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1. Introduction

We consider the two-phase Muskat moving free-boundary problem: 

ΔP± = 0 in Ω±(t) , (1.1a)

�P � = Γ(t) · e2 on Γ(t), (1.1b)

�∇P · n� = 0 on Γ(t), (1.1c)

∂Ω+(t) ∩ ∂Ω−(t) = Γ(t) ∀ t ≥ 0 , (1.1d)

V(Γ(t)) = −∇P± · n on Γ(t) , (1.1e)

where Ω+(t) and Ω−(t) denote the time-dependent fluid domains associated with the 
two phases, Γ(t) denotes the free boundary, Γ(t) · e2 is the second component of its 
parametrization, and V(Γ(t)) is its normal velocity. We use the notation �f� = f+ − f−

to denote the jump of a function f across Γ(t). The problem (1.1) arises in the literature 
as the Hele-Shaw cell (with gravity) or the Muskat problem.

Many recent results on the Muskat problem rely on the fact that equations 
(1.1a)–(1.1e) can be rewritten as a system of equations for the interface

Γ(t) = (ψ1(t, x1), ψ2(t, x1)), x1 ∈ R , t ∈ [0, T ] ,

taking the form

∂tψ = T [ψ],

where T [ψ] is a highly nonlinear singular integral operator, whose linearization (about a 
flat interface) behaves like 

√
−Δ. In order to establish existence theorems for the system 

(1.1), this singular–integral-operator approach makes extensive use of the explicit integral 
kernel representations for the operator T for the following fluid domains (or geometries):

(a) Ω+(t) ∪ Ω−(t) = R2 ,

(b) Ω+(t) ∪ Ω−(t) = T× R ,

(c) Ω+(t) ∪ Ω−(t) = R× [−l, l] .
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In the case of general domain geometries, we are not aware of any existence and regularity 
theories.

The classical problem (1.1a)–(1.1e) is related to both the (two-phase) Stefan problem 

∂tP
± − ΔP± = 0 in Ω±(t) , (1.2a)

P± = 0 on Γ(t), (1.2b)

∂Ω+(t) ∩ ∂Ω−(t) = Γ(t) ∀ t ≥ 0 , (1.2c)

V(Γ(t)) = �∇P · n� on Γ(t) , (1.2d)

and also to the Muskat problem with variable permeability β(x), 

div
(
β(x)∇P±) = 0 in Ω±(t) , (1.3a)

�P � = Γ(t) · e2 on Γ(t), (1.3b)

�∇P · n� = 0 on Γ(t), (1.3c)

∂Ω+(t) ∩ ∂Ω−(t) = Γ(t) ∀ t ≥ 0 , (1.3d)

V(Γ(t)) = −∇P± · n on Γ(t) . (1.3e)

Herein, we introduce a new method to analyze the system (1.1a)–(1.1e), which is based 
on the analysis of the partial differential equations rather than any associated integral 
kernel. Our methodology can treat the two-phase Muskat problem with two different 
viscosities or with a non-constant permeability. Our method can also be applied to the 
Stefan problem [39], to the free-boundary problem for the incompressible Euler equations 
[23,26], as well as to the compressible Euler equations [21,25]. One of the main interests 
of this new method is that it can be adapted to several space dimensions and arbitrary 
domain geometries Ω+(t) ∪ Ω−(t).

1.1. Darcy’s law

The Muskat problem, introduced in [47], models the evolution of two fluids of varying 
density in a two-dimensional porous medium. The presence of the solid matrix inside 
the porous medium has an important consequence: the usual fluid equations for the 
conservation of momentum are replaced with the empirical Darcy’s Law (see [2,48]) 
given by

μ

β
u = −∇p− (0, gρ)T , (1.4)

where μ, ρ are the viscosity and the density of the fluid, respectively, β is the permeability 
of the medium, p is the pressure, and g is the acceleration due to gravity. As (1.4)
is a model of aquifers, oil wells or geothermal reservoirs, this problem is of practical 
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importance in geoscience (see, for example, [8,28] and the references therein); moreover, 
it has also been considered as a model for the velocity of cells in tumor growth (see 
[35,49]).

The movement of a fluid trapped between two parallel vertical plates, which are 
separated by a very narrow distance, is known as the Hele-Shaw cell problem (see [41]). 
The equations of motion in a Hele-Shaw cell are

12μ
d2 u = −∇p− (0, gρ)T ,

where d is the distance between the plates. The similarity of both problems is obvious 
and, in fact, the Muskat problem is equivalent to the two-phase Hele-Shaw problem with 
gravity.

1.2. The Muskat problem set in various geometries

We shall consider various domain geometries in this paper, and we begin with the 
case of a domain with infinite depth.

1.2.1. The infinitely-deep case
Let (u±, p±) denote the velocity and the pressure in the fluid domains Ω±(t), and 

let Γ(t) denote the material interface between Ω+(t) and Ω−(t); that is, Γ(t) = Ω+(t) ∩
Ω−(t). Setting, the permeability β ≡ 1, the two-phase Muskat problem has the following 
Eulerian description: 

μ±u± + ∇p± = −ρ±e2 in Ω±(t) , (1.5a)

div u± = 0 in Ω±(t) , (1.5b)

V(Γ(t)) = u± · n on Γ(t) , (1.5c)

Ω±(0) = Ω± on {t = 0} , (1.5d)

Ω+(t) ∪ Ω−(t) = R2 for every t ≥ 0 , (1.5e)

where e2 = (0, 1), n(·, t) is the outward pointing unit normal on ∂Ω−(t). In particular, 
we consider the case that

Γ(t) = (x1, h(x1, t))

is the graph of the height function h(x1, t), and we assume that either x1 ∈ T1, or that 
x1 ∈ R1 and that h(x1, t) vanishes at infinity. It follows that the two time-dependent 
fluid domains Ω±(t) are given by

Ω+(t) =
{
(x1, x2)

∣∣x2 > h(x1, t)
}
, Ω−(t) =

{
(x1, x2)

∣∣x2 < h(x1, t)
}
.
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Since div u± = 0, we must have that �u ·n� = 0 on Γ(t); furthermore, as we assume that 
the effect of surface tension is negligible,1 we set

�p� = 0 on Γ(t) .

1.2.2. The finitely-deep case with general geometry
We shall additionally consider geometries which generalize the infinitely-deep case 

that Ω+(t) ∪ Ω−(t) = R2 or the confined case that Ω+(t) ∪ Ω−(t) = R × [−l, l] (and 
‖h‖L∞ < l).

Let t̃(x1) and b̃(x1) be two smooth functions. Given two constants ct > 0, cb < 0, we 
write

b(x1) = cb + b̃(x1), t(x1) = ct + t̃(x1).

We assume that the two fluids flow in bounded domains of the type 

Ω+(t) ∪ Ω−(t) = {(x1, x2), b(x1) < x2 < t(x1)}, for every t ≥ 0; (1.5e′)

thus, each phase is given by

Ω+(t) = {(x1, x2), x1 ∈ R, h(x, t) < x2 < t(x)},

and

Ω−(t) = {(x1, x2), x1 ∈ R, b(x) < x2 < h(x, t)}.

Note that additional impervious boundary conditions must be added to the system (1.5)
on the fixed bottom and top boundaries. These are given by 

u · n = 0 at ∂(Ω+(t) ∪ Ω−(t)). (1.5f)

Finally, we assume that the initial height function h0 satisfies

b(x1) < h0(x1) < t(x1).

1.2.3. The one-phase Muskat problem
We shall also consider the one-phase Muskat problem, corresponding to the case that 

(μ+, ρ+) = (0, 0). In other words, only one fluid flows through the porous medium, and 
the “top” phase corresponds to vacuum. Furthermore, we consider the case that the 
interface is periodic (so x1 ∈ T). Then, our time-dependent domain is given by

Ω(t) = T×
{
cb < x2 < h(x1, t)

}
for every t ≥ 0 ,

1 Our methodology can treat the Muskat problem with surface tension in the same way.
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with moving boundary

Γ(t) = T×
{
x2 = h(x1, t)

}
for every t ≥ 0 .

To simplify notation for the one-phase problem, we set (μ−, ρ−) = (1, 1). We again use 
(u, p) to denote the velocity and the pressure of this fluid in the fluid domain Ω(t) with 
free boundary Γ(t). The one-phase Muskat problem is written as 

u + ∇p = −e2 in Ω(t) , (1.6a)

div u = 0 in Ω(t) , (1.6b)

V(Γ(t)) = u · n on Γ(t) , (1.6c)

u · e2 = 0 on {x2 = cb} , (1.6d)

p = 0 on Γ(t) , (1.6e)

where e2 = (0, 1), n(·, t) is the outward pointing unit normal on Γ(t), and V(Γ(t)) is the 
normal velocity of Γ(t). As we only have one phase, (1.6e) expresses the continuity of the 
pressure on Γ(t). Note, also, that we have added the impermeable boundary condition 
on the fixed bottom boundary in (1.6d).

1.3. The Rayleigh–Taylor stability condition

The Rayleigh–Taylor stability (or sign) condition is defined as

RT (t) =
[ ∂p
∂n

]
= −(∇p−(Γ(t)) −∇p+(Γ(t))) · n > 0.

