
0 0

Integrating by parts for the last term in (8.1), by either H*(T')-H~1-(T") or H%3(I)-
H~95(T) duality, from (7.18b) we find that

8
8 ‘

T
| [ a5 an = ga) 3 G ottt as
0 r E—1
T

T
< CE/ lg — gl3.5|v]a5|n]5.5dt < C£T1/4/ (14 |bl3.5 + |glas)||v]|5dt
0 0

T T
vT
<cwo [ [sRs+lolalar+ 2 [ ulBar.
0 0
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Combining all the estimates above,

T
(82)  Melg(TE<e / / 0 (o — Gap )i, B0isdSdt

CcT =
+ Mj(e,uo, f) + [Caz + - +(C+a+0)e| E(T).
8.2. The estimate for II;. We first estimate the first piece of IIy:
T . — .
e’ / / a®?(bag — bag)n' 0%’ sdSdt .
o Jr

Since n - 9Bv 45 = 0%(bys — bas)t — 58(@17?75) - Zi:l C,fés’kvf,yéékni, integrating by
parts we find that

T
Xolb(T) — b? < / / a7 (bag — bog)n' 0%’ sdSdt
0 r
(8.3) + /0 /F a®P1% (bos — ba,@)[ﬁg(ninfw)+ZC§88_kva;8knz} dSdt
k=1
T 1 o _ ot
+ /O /F Ekza‘**k(\/aaaw)ak(zm—bag)a‘* [vf,ygnz—knf,y(;n;}d,gdt.
=0

For the second term on the right-hand side of (8.3), after integrating by parts, the
worst term is of the form

T
/ / [ (b — B)(@ 03 + B0y + F0dn) + (b ©)Fvn] dSt.
0 r
By HO5(T')-H~°5(T") duality,

T
3 / / a[8*(b = 0)(8%v6%n + 803y + Pudn) + (b — )P 0n] det‘
0 I

T
< Ce® [ [1b=blaslvlas + lnlss) + b~ bluslelosinfss)
0

< Ms(e,uo, f) +C [(1 +8)0 e+ (145)e%0 + ;—ﬂ E-(T)

(here &; in (7.18a) is chosen to be €2 so that the inequality above can be derived),
and as a result,

83

T 8
/ / a®?7° (bap — bag) {38(”?7?&6) + Cgas%fwéak"i} det}
0 r k=1

< Mj(e,uo, f) +C [(1 +08)e0 410 4 (14 0)e™® + ;—ﬂ E5(T) .
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For the last term in (8.3), by either H**(TI')-H ~**(T") or H*5(I")-H ~°5(T") dual-
ity, from (7.18a) we find that

53

T 23 . _ ot
— afyd\ ak _ 4|, 4 i i
| = > 91KV b — o) [vf,n" 4 ' gmi] s

T
C(TYss) [ b blasolas + ol d
0

IN

Ms(e,ug, f) +C [(1 + 6™ 4+ (1 +5)e*® + ;—z] E5(T).

IN

Combining all the estimates above,

T
(8.4) Xog®|b(T) — b3 <& /O /F a®"7 (bap — bag)n' 0%’ sdSdt

~ cT
+ M;(g,up, f) + C [(1 +0)e%? + 1P + (1 +5)e*® + 52—5] E(T).

As for the second piece of 111, we first note that

(8.5) /F a®?(bag — bap)L]sn 0% dS
7

= / a7 (bas — bap)T7s {87(b.7)t ACTEAESY Cgas—%j;akni} ds.
r k=1

For the first term in the bracket, we study the time integral and integrate by parts in
time and space to obtain

T T
/ / 05 by — )T T30 (b.r)dSdt = / / 5097 (b ) T | 9% -l
0 T 0 T

T
+ / / 8 [aaw(baﬁ—baﬂ)( ,Tyé)t}g‘lb,Tdet.
0 T

The worst term on the right-hand side is from the first term, when all the tangential
derivatives hit (bag):. This particular term can be estimated by H~°5(I')-H%(T")
duality, and we find that

T T
(8.6) / /aaﬂ7653(ba,@)tl"fy(;54b.7d5dt < c/ [v]as|T|1.5bla5dt .
0 T 0

All the other terms can be estimated directly by Holder’s inequality, hence

T T
/0 /Faaw(bag — bap)[750" (b.r)dSdt| < C/O |v4.5|b|45dt .