Due to the incompressibility of the fluids, and using Darcy’s law together with the fact 
that the curve can be parametrized as a graph, the Rayleigh–Taylor stability condition 
reduces to the following expression:

RT (t) = (μ− − μ+)u · n + ρ− − ρ+√
1 + (h′(x))2

= −�μ�u · n− �ρ�√
1 + (h′(x))2

> 0. (1.7)

In particular, for the case of two equal viscosities μ− = μ+, the fluids are in the stable 
regime if the lighter fluid is above the heavier fluid. Our research focuses on the stable 
case, so, henceforth, we shall assume that �ρ� < 0.

Note that in the one-phase Muskat problem, the Rayleigh–Taylor stability condition 
reduces to

RT (t) = −∇p−(Γ(t)) · n > 0. (1.8)

This stability condition is ubiquitous in free boundary problems; it also appears in 
the Stefan problem, the water waves problem, the incompressible Euler equations, the 
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compressible Euler equations with physical-vacuum boundary, and the MHD equations. 
When the initial data does not verify the Rayleigh–Taylor stability condition, then the 
Muskat problem is ill-posed (see, for instance, [16,19]). It has also been shown for the 
Muskat problem that there exists initial data such that the Rayleigh–Taylor stability 
condition can break-down in finite time [5,19,37].

We note that if the height function h(·, t) (which represents the moving interface 
Γ(t)) is small in certain norms, and if we assume that �ρ� < 0, then the Rayleigh–Taylor 
stability condition is achieved without any other hypothesis on the initial data. In the 
case of the unbounded, one-phase Muskat problem, it is known that the Rayleigh–Taylor 
stability condition is automatically satisfied due to Hopf’s Lemma and Darcy’s Law (see 
[6]); however, in the one-phase case with a flat, bounded domain, it is not clear that 
the Rayleigh–Taylor stability condition is automatically satisfied, because of a non-zero 
Neumann boundary condition on the fixed bottom boundary.

1.4. Prior results on the Muskat problem and related models

Free-boundary problems for incompressible fluids in a porous medium have been ex-
tensively studied in recent years.

For the Muskat problem with fluids having the same viscosities (�μ� = 0), the qual-
itative behavior for arbitrarily large initial data is well understood. In particular, for 
the infinitely-deep case, Córdoba & Gancedo proved the local existence of solutions for 
H3(R) initial data in the stable Rayleigh–Taylor regime and the ill-posed character of 
the Muskat problem in the unstable Rayleigh–Taylor regime in [16], a maximum prin-
ciple for ‖h(t)‖L∞ in [17], and local existence in the case with more than two phases in 
[18]. In a remarkable paper, Castro, Córdoba, Fefferman, Gancedo & López-Fernández 
[5] proved the existence of turning waves, i.e. interfaces such that there exists T1 such 
that

lim sup
t→T1

‖h′(t)‖L∞ = ∞.

Later, Castro, Córdoba, Fefferman & Gancedo obtained in [4] the existence of curves 
showing finite-time singularities. These curves correspond to analytic initial data in the 
Rayleigh–Taylor stable regime such that there exists T1 and T2 such that, at t = T1, the 
solution enters the Rayleigh–Taylor unstable regime and later, at t = T2, is no longer C4.

The confined case when the two viscosities are the same (�μ� = 0) has been treated by 
Córdoba, Granero-Belinchón & Orive [19]. When the porous medium is inhomogeneous, 
the evolution of the interface has been studied by Berselli, Córdoba & Granero-Belinchón 
[3] and Gómez-Serrano & Granero-Belinchón [37]. Ambrose [1] studied the limit of zero 
surface tension for initial data which satisfies (1.7). For further results, see also the review 
by Castro, Córdoba & Gancedo [7].

For the related Hele-Shaw cell problem, Constantin & Pugh [14], using complex anal-
ysis tools, proved the stability and exponential decay of solution. Chen [9] studied the 
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two-phase Hele-Shaw problem with surface tension and proved global well-posedness for 
small enough initial interfaces. Elliot & Ockendon [29] proved the existence of weak so-
lutions, while Escher & Simonett [32] obtained local, classical solutions in multiple space 
dimensions. Escher & Simonett [33] proved global existence and stability near spherical 
shapes using center manifold theory. The global existence and decay for solutions of the 
one-phase Hele-Shaw problem with various fluid injection-rates was studied by Cheng, 
Coutand & Shkoller [10].

Returning to the Muskat problem, when the initial data is assumed to be small in 
certain lower-order norms and the two fluid viscosities are equal, there are several avail-
able results for global-in-time solutions. In [13], Córdoba, Constantin, Gancedo & Strain 
proved the global existence of H3 Sobolev class solutions for initial data with small
derivative in the Wiener algebra A(R), and global existence of Lipschitz (weak) solu-
tions for initial data with

‖h′
0‖L∞ < 1. (1.9)

Therein, the authors also proved an L2 energy balance. The global weak solution of [13]
was later extended to the confined case by Granero-Belinchón in [38]. It is worth noting 
that, due to the effect of the impervious boundaries, the size restrictions on the data 
are not as clear as (1.9) and for the confined setting, involve ‖h0‖L∞ , ‖h′

0‖L∞ , and the 
depth.

Very recently, in [12], Córdoba, Constantin, Gancedo, Rodríguez-Piazza & Strain 
obtained global existence for small data in the case of a two-dimensional interface; fur-
thermore, among other results, they proved the existence of a global solution in H2 for 
data with small derivative in the Wiener algebra A(R), and the existence of a global 
solution in H1.5 if the initial data is also in the Wiener algebra A(R) and satisfies a 
smallness assumption. We remark that these global-in-time existence results are for ini-
tial data of medium-size, in the sense that initial data must be bounded by constants of 
O(1).

In the case of two fluids with different viscosities, there are fewer results. The local 
existence for arbitrary μ±, ρ± and H3 data was proven by Córdoba, Córdoba & Gancedo 
in [15]. In the case of surface tension, Escher & Matioc [31] and Escher, Matioc & Matioc 
[30] established local and global existence, and stability, in the little Hölder spaces.

The singularity formation for the one-phase case (when μ+ = ρ+ = 0) has been 
studied by Castro, Córdoba, Fefferman & Gancedo in [6] where they proved the exis-
tence of the so-called interface “splash” singularity wherein a locally smooth interface 
self-intersects at a point. Córdoba & Pernás-Castaño in [20] proved the non-existence of 
“splat” singularity, in which a locally smooth interface self-intersects on a curve. Gancedo 
& Strain [36] proved that the Muskat problem with three different fluids cannot develop 
a “splash” singularity in finite time. In related work, Fefferman, Ionescu & Lie [34] and 
Coutand & Shkoller [27] have shown that a finite-time splash singularity cannot occur 
for the two-fluid Euler equations.
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Very closely related to the Hele-Shaw and Muskat models, the Stefan problem 
(1.2a)–(1.2d) is a model of phase transition, and serves as yet another example of a 
classical free-boundary problem. One fundamental difference, however, with the Muskat 
problem is that there does not exist a contour dynamics description of the free-boundary 
evolution; on the other hand, it has been widely studied using a variety of parabolic PDE 
methods. For instance, the existence of classical solutions with derivative loss was ob-
tained by Meirmanov [46], while the regularity of the free boundary was treated by 
Kinderlehrer & Nirenberg in a series of papers [44,45], wherein they showed that if the 
free boundary is C1 and the temperature P satisfy certain conditions, the interface is 
analytic in space and of Gevrey class in time. More recently, Hadžić & Shkoller [39,40]
proved the local and global existence without derivative loss, as well as the decay of 
solutions to equilibrium states.

1.5. Well-posedness for Hs data with s ≤ 2.5

Mathematically, an Hs well-posedness result, with s ≤ 2.5, for (1.10) and (1.11) is 
challenging because the usual energy estimates indicate that ‖h‖C2+δ is the quantity in 
the available continuation criterion (see [16,19]).

As we have already noted, most prior existence theorems have relied upon the contour 
equations for the interface, which, in the case of the infinitely-deep, unconfined Muskat 
problem is given as

∂th = p.v.
∫
R

(h′(x1) − h′(x1 − y))y
y2 + (h(x1) − h(x1 − y))2 dy, (1.10)

and for the finitely-deep medium, confined Muskat problem (with domain R × [−l, l]) as

∂th = p.v.
∫
R

(h′(x1) − h′(x1 − y)) sinh(y)
cosh(y) − cos(h(x1) − h(x1 − y))dy

+ p.v.
∫
R

(h′(x1) + h′(x1 − y)) sinh(y)
cosh(y) + cos(h(x1) + h(x1 − y))dy . (1.11)

These contour equations are obtained from the Birkhoff–Rott integral together with the 
following expression for the vorticity:

ω(x1, x2, t) = �(x1, t)δΓ(t),

where x1 ∈ R parametrizes Γ(t), �(x1, t) is the amplitude of vorticity, and δΓ(t) is the 
Dirac delta-distribution which is a function of (x1, x2) on the moving interface Γ(t) ⊂ R2. 
In particular, as the contour equations use the kernel for the operator ∇⊥Δ−1, there have 
been no prior existence theorems for arbitrary domain geometries.
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In the case that �μ� = 0, the contour equations have a significant simplification with 
respect to the case of two different viscosities. This is due to the fact that, if �μ� = 0, 
the amplitude of the vorticity is � = �ρ�h′; however, in the case with two different 
viscosities, the amplitude for the vorticity � verifies the integral equation

−(ρ2 − ρ1)h′(x1) =
(
μ2 − μ1) p.v.