For the remaining terms in (8.5), integrating by parts (in space) and H5(I")-H ~%-3(T")
duality imply that

7
[0 00 — )15 07 @ty + 3 Lol | as)
r

k=1

< Clb—blss [|77|5.5 + |n|5.5} [v]a.5 .



NAVIER-STOKES INTERACTING WITH A SOLID SHELL 1143

Therefore, by Young’s inequality and (7.22a),

T
(8.7) e / / a7 (bap — bap)I7sn' 0%’ dSdt
0 T

cT -
< Ms(e,uo, f) + [Caz T T (G +0)e+ Tl/ﬁ} E5(T).
Combining (8.2), (8.4), and (8.7), we find that

T
sup (|94l + 010l + <lglt + B 0 + [ IV Co)o)Fa
(88) te[0,7) 0

< T
< Mi(e 0, f) + C[(1+0)% + o + TV (1),

Remark 18. In the case of the 3D fluid, estimation of the error term

T
/0 /F a®P (b — bag)Isn %0’ dSdt

creates a so-called Sobolev embedding obstruction, which necessitates the use of the
high-regularity solution space L?(0,T'; H5(2)).

To see why this obstruction prevents us from using the space L?(0,T; H3(Q2)) to
close the energy estimates, suppose for the sake of contradiction that we attempt to
use this lower-regularity space. We would then instead test (2.5b) against ¢9*(¢v)
and find that we need to estimate an error term which has a cubic nonlinearity in the
integrand which has the derivative count of the following integral:

T
/ / 9?19y d°v - ndSdt .
0o JT

Integrating by parts in time and in space, the most problematic error terms have the
derivative count of the following integral:

T
/ / §Pv 3%y ' - ndSat.
o Jr
Using the trilinear estimate
(8.9) (h1hg, h3)gosry < Cslhilis|halos|hs| o5,

and letting hy = 0%, 0*n - n, and hsy = 0>v, we find that

T
/ / G 5% 5 dSdt
0 I

Using the testing procedure described above, energy estimates would yield regu-
larity for

T
(8.10) <c, / (0la.511l5.518% - nlo.sdt
0

ve L*0,T; H3(Q))
and (since 91 - n scales like 9%b) for

d*n-n € L*(0,T; H>(I)).
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It would then follow from Hélder’s inequality that a bound for the time integral on
the right-hand side of (8.10) would follow if

7 is bounded in L*>(0,T; H*5(T)).

Unfortunately, in three dimensions this is not the case; in particular, with v €
L?(0,T; H3(Q)), elliptic estimates on the boundary would show that 7 is only in
L2(0,T; H>>(T)).

On the other hand, by raising the regularity of the initial data and using the energy
space L2(0,T; H?(2)) for v, these type of error terms can easily be controlled.

8.3. The estimates for I and I3. The term Is can be treated as a lower order
term. By H?°-H~25 duality,

T
(8.11) I < Cé/ [v]3.5]ve|2.5dt < Cels(T).
0

Similarly, I3 can also be treated as a lower order term. By H%5(I')-H ~%5(T") duality,

T
(8.12) I3 < Ca/ {|vt|2,5 + |U|2.5} vt |o.sdt < Ce&s(T) .
0

Remark 19. We can also perform energy estimates as in section 8.1 and two more
energy contributions sup;¢o n |030(t) - On(t)|3 and SUPyeio,1) |0y (t) - On(t)|3 can be
found; however, due to the viscosity we have already known that v € L>(0, T; H3%(T"))
and v; € L>=(0,T; H5(T')). These extra energy contributions are then useless, so we
can treat these two terms as lower order terms.

8.4. The estimate for II,. Since

A4 Ad—k Ak, i
8vt,ﬂ;— vt,ﬂ;n E Ccro vt,yéﬁn,

(baﬁ)t = U,aﬂnj + 777o¢ﬁnt ’
we find that
(8.13)

/Faozﬁ'y§ [(baﬁ - baﬁ)nz} t54vz’76d8 = / aaﬁ’yé(baﬁ - baﬁ)ni54vi,'y§ds
4
N / @3[]4 17 BntH (vh,5n') = S CRVFols0ni |ds
r k=1

For the first term on the right-hand side of (8.13), we apply H>®(I')-H —3-*(T") duality
to obtain

/Faa,é’vé(baﬁ — bag)nid*v; vads‘ < Clb — bl3.5|v|a5]|ve]2.5,
which implies that

/ / P2 (bag — bap)n;d'v; ,sdSdt| < CTYOE,(T).
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For the second term on the right-hand side of (8.13), we first note that by H??(T')-
H~25(T") duality and Holder’s inequality

< C[|U|4.5 + |n|4,5} [vt]2.5,

4
‘/F 04575[ n] +,,7 /3"15}20 64 kvtwgaknidS
k=1

and H??(T")-H~3°(T") duality implies that

/ O] gm0 (vf ,5m )dS‘ < C[|77|5 5+ [v]4. 5} [vt]2.5 -
r
As for the rest of (8.13), we integrate by parts and find that

S 1d o
afvyd, 1 154 afy8 2, i\ A2
/Fa P10y gm0 (v} ,sn?)dS = 2dt/ P109% (vl 5n")0 (v 5n”)dS

1
1 _ _ ) . . .
+ [ ==Y CR* R0 (vl sn') D (v] sn?)dS
| 7 O Gl )
_ / @G (01, 40P (o, ymd)dS
r

The first term on the right-hand side gives the energy contribution, and the last term
is bounded by C|v|3. For the second term, we use H':5(I')-H15(I") duality and
obtain

kgz_k(ao‘ﬁ'yé)gk(vfaﬂni)y(vgﬁ&nj)dé” < Clulas|velas -

Therefore, for some Ay > 0,
(8.14)  Me®|F20(T) - n(T)2 < &8 /0 /F 0818y 3B (v] s )dSdt
+ Mg, ug, f) + C[e +e2+ (G + 1)+ T+ Tl/"’}é‘a(T) :

As for the second piece of Iy, we apply H*®(I')-H ~2-%(T") duality and find that

/Faaw [(bag—bag)rgén} 84vt7d8dt' < c[|v|4.5+|b—b|2.5|v|3_5}|vt|2.5.

Combining (8.11), (8.14), and the inequality above, we find that

T
sup [1%(Go0) | + aelunl + 1% () + [ (%o
(8.15) t€[0,T] 0

< M(g,uo, f) +C[e+a2 + (G +1)e? +T+T1/6}56(T).
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8.5. The estimate for II3.
T . . . .
I, = &3 /O /F a®B7 [((baﬁ - bag)nl)ttvfgtm; - ((baﬁ - bag)F;(;nz)ttvfgm}det.
By Leibniz’s rule,
a0 ST , o R
/Fao‘ﬁ'yé [(bag - bag)nz} ttvztwgdS = /Fao‘ﬁ'y {vi)a,@n] + 207 g0 + nfaﬁnit}nzvztwéds
+ 2/Fa°‘576 [v)jaﬂnj + nfaﬁn{} nivitm;ds + /F a®Pr (bos — bag)nitvitm;dS.

Similarly to (8.14), all the terms above can be estimated by H*-*(T')-H ~!-5(I) duality
except [ra®7(v]  on)(n'vj, 5)dS. For this term, we note that

. , o 1d a i i(oJ j
/Fa 'Bws(vg,aﬁm)(” Utt,’yé)ds - 2 dt /p “ 'Bw(vt,oﬁn )(Ugrﬁnj)ds

= [ a5 (0] i) v] ).
I
Hence for some \g > 0,
(8.16) Moe |20, (T) - n(T))2 < &3 /0 /F By [(baﬁ - bag)nl} Vi qdSat

+ Mg, ug, f) + C3E5(T) .

For the rest term of II3, by H%5(I')-H ~%5(I") duality we find that

[0 (003 = bap)T5o0] ol ] < Clulashonos,
r

Therefore, combining (8.12), (8.16), and the inequality above,

T
sup [||Utt||(2) + geluulg + €°|0%v; - nhﬂ (t) +/ [V ()]t
(8.17) t€[0,T] 0

< Mg, ug, f) + C(e +%)E5(T).

8.6. Energy inequalities. Combining (7.22a), (8.8), (8.15), and (8.17), by (6.4)
we find that
- T _
&(T) < Ms(e,u0, f) +C {(1 +0)e" + o5 + % 4 5} E(T).