∫
R

�(β)B(x1, h(x1), β, h(β))dβ · (1, h′(x1))

+
(
μ2 + μ1

2

)
�,

where B denotes the kernel of ∇⊥Δ−1 (which depends on the domain). For instance, if 
the union of the two fluid domains is R2, then

B(x1, x2, y1, y2) =
(
− x2 − y2

(x2 − y2)2 + (x1 − y1)2
,

x1 − y1

(x2 − y2)2 + (x1 − y1)2

)
.

Thus, to write the amplitude of the vorticity in terms of the interface, one needs to invert 
an operator as in Córdoba, Córdoba, & Gancedo [15]. This is a difficult issue, and with 
our method, we are able to avoid it entirely.

2. Statement of the main theorems

Our first result is

Theorem 2.1 (H2 local well-posedness for the two-phase problem). Let h0 ∈ H2(R) be the 
initial height function and let μ±, ρ± > 0, be fixed constants. Then for every arbitrarily 
small s > 0 there exist small enough constants σs, σ̃, T (h0) > 0, such that if either

(1) (for the infinitely-deep Muskat problem (1.5a)–(1.5e)) if

‖h0‖H1.5+s(R) < σs (2.1)

or
(2) (for the confined Muskat problem (1.5a)–(1.5d), (1.5e′), (1.5f)) if

‖h0‖H1.5+s(R) < σs

max{|t̃|2, |b̃|2} ≤ σ̃,

then there exists a unique local-in-time solution

h ∈ C([0, T (h0)];H2(R)) ∩ L2(0, T (h0);H2.5(R)).

Moreover, this solution verifies
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‖h(t)‖2
L2(R) +

t∫
0

‖
√

μ+u+(t)‖2
L2(Ω+(t))dt +

t∫
0

‖
√
μ−u−(t)‖2

L2(Ω−(t))dt = ‖h0‖2
L2(R),

and

max
0≤s≤T (h0)

{‖h(s)‖2
H2(R)} +

T (h0)∫
0

‖h(s)‖2
H2.5(R)ds ≤ C1‖h0‖2

H2(R),

for a fixed constant C1.

We remark that the constants appearing in this theorem depend on the physical 
parameters μ±, ρ± > 0.

The proof of this result in the infinitely-deep case has been split into several steps in 
Section 5. For the sake of simplicity, the proof is given for the case that s = 0.25 in (2.1), 
but the general case is obtained in a straightforward manner. This proof also covers 
the confined problem with flat top and bottom boundaries. Observe that the solution 
gains an extra half-derivative in space, when integrated in time. As we shall explain, 
this parabolic-regularity property is obtained by using the jump condition related to the 
expression for the amplitude of the vorticity. In Section 6, we provide the proof for the 
case of general domain geometries.

Next, we address the question of global existence and decay to equilibrium of classical 
solutions for small data. Indeed, if the initial data is periodic, Theorem 2.1 can be 
strengthened, and we obtain

Theorem 2.2 (H2 global well-posedness and decay to equilibrium). Let h0 ∈ H2(T)
be the periodic, zero-mean initial height function for the infinitely-deep Muskat prob-
lem (1.5a)–(1.5d) with μ±, ρ± > 0. Then there exists a small enough constant σ2 =
σ2(μ±, ρ±), such that if ‖h0‖H2(T) ≤ σ2, there exists a unique global-in-time solution

h ∈ C([0,∞];H2(T)) ∩ L2(0,∞;H2.5(T)).

Moreover, this solution verifies

max
0≤s≤∞

{‖h(s)‖2
H2(T)} +

∞∫
0

‖h(s)‖2
H2.5(T)ds ≤ C‖h0‖2

H2(T),

together with the decay estimate

‖h(t)‖2
L2(T) ≤ c(h0)e−αt, and, more generally, ‖h(t)‖2

Hr(T) ≤ c(h0, r)e−
(
1− r

2
)
αt

for every 0 ≤ α < 2, 0 ≤ r < 2.
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The proof of this result is given in Section 7. Notice that the decay of the linear 
problem (α = 2) is not reached and appears to be critical.

Remark 2.3. We can compare the global existence result given by our Theorem 2.2 with 
the global existence results in [12,13] for the case that �μ� = 0. On the one hand, because 
of the embedding inequality

‖u‖A(R) ≤ C‖u‖H0.5+s(R) , s > 0

we see that we must impose more severe size constraints our initial data than the results 
of [12,13]; on the other hand, our result can also handle the case that μ+ �= μ−, and we 
find the exponential decay rate back to the equilibrium configuration.

For the one-phase Muskat problem (the case where μ+ = ρ+ = 0), our previous result 
is improved:

Theorem 2.4 (Local well-posedness for the one-phase problem). Fix μ+ = ρ+ = 0
μ−, ρ− > 0, b̃(x1) = 0. Let h0 ∈ H2(T) such that minx1 h0(x1) > cb, be the initial 
height function for the confined, one-phase Muskat problem (1.6a)–(1.6e) satisfying the 
Rayleigh–Taylor stability condition (1.8). Then there exists T (h0) and a unique local-in-
time solution

h ∈ C([0, T (h0)];H2(T)) ∩ L2(0, T (h0);H2.5(T))

for the confined Muskat problem (1.6a)–(1.6e). Moreover, this solution verifies

‖h(t)‖2
L2(T) +

t∫
0

‖
√
μ−u(t)‖2

L2(Ω−(t))dt = ‖h0‖2
L2(T),

and

max
0≤s≤T (h0)

{‖h(s)‖2
H2(T)} +

T (h0)∫
0

‖h(s)‖2
H2.5(T)ds ≤ C1‖h0‖2

H2(T),

for a fixed constant C1.

Remark 2.5. Note that in Theorem 2.4, the initial data can be arbitrarily large; in 
particular, we place no smallness condition on the data.

The proof of Theorem 2.4 is given in Section 8. Finally, as a consequence of our 
half-derivative gain in space, L2-in-time, we have the following
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Theorem 2.6 (Instantaneous parabolic smoothing). Given Γ and a solution h to the 
Muskat problem satisfying

h ∈ C([0, T (h0)];H2(Γ)) ∩ L2(0, T (h0);H2.5(Γ))

and either

(1) Γ = R and h is the solution to for the infinitely-deep Muskat problem (1.5a)–(1.5e)
obtained under the hypotheses of Theorem 2.1,

(2) Γ = R and h is the solution to for the confined Muskat problem (1.5a)–(1.5d), 
(1.5e′), (1.5f) obtained under the hypotheses of Theorem 2.1,

(3) Γ = T and h is the solution to for the one-phase Muskat problem (1.6a)–(1.6e)
obtained under the hypotheses of Theorem 2.4,

then, in fact,

h(·, t) ∈ C∞(Γ) if δ ≤ t ≤ T (h0), ∀ δ > 0.

The proof of this result is given in Section 9.

2.1. Notation

2.1.1. Matrix notation
Let A be a matrix, and b be a column vector. Then, we write Ai

j for the compo-
nent of A, located on row i and column j; consequently, using the Einstein summation 
convention, we write

(Ab)k = Ak
i b

i and (AT b)k = Ai
kb

i.

2.1.2. Sobolev norms
For s ≥ 0, we let

‖u‖s,+ = ‖u+‖Hs(Ω+) , ‖u‖s,− = ‖u−‖Hs(Ω−) , ‖u‖s,± = ‖u+‖s,+ + ‖u−‖s,−

and

|h|s = ‖h‖Hs(Γ) .

Let R2
+ and R2

− denote the upper and lower half plane, respectively. Then, abusing 
notation, we write

‖v‖s,+ = ‖v+‖Hs(R2 ) , ‖v‖s,− = ‖v−‖Hs(R2 ) , ‖v‖s,± = ‖v+‖s,+ + ‖v−‖s,−
+ −
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and

|h|s = ‖h‖Hs(R) .

2.1.3. The derivatives
We let f ′ denote the (tangential) derivative of f with respect to x1; that is,

f ′ = ∂f

∂x1
.

For k = 1, 2, we write

f,k = ∂f

∂xk
.

For a diffeomorphism ψ, we let curlψu = curlu ◦ ψ and divψu = divu ◦ ψ.

2.1.4. Mollifiers
We consider J a symmetric, positive mollifier with total integral equal to 1. For κ > 0, 

we define

Jκ(x1) = 1
κ
J
(x1

κ

)
and we denote

fκ = Jκf = Jκ ∗ f and fκκ = JκJκf .

2.1.5. Dependence on space and time
For a function f(x, t), we shall often write f(t) to denote f(·, t). We associate to the 

pair of functions u± : Ω±(t) → R, the function u : R2 → R as follows:

u = u+1Ω+(t) + u−1Ω−(t).