By choosing § > 0, ¢ > 0, and T' = T'(¢) > 0 small enough, we conclude that

(8.18) E(T) < M(e, [luolls, ITl6.55 | fll 74 (1)) -

This k-independent estimate enables us to extend the time interval [0, 7] in which v,
is defined for some T" = T'(¢) by the continuation argument as stated in section 9 of
[8], and a solution vz to (2.5) (still defined in Qz, and on I'z;) can be obtained by
taking the weak (or strong) limit of v, as K — 0.
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8.7. The regularity of I'(t). Let h denote the height function measuring the
sign distance from I'(¢) to I'. The regularity of h is then the same as the regularity of
I'(t). By the regularity of g,b € L?(0,T; H**~1-5(I")), we find that the mean curvature
H is of class L'(0,T; H*~15(')) since H = —1¢*Fbop if n = 3 or H = —g~'b if
n = 2. As computed in [5], by defining (G.)ag = gap — 22bas + zzgvébaybg(; and
Jn = (1+hoGSPh 5)Y/2, then in terms of h,

H=—(J;'"Ghs) s+ Iy (=GPh AT + T,
where Ffj denotes the Christoffel symbols with respect to the metric G and only the
first derivative of h is involved in T'};. By elliptic regularity, since H € H*"~5(T") for
almost all t > 0, h € H?"T0-5(T"), which concludes that I'(¢) is of class H?"*0-5,

8.8. The limit as Kk — 0. As mentioned in Remark 17, the estimates above
depend only on |T'|ant0.5. Therefore, we can pass & to zero and obtain a solution v
to (2.5). To be more precise, since Qz, C Qz, if &1 > Ra, vz, satisfies (2.5a)—(2.5f)
in Qz, if &1 > Re. Passing ko to zero first, we find that the limit v of vz, satisfies
(2.5a)—(2.5f) in Q, for all k1 > 0, and the conclusion follows.

9. Uniqueness. The proof of uniqueness for the case n = 3 is essentially the
same as the case n = 2, and hence we prove the uniqueness result for the case n = 2
to shorten the length of the proof. We also omit the factor 1/3 in front of the bending
traction for further simplification.

Let v and @ in V?(T') be two solutions to (2.5) (with ¢ and § € L2(0,T; H*(Q)) N
L®(0,T; H3()), ¢ and ¢ € L*(0,T; H2()), g, g, b, b € L*0,T; H*>(T)) N
L0, T; HYT))), and w =v — 9, r = g — G, £ =1 — 7. Then w, r, £ satisfy

(9.1a) w; — v(AJAfwh) ;= — Alr j + (6F) in (0,7) x Q,
(9.1b) Alw'; = 6D in (0,7) x €,
5
(9.1c) [ﬂdg — v(Afw), + Abwiy) | ANy = Gew, + L(E) + > 6Lk on (0,T) x T,
k=1
(9.1d) w(0,2) =0 in Q,

where

(OF)' = flon— f of+v[(AfA] — ALADT )1 + v[(AFA] — AFAD)T]
— (A7 = A,

A € —3rior Nt PPN e’ =3/ on "
L&) = — = [Va I ol + €| + o |va €]
5Ly = u[(Af — AF)3, 4 (AF - A?)@fk} ACN, + V[Aff;{k + A;mfk} (A% — AN,

+ Q(Af - Af)NZ )
€ =311 ener = nl’ e -3.7 1"
5L2:_%[\/a (i - €€ +(g—g)f;]} +%[\/E (b—b)(n—n)} ,
3 ~ /
6L3 = % {\/573[(9’1 —g b =bgn+g (b—b)F (n— ﬁ)ﬂ ’



1148 C. H. ARTHUR CHENG AND STEVE SHKOLLER

6L = % [Va~it" (],

83

oL = <[Vl - 0~ 9n+ 576~ D'

Moreover, the following inequalities from [5] hold:

/

t
(9.22) I8DIE + 10712 < Ct [l uds for k=0,1,2
0
t
©20)  NGD)IG+ 1P < OV [ [l + i .