When we write 
∫
Ω+(t) u(·, t)dx, this is understood to mean 

∫
Ω+(t) u

+(·, t)dx.

3. The ALE and semi-ALE formulations of the Muskat problem

3.1. The ALE and semi-ALE formulation

3.1.1. The ALE formulation
We let δψ+ denote the harmonic extension of h to the upper half plane: 

Δδψ+ = 0 in R2
+ , (3.1a)

δψ+ = h on {x2 = 0} . (3.1b)
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We define δψ−(x1, x2) = δψ+(x1, −x2). We write e for the identity map given by e(x) = x

and define ψ± = e + δψ±e2. Then, ψ±(·, t) : R2
± �→ Ω±(t) is a solution to 

Δψ± = 0 in R2
± , (3.2a)

ψ± = e + he2 on {x2 = 0} . (3.2b)

We note that (3.2b) is the same as 

ψ(x1, 0, t) =
(
x1, h(x1, t)

)
. (3.2b′)

Setting J± = det(∇ψ±), we see that

A± = (∇ψ±)−1 = (J±)−1

[
(ψ±)2,2 −(ψ±)1,2
−(ψ±)2,1 (ψ±)1,1

]
= 1

1 + δψ±
,2

[
1 + δψ±

,2 0
−δψ±

,1 1

]
.

For a fixed s > 0, using classical elliptic theory, we have ‖∇δψ±‖1+s,± ≤ C|h|1.5+s, and 

J± = 1 + δψ±
,2 > 1 − ‖δψ±

,2‖L∞(R2) > 1 − C‖∇δψ±‖1+s,± > 1 − C|h|1.5+s. (3.3)

Consequently, if |h(·, t)|1.5+s is sufficiently small, then ψ(t) is a diffeomorphism. For 
example, |h(·, t)|1.5+s is small whenever the initial data h0 ∈ H1.5+s(R) and t are suffi-
ciently small.

Letting

v± = u± ◦ ψ and q± = p± ◦ ψ ,

the chain-rule shows that (1.5) can be written on the fixed domains as 

μ±v± + (A±)T∇q± = −ρ±δi2 in R2
± , (3.4a)

(A±)ji (v
±)i,j = 0 in R2

± , (3.4b)

where δji is the Kronecker delta.

3.1.2. The evolution equation for h
We derive the evolution equation for h to complete the system (3.4). We first note 

that

J±(A±)Te2 = (−(ψ±)2,1 , (ψ±)1,1 ) = (ψ±′)⊥ ,

where f⊥ = (−f2, f1). Since ψ±′(·, t) is tangent to Γ(t), we must have ψ±′(·, t)⊥ is a 
normal vector field to Γ(t); moreover, by (3.2b) we must have

JATe2 = (−h′, 1) on {x2 = 0} . (3.5)
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The identity above also suggests that

n ◦ ψ = (−h′, 1)√
1 + h′2

on {x2 = 0} . (3.6)

On the other hand, differentiating (3.2b′) in t, we find that

ψt · (n ◦ ψ) = ht

(
e2 · (n ◦ ψ)

)
on {x2 = 0} . (3.7)

By (1.5c) (or the interface moves along with the fluid velocity), ψt · (n ◦ψ) = (u · n) ◦ψ; 
thus (3.5), (3.6) and (3.7) imply that

v · (n ◦ ψ) = ht√
1 + h′2

or equivalently, 

ht = v · (−h′, 1) = v · (JATe2) = (JAv) · e2 on {x2 = 0}. (3.4c)

The coupled equations (3.2a), (3.2b) and (3.4a), (3.4b), (3.4c), together with the initial 
condition 

h = h0 on {t = 0} (3.4d)

is the ALE formulation of (1.5).

3.2. The semi-ALE formulation

For the purposes of reinstating a linear divergence-free constraint on the velocity field, 
we let 

w± = J±A±v± (3.8)

or componentwise, w±·ek = J±(A±)ki (v±) ·ei. Then, by the Piola identity, (J±(A±)ij),i =
0, and (3.4b) implies that

divw± = 0 in R2
± .

Therefore, (w±, q±, h) satisfies 

μw± · ek + J±(A±)ki (A±)ji q
±,j = −ρ±J±(A±)k2 in R2

± , (3.9a)

div w± = 0 in R2
± , (3.9b)

�w · e2� = �q� = 0 on {x2 = 0} , (3.9c)
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Δψ± = 0 in R2
± , (3.9d)

ψ = e + he2 on {x2 = 0} , (3.9e)

ht = w · e2 on {x2 = 0} , (3.9f)

h = h0 on R× {t = 0} . (3.9g)

Equation (3.9) is the semi-ALE formulation of (1.5). Since A ∇ψ = Id we have

Ae2 = A
(
AT

(
∇ψT · e2

))
,

and (3.9a) can also be written as 

μ±w± · ek + J±(A±)ki (A±)ji (q
± + ρ±ψ± · e2),j = 0 in R2

± . (3.9a′)

Let Q± = q± + ρ±x2. Since A± = [∇ψ±]−1, it follows that

μ± (∇ψ±)T∇ψ±w±

J± + ∇(Q± + ρ±δψ±) = 0 .

Using Q rather than q, we write the system (3.9) as 

μ±w± + ∇(Q± + ρ±δψ±) =
(

Id − (∇ψ±)T∇ψ±

J±

)
μ±w± in R2

± , (3.10a)

div w± = 0 in R2
± , (3.10b)

�w · e2� = �Q� = 0 on {x2 = 0} , (3.10c)

Δδψ± = 0 in R2
± , (3.10d)

δψ± = h on {x2 = 0} , (3.10e)

ht = w · e2 on {x2 = 0} , (3.10f)

h = h0 on R× {t = 0} . (3.10g)

The advantage of the formulation (3.10) is that the nonlinear terms are on the right-hand 
side, keeping the left-hand side linear. Indeed, using

∇ψ± = ∇(x + δψ±e2) = Id + ∇δψ±e2 ,

we have that

(
Id − (∇ψ)T∇ψ±

J±

)
μ±w± =

(
δψ±

,2 − (δψ±
,1)2 −δψ±

,1(1 + δψ±
,2)

−δψ±
,1(1 + δψ±

,2) −δψ±
,2(1 + δψ±

,2)

)
μ±w±

J± (3.11)
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4. The approximate κ-problem

4.1. An approximation of the semi-ALE formulation: the κ-problem

Letting A±
κ = (∇ψ±

κ )−1, we define the following approximation of (3.10) which we 
term the κ-problem: 

μ±w± + J±
κ A±

κ (A±
κ )T∇(Q± + ρ±δψ±

κ ) = 0 in R2
± × [0, Tκ] ,

(4.1a)

�w · e2� = �Q� = 0 on Γ × [0, Tκ] ,

(4.1b)

div w± = 0 in R2
± × [0, Tκ] ,

(4.1c)

Δδψ+
κ = 0 in R2

+ × [0, Tκ] ,

(4.1d)

δψ+
κ = JκJκhκ on Γ × [0, Tκ] ,

(4.1e)

δψ−
κ (x1, x2) = δψ+

κ (x1,−x2) on R2
− × [0, Tκ] ,

(4.1f)

ψ±
κ (x1, x2) = (x1, x2 + δψ±

κ (x1, x2)) in R2
− × [0, Tκ] ,

(4.1g)

hκt = w · e2 on Γ × (0, Tκ] ,

(4.1h)

hκ = Jκh0 on R× {t = 0} .

(4.1i)

This approximation relies on the following two operations:

(1) the initial data h0 is regularized in (4.1i), and
(2) in order to have smooth ALE maps ψ± via elliptic extension, we (symmetrically) 

mollify the height function on Γ in (4.1e), thus producing a smooth evolving interface.

Note that w and Q depend implicitly on κ.
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4.2. The ALE formulation of the κ-problem

The κ-approximation becomes very clear when we return to the original ALE formu-
lation given in (3.4). Indeed, we use A±

κ in place of A± and ψ±
κ in place of ψ± and write 

(4.1a)–(4.1b) equivalently as 

μ±V± + (A±
κ )T∇Q± = −ρ±δi2 in R2

± × [0, Tκ] , (4.2a)

(A±
κ )ji (V±)i,j = 0 in R2

± × [0, Tκ] , (4.2b)

where

∇ψ±
κ

J±
κ

w± = V± and Q± = Q± − ρ±x2

4.3. The Eulerian formulation of the κ-problem

Pulling back (4.1) using the diffeomorphisms (ψ±
κ )−1 defined in (4.1d)–(4.1g), we 

obtain the Eulerian form of the κ-problem: 

μ±U± + ∇P± = −ρ±e2 in Ω±
κ (t) × [0, Tκ] , (4.3a)

divU = 0 in Ω±
κ (t) × [0, Tκ] , (4.3b)

V(Γκ(t)) = U± · nκ on Γκ(t) × [0, Tκ] , (4.3c)

Ω+
κ (t) ∪ Ω−

κ (t) = R2 for every t ∈ [0, Tκ] , (4.3d)

where

U± = V± ◦ (ψ±
κ )−1 ,

P± = Q± ◦ (ψ±
κ )−1 ,

and

Γκ(t) = {(x1, h
κκ(x1, t)), x1 ∈ R} ,

nκ(x1, t) = (−hκκ′(x1, t), 1) ,

Ω+
κ (t) = {(x1, x2), x2 > hκκ(x1, t)), x1 ∈ R} ,

Ω−
κ (t) = {(x1, x2), x2 < hκκ(x1, t)), x1 ∈ R} ,

we obtain a solution to (4.1).



C.H.A. Cheng et al. / Advances in Mathematics 286 (2016) 32–104 51
4.4. An alternative semi-ALE formulation of the κ-problem

In order to construct solutions to the κ-problem for initial height functions in H2(Γ)
of arbitrary size, we use a different family of diffeomorphisms which have the property 
that the Jacobian determinant is equal to one. For this purpose, we introduce the dif-
feomorphisms

Ψκ
± = (x1, x2 + hκκ) .

Because of the mollifiers present in the definition of hκκ, we see that the maps Ψ±
κ (·, t) :

Γ → Ω±
κ (t) are C∞ diffeomorphisms, and that det∇Ψ±

κ = 1.
Letting

V± = U ◦ Ψ±
κ ,

Q± = P ◦ Ψ±
κ + ρ±x2 ,

and defining

A±
κ = [∇Ψ±

κ ]−1 ,

W± = A±
κ V

± ,

we have our alternative semi-ALE description of the κ-problem: 

μ±W± + A±
κ (A±

κ )T∇(Q± + ρ±hκκ) = 0 in R2
± × [0, Tκ] , (4.4a)

�W · e2� = �Q� = 0 on Γ × [0, Tκ] , (4.4b)

div W± = 0 in R2
± × [0, Tκ] , (4.4c)

ht = W · e2 on Γ × (0, Tκ] , (4.4d)

h = Jκh0 on Γ × {t = 0} . (4.4e)

Note well that a solution to (4.4) give a solution to (4.3) and hence a solution to the 
original semi-ALE formulation (4.1).

4.5. The construction of solutions to the κ-problem (4.1)

In this section we prove the following result:

Proposition 4.1. For h0 ∈ H2, there exist a time Tκ and a unique solution h ∈
C([0, Tκ], H2(R)) to the approximate κ-problem (4.1a)–(4.1i).

Given

h̄ ∈ C([0, T ];H2(R)) and h̄t ∈ L2(0, T ;L2(R)) ,
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we consider the following linear problem: 

μ±w± + J̄±Ā±(Ā±)T∇(Q± + ρ±h̄κκ) = 0 in {R2
±} , (4.5a)

�w · e2� = �Q� = 0 in {x2 �= 0} , (4.5b)

div w± = 0 in R2
± , (4.5c)

Ψ± = (x1, x2 + h̄κκ) in R2
± , (4.5d)

ht = w · e2 on {x2 = 0} , (4.5e)

h = Jκh0 on R× {t = 0} . (4.5f)

To simplify notation, we have dropped the κ-subscript used to indicate implicit depen-
dence on κ, but we have kept the κ-superscript to indicate an explicit mollification 
operation; in particular,

h̄κ = Jκh̄ and h̄κκ = JκJκh̄ .

Note that

‖∇Ψ± − Id ‖s−1,± ≤ C|h̄κκ|s ≤ C(κ, s)|h̄κ|0.

We shall also (temporarily) drop the (·)± notation on A, ψ, ρ, and μ, as it will be clear 
from the context which phase we are analyzing.

4.5.1. The existence of ∇Q±

Taking the divergence of (4.5a) we obtain the elliptic equation for Q±

−div
(

1
μ
AA

T∇Q±
)

= div
(
ρ

μ
AA

T∇h̄κκ

)
in R2

± , (4.6)

where ∇h̄κκ = (h̄κκ
,1 , 0). Due to the fact that the domain is unbounded, we consider a 

constant γ satisfying 0 < γ < 1
2 , and define the following elliptic equation in R2

± for the 
modified pressure functions Q±

γ :

γQ±
γ − div

(
1
μ
AA

T∇Q±
)

= div
(
ρ

μ
AA

T∇h̄κκ

)
in R2

± . (4.7)

Using (4.5a) and (4.5b), we supplement (4.7) with the following jump conditions across 
{x2 = 0}:

�Qγ � = 0 (4.8)

and
� (

(1/μ)AA
T∇Qγ

)
· e2

�
= −�(ρ/μ))

(
AA

T∇h̄κκ
)
· e2�. (4.9)
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Recall that a function Qγ = Qγ
+1R

2
+

+Qγ
−1R

2
−
∈ H1(R2) is said to be a weak solution 

of (4.7)–(4.9) if

γ

∫
R

2
+∪R

2
−

QγP dx +
∫

R
2
+∪R

2
−

1
μ
AA

T ∇Qγ ∇Pdx =
∫

{x2=0}

g Pdx1 +
∫

R
2
+∪R

2
−

f Pdx (4.10)

for all P ∈ H1(R2), where g = �(ρ/μ))AA
T∇h̄κκ� · e2 and f = div

(
(ρ/μ)AA

T∇h̄κκ
)
.

This problem can be written as

B(Qγ , P ) = L1(P ) + L2(P ) for all P ∈ H1(R2) ,

where

B(Qγ , P ) = γ

∫
R

2
+∪R

2
−

QγPdx +
∫

R
2
+∪R

2
−

∇P
(
(1/μ)AA

T∇Qγ

)
dx,

L1(P ) =
∫

{x2=0}

�(ρ/μ)
(
AA

T∇h̄κκ
)
· e2�Pdx1,

L2(P ) =
∫

R2
+∪R2

−

Pdiv
(
(ρ/μ)AA

T∇h̄κκ
)
dx.

The existence of Qγ ∈ H1(R2) will follow from the Lax–Milgram theorem, once we verify 
the necessary hypotheses. From the fundamental theorem of calculus, we have that

‖A0A
T

0 −A(·, t)AT (·, t)‖L∞ ≤ Cκ

√
t

⎛⎝ t∫
0

|h̄t(s)|20ds

⎞⎠
1
2

≤ Cκ

√
t ,

where Cκ is a constant which depends on κ. Since [A0A
T

0 ]ijξiξj ≥ λ|ξ|2, we see that for 
t sufficiently small,

λ

2 |ξ|
2 ≤ [A(·, t)AT (·, t)]ijξiξj ≤ 2λ|ξ|2.

The bilinear form is bounded, as

|B(Qγ , P )| ≤ C(h̄κκ)‖Qγ‖1,±‖P‖1,±,

and it is also coercive, since

|B(Qγ , Qγ)| ≥ c(γ, λ)‖Qγ‖2
1,±.

Thus, we need to prove that Li(P ) are continuous functionals on H1(R2). We have that
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|L1(P )| ≤ C(h̄κκ)|P |0 ≤ C(h̄κκ)‖P‖1,±,

and using the divergence theorem,

|L2(P )| ≤

∣∣∣∣∣∣∣
∫

R
2
+∪R

2
−

∇P (ρ/μ)AA
T∇Adx

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣

∫
{x2=0}

P �(ρ/μ)J AA
T∇h̄κκ�e2dx1

∣∣∣∣∣∣∣
≤ C(h̄κκ) (‖∇P‖0,± + |P |0) ≤ C(h̄κκ)‖P‖1,±.

We have thus verified the hypotheses of the Lax–Milgram theorem.
To obtain estimates which are uniform in γ, we test (4.7) with Qγ , and integrate by 

parts. Since Qγ ∈ H1(R2), Qγ
+ = Qγ

− on {x2 = 0} (in the sense of trace); hence, we 
have that

1
2‖∇Qγ‖2

0,± ≤ −
∫

{x2=0}

Qγ �
(
(J/μ)AA

T∇Qγ

)
· e2�dx1

+
∫

R
2
+∪R

2
−

∇Qγ(ρ/μ)AA
T∇h̄κκdx

−
∫

{x2=0}

Qγ �
(
(ρ/μ)AA

T∇h̄κκ
)
· e2�dx1.

In particular, using the jump condition (4.9), we find that

‖∇Qγ‖0,± ≤ C|h̄κκ|0.5, (4.11)

where the constant in the right-hand side is independent of γ. As such, we obtain the 
existence of a weak limit ∇Qγ ⇀ F ∈ L2(R2); moreover, the weak limit is a gradient: 
F = ∇Q. Indeed, if U ⊂ R2, by means of the Poincaré inequality, we have that

‖Qγ − mean(Qγ)‖L2(U) ≤ C(U)‖∇Qγ‖0,±.

In particular, we obtain that Qγ converges weakly in L2(U). We write Q for this limit 
and note that ∇Q also satisfies (4.11). Thus, considering a test function φ with compact 
support within U , as γ → 0, we have that∫

U

φ∇Qγdx = −
∫
U

divφQγdx ⇀ −
∫
U

divφQdx =
∫
U

φ∇Qdx,

∫
U

φ∇Qγdx ⇀

∫
U

φFdx.
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Using the uniqueness of the weak limit, we conclude the claim. We then easily obtain 
that Q ∈ L2

loc(R2) ∩ Ḣ1(R2
±) is a distributional solution to

−div
(
(1/μ)AA

T∇Q
)

= div
(
(ρ/μ)AA

T∇h̄κκ
)
.