Furthermore, w, r, and & satisfy the following variational form: for all ¢ € HY2(Q;T),

(9.3)  (wy, @) + oelwe, )1 + g/ Daw : Dspdx —|—/ \/574(8’ ') (¢ - n')dS
Q r

4
+/ Va (€7 n)(@" - n)dS = (r, Alp) 1a(a) = (OF. ) - Z/(5Lk)-<pd5~
r i1 Il

9.1. Some a priori estimates. Similar to (6.1), solving a Stokes problem
(formed from (9.1a) and (9.1b)) gives us

ol + 11112 < C[ISFN + lwel3 -+ 1l + w5
t
(9.42) < |l + w5+ [ flas).
t
(9.4D) il + 15 < € [l + a3 + ¢ [ olBs]
For T small enough, (9.4b) implies that
t ~ t
(9.5) | [l s < € [l + s
Since g —g=( +7)E and b—b=E"-n+7" - (n—n), for s > (n—1)/2,

9= 312 < C [l + il 1€,

b= b2 < ClIE" nf? + izl — 7l2]

For (n—1)/2 < s <3, by (7.2b),

=2y < CLERL +1€" nl2 + |n—al2]
Therefore, for (n —1)/2 < s < 3, by interpolation,
(9.6) In =2 < C[IER +1E" k2],

and as a result,

(9.7) l9— 32 < ClE,, =B <C|le"-n2+ €.
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Next, we estimate € in terms of £” -n and £ - 7. Since

M= (" " +(&" - = (E - 0')n' = (€ ") + (£" -m)n,
we find that for s > (n—1)/2,
08)  1€lr2 < Ol o lsabilors + Elssrllosalilons + 1" nllnly):
hence for (n —1)/2 < s < 3,

Elora < Ol 1w + |Elsa +1€7 ]
In particular, for s = 1.5,
€35 < C[1E 0 Bs+1EBs+ 18" nlis)

t
(9.9) <c [|5’-n'|§.5+t / ||w|§ds+|8”~n|%.5] |
0

Next, we prove (9.6) for s = 2.5 through the study of the boundary condition
(9.1c). We rewrite (9.1c) as

5
(9.10) L(E) =~ [(DAw)g' - rIdg} ALNy — gew, — 3 8Ly,
k=1

Same as the argument in section 7, testing (9.10) against n(£(®) -n) and £©), by (9.9)
and interpolation we find that

t t t
[l nods < Coe [l + 167 nft s+ [ ulBas| )+ o [ fulias
0 0 0
t c It 6
o [ Bads+ § [ |07 a4 3 oL s as,
0 0 k=1

t t t
[l B+ ie s < cos |lu+1eB+ [ ulg] @+ Ctt [ ulBes
0 0 0

c [t 3
+ S [ [orRs + Y lons|as
0 k=1

where we use

/5L4 : E(ﬁ)dS‘ =8
I

vt - a e mas|

:5‘3

6
/ va b (n— i) {(8// n)©® 3" cgesk . n(k)} dS}
T k=1

< Cslln — if} + 8¢ |7 nff + [€13]
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and

/5L5 £©) dS‘ =&

Jva - va -+ 50— ] € - myas]

_5

/\/— b—b)( )’+g—1(b—6)g’H5”- 2055” (k)]dS

< C5=*[tlg — I3 + 1o — B3] + 3=°[1€” - 3 + 1€3]

to obtain the estimate of € [ [|€' - /[3.5 + |- 7|3.5] ds
By (9.6), (9.7), and (9.9),

Z|5Lk nlgs < Ce t/ Hw||3ds+C{ 2le" - nlt s +ttlE )3, 5}
k=1

Z|6Lk|15<cast/ lwli3ds + C[4l€" o' s+ (5 + )’lE” - mls)
k=1

Choosing § > 0 and T > 0 small enough, for ¢ < 1 we find that

t C t
= [1enfsds < Oae [l +18" 0] 0+ 55 [ [l o+ ol o] as

t
(9.11a) +Cloe+ ) [ [l + fulsas.
(9.11b)

t

k _ _ C
e [ [l 1 s ds < Coefulp+ 1EB] @+ S [ [l + ul o] ds
0 0

9.2. Estimates for w;. We study the time differentiated problem first. Time
differentiating (9.3) and then testing the resulting equation against w;, we find that

(9.12)

1 2, = 2 5 2 =S N2 3| s 2
5 [Hwt|\0+oa|wt|o+a|¢a W+ elva Pl i+ Ve nf

wlt S|

5
IDawl[§ = ((6F)s,we) — (re, Alwj ;) — (r, (AD)ew} ;) = > ((OLk)s, we)r
k=1

T

= S{Abwh + (A, (Dawn)i) — 5 (Daw)], (AFyewfy + (Al )
3 CL73 w0 w1 W' w7
w28 [ V() () i)

+ &3 /1“ Va (W ny)(w” - n)dsS.
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It is clear that the terms due to viscosity on the right-hand side are bounded by
C||lwl|1||we]1, and by (5.13) and Young’s inequality,

}((Af)tw,jk + (AR, (Dawy)})p2() + (Daw)h, (AF)sw] , + (AF)wf )
t
<G / lwell2ds + 8.
For the term involving §F, by (9.2b) and (9.5) we find that
t gt
(P ) w)| < CVE [l sds + (Cst+) [ urlids.
0 0

For the terms involving r, integration by parts implies that

t . . t . .
/0 (re, Aluf )ds + / (. (A])ewt ,ds)

t t t
< |(r, (6D)u) (1) + C / Irli2ds + § / |Vwr|2ds + C / |Vuw|2ds.
0 0 0

The worst term in (7, (0D)) is (r, AVw;A : Vo) (which comes from the fact that
all the time derivatives hit (A — A)), and in this case, integrating by parts in space
implies that

[{r, AVw, A : V)| <

T‘AiwangdS‘ + C|rl1||wello -
r

Therefore, by Young’s inequality we conclude that

t . . t ; ;
[ e s+ [ (4 yds)
0 0

< el + ot [ t3as + s [ AriBas-+ ct+3) [ 19wl

It is also clear that the last two terms of (9.12) are bounded by C|lwl|3 5. To complete
the computations, we only need to estimate 22:1<(5Lk)t, we)T-
By interpolation and Young’s inequality,

5
Z (5Lk t,wt

<0t [ ullds + Coefulgs + Sl
k=

where 22:2 |(0Lk)t|—05 < Cle + &3 + e3t)|w|as and H=O5(T)-H%3(I') duality are
used to obtain the estimate for k from 2 to 5.

Time integrating (9.12), combining all the inequalities above, and choosing & > 0
and T > 0 small enough, by (9.4b) we find that

¢ t t
(9.13) Y(t) —l—/ ||wt||fds < C/ Y(t)ds + 0(53 + \/E)/ |w|§‘5ds,
0 0 0

where

Y (t) = we @I + el (w0 )@)IF + el(w’ - 7)) + | (w” - n)()]5-
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9.3. Estimates for w”. Let ¢ = (¢?w”)” in (9.3). Then

(9.14)
1d

24t {”C@U”Hwoslw”loﬂle HE ) R elva i E i)
+eVa e n)" 8] + SICDaw I} = = AL (™)) + (5F (CPu")")
5
Z 5Lk, F _ V/ C[Z(Akl —I—Akl 7,/) (Ak// +ak”wlk):| Af(wf,;’da:
=1 Q
— 2w / ¢[(Abwl + abfwh) + (Akwh + Abwp)] AV Cwda
+52/\/__3Ck 7 )wB=R) k) | (gl )y 5—k) _ﬁ(1+k)}d8 (= A1)
+é3 ;1/F [\/5730,3(5” -n)w k) -n(k)}dS (= As)
1 1 3
—e) /F N (&)Y )+ (&P E )| (Va)EPds
k=0
+/ \/5—3 |:E(€/ . ,U/)//(g 77/) + 5(8 /)//(5/ . ﬁ/)// _|_ 63(8” . nt)//(gl/ . n)//:| dS
r
e [ [ may ey va e nyas.

For the terms involving r, integrating by parts if necessary, by Ag wzj = 0D we find
that

|(r, 4] (CPw™) )| < Csllwl3 + C515DI3 + 6|rll3
t
< Cyllwll+ Cst [ ol + 8wl + Ir13] .
By (9.2a) and interpolation,

t
[(F, (")) + [(0Lr, w)r| < Cst/ [wl3ds + ol|wl]3 -
0

The terms due to viscosity can be bounded by C|lw||2.5||w||s. Therefore, by interpo-
lation and Young’s inequality,