4.5.2. The existence of w and h
We consider the Banach space

X = {(f, ft), f ∈ C(0, T ;H2), ft ∈ L2(0, T ;L2)},

with norm

‖(f, ft)‖X = max
0≤s≤t

‖f(s)‖H2 +

⎛⎝ t∫
0

‖ft(s)‖2
L2ds

⎞⎠0.5

.

We define the operator S[h̄, ̄ht] by

S[h̄, h̄t] = (h(t), w2(·, 0, t)) =

⎛⎝h(x1, 0) +
t∫

0

w(x1, 0, s) · e2ds, w(x1, 0, t) · e2

⎞⎠ .

As h̄κκ is C∞, the same is true for Ψ̄, Ā, J̄ . The usual elliptic estimates for (4.6)
provide the regularity

∇Q ∈ L∞(0, T ;C∞(R2
±)).

Using (4.5a), we have that

w ∈ L∞(0, T ;C∞(R2
±)).

Consequently, the operator S verifies

S : X → X.

For two pairs (h̄1, ̄h1t) and (h̄2, ̄h2t), we estimate the Lipschitz norm:

‖S[h̄1, h̄1t] − S[h̄2, h̄2t]‖X ≤ T max
0≤t≤T

|(w1(t) − w2(t)) · e2|2

+

⎛⎝ T∫
0

|(w1(s) − w2(s)) · e2|20ds

⎞⎠0.5

≤
√
TCκ‖

(
h̄1, h̄1t

)
−
(
h̄2, h̄2t

)
‖X

Now, if T = Tκ is chosen small enough, then the mapping S is a contraction and then 
there exists a unique fixed-point, which is a local solution of our approximate κ-problem.
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5. Proof of Theorem 2.1: local well-posedness for the infinitely-deep case

5.1. κ-independent estimates

In this section, we prove that there is a time of existence T ∗, independent of κ, and 
a priori estimates on [0, T ∗] also independent of κ; we will thus be able to pass to the 
limit as κ → 0 and conclude the existence of a limiting function h.

To do so, we define the higher-order energy function (or norm) that will be shown to 
be bounded independent of κ:

E(t) = max
0≤s≤t

{|hκ(s)|22} +
t∫

0

‖w(s)‖2
2,±ds. (5.1)

Then, using Proposition 4.1, there exists an approximate solution up to time Tκ for 
every κ > 0. We can take Tκ as small as needed to ensure that

sup
0≤t≤Tκ

E(t) ≤ z∗, ∀κ > 0,

for a constant z∗ that will specified below. A priori, these times Tκ may tend to zero as 
κ → 0. In the following sections, we are going to obtain uniform bounds for E(t) up to 
a uniform time T ∗, preventing the shrinking of the lifespan of the solution as κ → 0.

For the sake of clarity, we take s = 0.25 in the statement of Theorem 2.1 (the proof for 
general s is analogous) and consider σ � 1 a universal constant (that will be specified 
below). Furthermore, we take Tκ small enough so we can ensure that

sup
0≤t≤Tκ

|hκ(t)|1.75 < σ. (5.2)

5.1.1. The estimates of δψ, J
Using classical elliptic theory for the equations (4.1d)–(4.1f), we get

‖∇δψ‖s,± ≤ C|hκκ|s+0.5, (5.3)

thus,

‖∇ψ − Id ‖s,± ≤ C|hκκ|s+0.5, and ‖J − 1‖s,± = ‖δψ,2‖s,± ≤ C|hκκ|s+0.5.

5.1.2. Estimates for h ∈ L∞(0, Tκ; L2(R)), v± ∈ L2(0, Tκ; L2(R2
±))

We let a = J A denote the cofactor matrix of ∇ψ; using the fact that ∇ψ2 = e2, we 
write (3.4a) as

μJvi + aki
(
q + ρψ2) = 0 in R2

± × (0, Tκ] . (5.4)

,k
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Since on Γ := R, ψ2 = h and v · ñ = ht, taking the L2(R2
±) inner-product of (5.4) with vi, 

the fact that aki ,k = 0 by the Piola identity and that akiNk = ñ to obtain the basic L2

energy law:

1
2
d

dt
‖Jκh(t)‖2

L2(R) + 1
−�ρ�‖

√
μ±Jv±‖2

L2(R2
±) = 0.

Integrating in time, we find that

|hκκ(t)|0 ≤ |Jκh(t)|0 ≤ |JκJκh0|0 ≤ |h0|0,

and

μ±
t∫

0

‖
√
Jv±‖2

L2(R2
±)ds ≤ −�ρ�|h0|0.

From (4.11) and the smallness bound (5.2), we see that

‖∇Q‖0,± ≤ Cσ, and ‖w‖0,± ≤ Cσ .

5.1.3. Verifying the smallness condition for |hκ|1.75, ‖w‖1.5,±
Using (4.5e) together with the Cauchy–Schwarz and trace inequalities, we have that

|h(t) − Jκh0|1.5 =

∣∣∣∣∣∣
t∫

0

w · e2ds

∣∣∣∣∣∣
1.5

≤
√
t

√√√√√C

t∫
0

‖w(s)‖2
2,±ds ≤

√
tCE(t) , (5.5)

and that

|hκ(t) − J 2
κh0|1.5 =

∣∣∣∣∣∣Jκ

t∫
0

w · e2ds

∣∣∣∣∣∣
1.5

≤
√

tCE(t).

We can ensure that |hκ(t)|2 ≤
√
z∗, so that

|hκ(t) − J 2
κh0|21.75 ≤ C|hκ(t) − J 2

κh0|1.5|hκ(t) − J 2
κh0|2 ≤ C

√
tz∗,

and, by choosing

Tκ ≤ T ∗
1 =

(
(σ − |h0|1.75)2

4Cz∗

)2

, (5.6)

we have that
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|hκ(t)|1.75 ≤ |h0|1.75 +
√

C
√
tz∗ < σ, ∀ 0 ≤ t ≤ Tκ. (5.7)

Using (4.1a), (4.1c) and the fact that δψ is the harmonic extension of h, it follows 
that Q satisfies

div
[
(J/μ)AAT∇Q

]
= ρ

μ
div

[(
Id − JAAT

)
∇δψ

]
in R2

± ,

with jump conditions given by (4.1b) and (4.9). It follows that we have the following 
elliptic equation for Q:

μ−1ΔQ = div
[
μ−1(Id − JAAT )∇(Q + ρδψ)

]
in R2

±,

�Q� = 0 on {x2 = 0},
�
μ−1 ∂Q

∂N
� = �μ−1(Id − JAAT )(∇Q)e2� − �μ−1ρ�JA2

iA
j
i δψ,j on {x2 = 0}.

From standard elliptic estimates,

‖∇Q‖1.25,± ≤ C
[∥∥(Id − JAAT )∇(Q + ρδψ)

∥∥
1.25,±

+
∣∣�μ−1(Id − JAAT )∇Qe2�∣∣0.75 +

∣∣�μ−1ρA2
iA

j
i δψ,j �∣∣0.75]

≤ C
[∥∥Id − JAAT

∥∥
L∞(R2)

(
‖∇Q‖1.25,± + ρ‖∇δψ

∥∥
1.25,±

)
+
∥∥Id − JAAT

∥∥
1.25,±

(
‖∇Q‖L∞(R2) + ρ‖∇δψ‖L∞(R2)

)
+
∣∣�μ−1ρJA2

iA
j
i δψ,j �∣∣0.75],

where the constant C depends on μ±. Using the smallness condition (5.7), we have

∣∣JA2
iA

j
i δψ,j

∣∣
0.75 ≤ C

(
|hκκ|1.75,

∥∥Id − JAAT
∥∥

1.25,± + |hκκ|1.75
)
≤ C|hκκ|1.75.

As a consequence, we have

‖∇Q‖1.25,± ≤ C|hκκ|1.75. (5.8)

For the higher norm, we have

‖∇Q‖1.5,± ≤ C
[∥∥(Id − JAAT )∇(Q + ρδψ)

∥∥
1.5,±

+
∣∣�μ−1(Id − JAAT )∇Qe2�∣∣1 +

∣∣�μ−1ρA2
iA

j
i δψ,j �∣∣1]

≤ C
[∥∥Id − JAAT

∥∥
L∞(R2)

(
‖∇Q‖1.5,± + ρ‖∇δψ

∥∥
1.5,±

)
+
∥∥Id − JAAT

∥∥ (
‖∇Q‖L∞(R2) + ρ‖∇δψ‖L∞(R2)

)

1.5,±
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+
∣∣�μ−1ρJA2

iA
j
i δψ,j �∣∣1]

≤ C
[∥∥Id − JAAT

∥∥
L∞(R2)

(
‖∇Q‖1.5,± + ρ‖∇δψ

∥∥
1.5,±

)
+
∥∥Id − JAAT

∥∥
1.5,±

(
‖∇Q‖1.25,± + |hκκ|1.75

)
+
∣∣�μ−1ρJA2

iA
j
i δψ,j �∣∣1] .

Using (3.5) and (4.9),

∣∣JA2
iA

j
i δψ,j

∣∣
1 ≤ C|hκκ|1.75(1 + |hκκ|1.75)|hκκ|2,

and ∥∥Id − JAAT
∥∥

1.5,± ≤ C|hκκ|2(1 + |hκκ|1.75) ≤ C|hκκ|2.

Using 1 + σ < 2,

‖∇Q‖1.5,± ≤ (C|hκκ|1.75
(
1 + |hκκ|1.75

)
)‖∇Q‖1.5,± + C|hκκ|2|hκκ|1.75 + |hκκ|2|hκκ|1.75,

and, using the smallness condition (5.7),

‖∇Q‖1.5,± ≤ C|hκκ|1.75|hκκ|2. (5.9)

Using (3.10a) and (3.11), we obtain

‖w‖1.5,± ≤ C|hκκ|1.75|hκκ|2 , (5.10)

‖w‖1.25,± ≤ C|hκκ|1.75 . (5.11)

5.1.4. The Rayleigh–Taylor stability condition revisited
Once we have the smallness condition

sup
0≤t≤Tκ

‖w(t)‖1.25,± ≤ C|hκκ(t)|1.75 ≤ σ,

we find that

sup
0≤t≤Tκ

‖v(t)‖1.25,± ≤ C sup
0≤t≤Tκ

‖∇ψ · w‖1.25,± ≤ Cσ. (5.12)

The Rayleigh–Taylor stability condition is controlled as follows:

RT (t) > −�ρ� − |�μ�|2‖v‖1.25,± ≥ −�ρ� − |�μ�|Cσ.
2 2
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Consequently, if we impose

σ ≤ −�ρ�
4C|�μ�| ,

the Rayleigh–Taylor stability condition is satisfied for every time 0 ≤ t ≤ Tκ. Further-
more, we have

−�ρ� − �μ�v · n
√

1 + hκκ′2 ≥ −�ρ� − |�μ�|2‖v‖1.25,± ≥ −�ρ�
2 , ∀ 0 ≤ t ≤ Tκ. (5.13)

5.1.5. Estimates for h ∈ L2(0, T ; H2.5(R))
Taking the inner-product of the equation (3.4a) with the tangent vector ψ′, we find 

that

μ±v± · ψ′ + Q±
,1 + ρ±δψ,1 = 0 on {x2 = 0} .

Taking the difference of the equations above, by (4.1e), we obtain that

�μv · ψ′� + �ρ�hκκ
,1 = 0 .

Then the equation above implies that

[
μv · (1, hκκ′)√

1 + hκκ′2

]
+ �ρ� hκκ′

√
1 + hκκ′2

= 0 .

Differentiating the equation above with respect to x1 and using that the normal velocity 
is continuous, we conclude that hκκ satisfies that

−�ρ�hκκ′′ = �μ�(v · n)
√

1 + hκκ′2hκκ′′ + (1 + hκκ′2)�μv′ · (1, hκκ′)� . (5.14)

By Proposition A.1 and the trace theorem, the inequality above further implies that

|hκκ′′|0.5 ≤ C(1 + |hκκ|31.75)
(∣∣v+∣∣

1.5 +
∣∣v−∣∣1.5)+ C|hκκ′′|0.5|v · (−hκκ′, 1)|0.75 . (5.15)

Since v = ∇ψw
J ,

|v±|1.5 ≤ C

∥∥∥∥ (Id + ∇(δψ±e2))w±

J

∥∥∥∥
2,±

≤ C

∥∥∥∥w±

J

∥∥∥∥
2,±

+ C

∥∥∥∥∇(δψ±e2)w±

J

∥∥∥∥
2,±

(5.16)

with
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∥∥∥∥w±

J

∥∥∥∥
2,±

≤ C
∥∥w±∥∥

2,± + C‖w±‖L∞(R2)‖∇δψ‖2,± + C‖∇w‖L4‖∇δψ,2‖L4

≤ C
∥∥w±∥∥

2,± + C‖w±‖1.25,±‖∇δψ‖2,± + C‖w‖1.5,±‖∇δψ‖1.5,±, (5.17)∥∥∥∥∇(δψ±e2)w±

J

∥∥∥∥
2,±

≤ C
∥∥w±∥∥

L∞(R2)

[
‖∇δψ‖2,±

(
1 + ‖∇δψ‖L∞(R2)

)
+
∥∥D2δψ±∥∥2

L4

]
+ C

∥∥∇δψJ−1∥∥
L∞(R2) ‖w‖2,±

≤ C ‖w‖1.25,±

[
‖∇δψ‖2,±

(
1 + ‖∇δψ‖1.25,±

)
+ ‖∇δψ‖2

1.5,±

]
+ C ‖∇δψ‖1.25,± ‖w‖2,± . (5.18)

Collecting the estimates (5.15)–(5.18), we get

|hκκ|2.5 ≤ C‖w‖2,± + C(1 + |hκκ|1.75)4
(
|hκκ|2.5 ‖w‖1.25,±

+ |hκκ|1.75 ‖w‖2,± + |hκκ|22 + |hκκ|2 ‖w‖1.5,±
)

+ C‖v‖1.25,±|hκκ|2.5.

Using (5.11), (5.12) and the smallness condition (5.7), we have that

|hκκ|2.5 ≤ C‖w‖2,± + C
(
|hκκ|1.75 ‖w‖2,± + |hκκ|22 + |hκκ|2 ‖w‖1.5,±

)
.

Consequently,

t∫
0

|hκκ|22.5 ≤ CE(t) + t(E(t))2 + Cσ2E(t). (5.19)

5.1.6. The energy estimates
Writing (4.1a) as

μw + ∇(Q + ρδψ) =
(

Id − (∇ψ)T∇ψ

J

)
μw,

differentiating with respect to x1 twice, testing the resulting equation against w′′, using 
integration-by-parts on the gradient term, and using (3.10b), we find that

‖√μw′′‖2
0,± −

∫
R

�(Q + ρδψ)′′w′′ ·N�dx1 =
∫
R2

((
Id − (∇ψ)T∇ψ

J

)
μw

)′′
w′′dx.

Using (4.1h), we see that

−
∫

�(Q + ρδψ)′′w′′ ·N�dx1 = �ρ�
2

d

dt
|hκ′′|20 ,
R
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and defining

RHS =
∫
R2

((
Id − (∇ψ)T∇ψ

J

)
μw

)′′
w′′dx ,

we have that

‖√μw′′‖2
0,± + �ρ�

2
d

dt
|hκ′′|20 = RHS ,

and we proceed to estimate RHS .
Using the Hölder inequality together with (3.11), we get that

RHS =
∫
R2

((
Id − (∇ψ)T∇ψ

J

)
μw

)′′
w′′dx

≤ C‖w′′‖2
0,±

(
‖∇δψ‖2

L∞(R2) + ‖∇δψ‖L∞(R2)

)
+ C‖w′′‖0,±

[
‖∇δψ′′‖0,±‖w‖L∞(R2)

+ ‖w′‖L4(R2)‖∇δψ′‖L4(R2)
] (

‖∇δψ‖L∞(R2) + 1
)
.

Using the Sobolev inequality, we obtain that

RHS ≤ C‖w′′‖2
0,±

(
‖∇δψ‖2

1.25,± + ‖∇δψ‖1.25,±
)

+ C‖w′′‖0,±
[
‖∇δψ‖2,±‖w‖L∞(R2) + ‖w‖2

1.5,± + ‖∇δψ‖2
1.5,±

]
× (‖∇δψ‖1.25,± + 1) .

Using the elliptic estimate (5.3), we find that

RHS ≤ C‖w‖2
2,±

(
|hκκ|21.75 + |hκκ|1.75

)
+ C‖w‖2,± [|hκκ|2.5‖w‖1.25,± + ‖w‖1,±‖w‖2,±

+ |hκκ|1.5|hκκ|2.5] (|hκκ|1.75 + 1) .

Recalling (5.11), we get that

RHS ≤ C‖w‖2
2,±|hκκ|1.75 + C‖w‖2,± [|hκκ|1.75 (|hκκ|2.5 + ‖w‖2,±) + |hκκ|1.5|hκκ|2.5]

Integrating in time and using (5.1), (5.5), (5.7) and (5.19), we obtain that

t∫
RHS ≤ Cσ

(
E(t) + t(E(t))2

)

0
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thus, we conclude that

−�ρ�
2 |hκ(t)|22 + min{μ+, μ−}

t∫
0

‖w′′‖2
0,± ≤ −�ρ�

2 |h0|22 + CσE(t) + tC(E(t))2. (5.20)

5.1.7. The Hodge decomposition elliptic estimates
Using Proposition A.4, we have that

|w2|1.5 ≤ |w′′ · e2|−0.5 ≤ C (‖w′′‖0,± + ‖ divw′′‖0,±) ≤ C‖w′′‖0,±.