/QC {2(Af’w)j,2 + A?'wl,'c) + (Af"wf'k + A?"wfk)} af{w’j,i/dx

+ < Csllwll + ollwll3 -

/ C[(Ak’ —|—ak’wlk) (Ak Ak )}Akléwj,;/dx
Q

For terms A; and Ay, by H5(I')-H~*5(T") or H*?(T')-H ~%°(T") duality, we find that

Avt Az < G /i + %1€ R+ <Ol - mf3 5| + B3
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Therefore, time integrating (9.14), by (9.11) we find that
t
(160”3 + oelulf +elé”of B+ <le” - 73 + 1" - nE] )+ [ i ds
0
t t
< G5 / [Hth% 1o+ 187 s + (Cpt+ 8+ Cot) [ [l + fuwl ] ds
0

/ 5Lk, pdS

For the last term of the inequality above, we first note that by H*(I')-H ~5(T")
duality,

(0La, w®)r + (6 Lg, w)r < Cst |23 5+ °ln — il 5| + O3
For (6 L4, U}(4)>1", we study the time integral and integrate by parts to obtain
/ (6La, w®)pds = /0t<(6L4)t,5(4)>pds
= —¢ / / \/—_3 (n—n)ny +0" - (n—n)n+5" (n— ﬁ)tn}ﬁ(ﬁ)des,
and by H*(I")-H—*(I") duality,

t t
/O (6L, w®)rds| < 0553/0 [In—#f3 5 + 10— )l 5] s

t
+ 553/0 (15 +1€" - nl3 5] ds

where we use £6) .n = ("7 - n)W) — S0 CLESTF . n(®) to estimate the last term of
the integral. The term (§Ls, w™® ) can be estimated in a similar fashion, and we find
that

t
<G [ [tla—anits + 10— Dl )as
_ t
430 [ (s +16" nl s
0

Combining all the estimates above, we conclude that

t
/ <(5L5, ’w(4)>pd8

0

(9.15)
t t B t
+ [ wBsds < G [ [lwnlf + ¥ ()] ds+Ce.b0) [ [l + wldsas
0 0 0

where

Z(t) = el(€" ) OB +el(€"- ) @)3 + (€ - n) (D)3

and C(e,d,t) can be made small for £ < 1 and proper choice of Sgnd T. With e < 1,
(9.13) and (9.15) together imply that ¥ + Z = 0 by choosing 6 > 0, T" > 0 small
enough. Thus, we conclude that w = 0, and hence the solution to (2.5) is unique.
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10. List of notation.

n The dimension of the space
U The Eulerian velocity
P The Eulerian pressure
Uug The initial condition of the velocity field
Jap The metric tensor of the moving surface
bap The curvature tensor of the moving surface
daB The metric tensor of the initial equilibrium state
bags The curvature tensor of the initial equilibrium state
a™hro The elasticity tensor
o o =1 or 0 indicates the case with or without inertia is considered
VE(T) The collection of v € L?(0,T; L*(Q)) so that ofv € L?(0,T; H*=2(Q))
Vo The collection of w € H'?(;T) so that Ajw’; =0

Vo(T) The collection of w € L*(0,T; HY2(;T)) so that Agwfj =0
| - |ls  The H*(Q)-norm of the object
|- s The H*(T')-norm of the object

0 The tangential derivative for the case n =3
! The tangential derivative for the case n = 2
e The identity map on R" satisfying e(z) = x

(-, - )x The duality pairing between space X and its dual X’

(-, )  The duality pairing between H'(Q) and H'(Q)’

, -)r  The duality pairing between H?(T") and H2(T")

FH(T) The collection of f € L2(0,T; L3(R")) so that df f € L?(0,T; H*~2(R"))

Va The square root of the determinant of the initial metric
n The flow map of the fluid velocity
Al The cofactor matrix of Vn
v The Lagrangian velocity field, v =uon
q The Lagrangian pressure, ¢ =pon
qo The initial value of ¢
W1 The initial value of v;
Wo The initial value of vy
Q1 The initial value of ¢
Pian The orthogonal projection onto the tangent plane of I’

HY2(Q;T) The space of H(Q)-functions with H? traces on the boundary
uo, Wk, r ~ The regularized initial data

Vg The solution to the penalized problem ‘

qo The penalized pressure defined as §o + tG1 — %Aﬁ vé) j

Vs The solution to the linearized and regularized equation (5.5)
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