Consequently, we can bound 
∫ t

0 |w2|21.5ds using (5.20). Using that u is irrotational in each 
phase, we obtain u2

,1 − u1
,2 = Aj

1v
2
,j −Aj

2v
1
,j = 0. Recalling

v = J−1∇ψ · w, i.e. vj = J−1ψj
,iw

i,

and we get

w2
,1 − w1

,2 = w2
,1 − w1

,2 −Aj
1(J−1ψ2

,iw
i),j + Aj

2(J−1ψ1
,iw

i),j
= w2

,1(1 −A1
1J

−1ψ2
,2) + w1

,2(1 −A2
2J

−1ψ1
,1)

+
∑

(i,j) 
=(1,2)

Aj
2J

−1ψ1
,iw

i
,j −

∑
(i,j) 
=(2,1)

Aj
1J

−1ψ2
,iw

i
,j

−Aj
1(J−1ψ2

,i),jwi + Aj
2(J−1ψ1

,i),jwi.

Using 1 −A1
1J

−1ψ2
,2 = 0, 1 −A2

2J
−1ψ1

,1 = δψ,2(2 + δψ,2)/(1 + δψ,2)2, A1
2 = −ψ1

,2 = 0 we 
further simplify

w2
,1 − w1

,2 = w1
,2
δψ,2(2 + δψ,2)

(1 + δψ,2)2
− δψ,1

1 + δψ,2
w1

,1 + δψ,1

1 + δψ,2
w2

,2 −
(

δψ,1

1 + δψ,2

)2

w1
,2

−Aj
1J

−1
,j ψ2

,iw
i −Aj

1J
−1δψ,ijw

i − δψ,22

(1 + δψ,2)3
w1

= w1
,2
δψ,2(2 + δψ,2)

(1 + δψ,2)2
− 2δψ,1

1 + δψ,2
w1

,1 −
(

δψ,1

1 + δψ,2

)2

w1
,2

+ 2δψ,1δψ,12w
1

(1 + δψ,2)2
− δψ,11w

1

1 + δψ,2
− δψ,22(1 + (δψ,1)2)

(1 + δψ,2)3
w1.

Due to Proposition A.1, we find that

‖J3 curlw‖1,± ≤ C‖w‖2,±‖∇δψ‖1.25,±(1 + ‖∇δψ‖1.25,±)2

+ C‖w‖2,±‖∇δψ‖2
1.25,±(1 + ‖∇δψ‖1.25,±)

+ C‖w‖1.25,±‖∇δψ‖2,±‖∇δψ‖1.25,±(1 + ‖∇δψ‖1.25,±)
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+ C‖w‖1.25,±‖∇δψ‖2,±(1 + ‖∇δψ‖1.25,±)2

≤ C‖w‖2,±‖∇δψ‖1.25,±(1 + ‖∇δψ‖1.25,±)2

+ C‖w‖1.25,±‖∇δψ‖2,±(1 + ‖∇δψ‖1.25,±)2.

From the smallness condition (5.7), we have that

1
2‖ curlw‖0,± ≤ ‖J3 curlw‖0,±,

1
2‖∇ curlw‖0,± ≤ ‖J3∇ curlw‖0,± ≤ ‖∇(J3 curlw)‖0,± + ‖∇J3 curlw‖0,± ,

and from the Sobolev embedding theorem,

‖∇J3 curlw‖2
0,± ≤ C(1 + ‖∇δψ‖1.25,±)4

∫
R

(∇δψ,2)2(curlw)2dx

≤ C(1 + ‖∇δψ‖1.25,±)4‖∇∇δψ‖2
L4‖ curlw‖2

L4

≤ C(1 + ‖∇δψ‖1.25,±)4‖∇δψ‖2
1.5,±‖w‖2

1.5,±.

We conclude that

‖ curlw‖1,± ≤ C‖w‖2,±‖∇δψ‖1.25,±(1 + ‖∇δψ‖1.25,±)2

+ C‖w‖1.25,±‖∇δψ‖2,±(1 + ‖∇δψ‖1.25,±)2

+ C(1 + ‖∇δψ‖1.25,±)4‖∇δψ‖2
1.5,±‖w‖2

1.5,±

≤ C‖w‖2,±|hκκ|1.75 + C|hκκ|2.5|hκκ|1.75 + C|hκκ|2‖w‖2
1.5,±.

Using Proposition A.2, we get

‖w‖2,± ≤ C
[
‖w‖0,± + ‖ curlw‖1,± + ‖ divw‖1,± + |w · e2|1.5

]
,

and, using (5.20), we get

t∫
0

‖w‖2
2,± ≤ C

(
−�ρ�

2 |h0|22 + CσE(t) + tC(1 + E(t) + (E(t))2)E(t)
)
. (5.21)

5.1.8. A polynomial-type inequality for the energy function E(t)
Notice that

|hκκ(t)|2 ≤ |hκ(t)|2.

Furthermore, as hκκ ∈ L2(0, Tκ; H2.5(R)) and



C.H.A. Cheng et al. / Advances in Mathematics 286 (2016) 32–104 65
|hκκ
t |1.5 ≤ |hκt|1.5 = |w2|1.5 ≤ C‖w‖2,±,

we have hκκ
t ∈ L2(0, Tκ; H1.5(R)). Consequently hκκ ∈ C(0, Tκ; H2(R)) and E(t) is a 

continuous function. Collecting the previous estimates (5.20) and (5.21) yields

E(t) ≤ C
(
−�ρ�

2 |h0|22 + σE(t) + t(1 + E(t) + (E(t))2)E(t)
)
. (5.22)

5.1.9. The uniform-in-κ time
Recall that we assume that Tκ is small enough to guarantee that E(t) ≤ z∗ for z∗ > 0

a constant (depending on the size of the initial data) that will be chosen below. We set

σ = 1
2C ,

where C is the constant appearing in (5.22). We note that C is a constant depending only 
on the constants from the Sobolev embedding theorem and the elliptic estimate (A.2). 
We can simplify (5.22) to find that

E(t) ≤ 2C|h0|22 + tP(E(t)).

This inequality implies that there exists a uniform-in-κ time, T ∗
2 (z∗, |h0|2), such that

E(t) ≤ z∗ ∀t ≤ T̄κ = min{T ∗
1 (|h0|1.75), T ∗

2 (z∗, |h0|2), Tκ} ;

see Section 9 of [22] for a proof. We set z∗ = 4C|h0|22, and recalling (5.6), we define

T ∗ = min{T ∗
1 , T

∗
2 }, T̃κ = min{T ∗(|h0|2, |h0|1.75), Tκ}.

As a consequence, we have the bounds

E(t) ≤ 4C|h0|22, |hκκ(t)|1.75 < σ, ∀t ≤ T̃κ.

Our goal now is to show that we can reach t = T ∗. To do so, we argue by contradiction. 
First, we assume that T̃κ = T ∗. Then we have a uniform-in-κ lifespan, and a bound for 
every approximate solution. As a consequence, we can pass to the limit in κ. On the 
other hand, if T̃κ = Tκ, we can extend the solution up to T̃κ + δ, for a small enough 
δ = δ(z∗). Moreover, this extended solution verifies

E(t) ≤ 4C|h0|22, |hκκ(t)|1.75 < σ, ∀0 ≤ t ≤ Tκ + δ, ∀κ.

By induction, we can reach T ∗. This concludes the existence portion of Theorem 2.1.
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5.2. Passing to the limit as κ → 0

Once we have the uniform bound

max
0≤s≤t

{|hκ(s)|22} +
t∫

0

|hκκ(s)|22.5 + ‖w(s)‖2
2,±ds ≤ C,

we obtain the existence of weak limits

h ∈ L∞(0, T ∗;H2(R)) ∩ L2(0, T ∗;H2.5(R)),

ht ∈ L∞(0, T ∗;H1(R)) ∩ L2(0, T ∗;H1.5(R)),

w ∈ L∞(0, T ∗;H1.5(R2
±)) ∩ L2(0, T ∗;H2(R2

±)),

∇Q ∈ L∞(0, T ∗;H1.5(R2
±)).

Using the Rellich–Kondrachov compactness theorem, we can prove that (h, w, Q) is a 
distributional solution to (3.10).

5.3. The uniqueness of the solution

To prove uniqueness of solutions, we use the energy method. We assume that there 
exists two solutions, h1 and h2, corresponding to the same initial data h0. Furthermore, 
we have that the corresponding higher-order energy functions E1(t) and E2(t), defined 
in (5.1), are uniformly bounded:

E1(t) + E2(t) ≤ 2z∗, ∀0 ≤ t ≤ T ∗.

We consider the new higher-order energy function

E(t) = max
0≤s≤t

{|h(s)|22} +
t∫

0

‖w(s)‖2
2,±ds,

where we denote the difference of both solutions using a bar:

h = h1 − h2, δψ = δψ1 − δψ2 and w = w1 − w2.

We have that

E(t) ≤ E1(t) + E2(t) ≤ 2z∗, ∀0 ≤ t ≤ T ∗.

The difference verifies the following system 
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μw̄ + ∇(Q̄ + ρδ̄ψ) =
(

Id − (∇ψ1)T∇ψ1

J1

)
μw1

−
(

Id − (∇ψ2)T∇ψ2

J2

)
μw2 in {x2 �= 0} , (5.23a)

div w̄ = 0 in {x2 �= 0} , (5.23b)

�w̄2� = �Q̄� = 0 on {x2 = 0} , (5.23c)

Δδ̄ψ
± = 0 in R2

± , (5.23d)

δ̄ψ
± = h̄ on {x2 = 0} , (5.23e)

h̄t = w̄ · e2 on {x2 = 0} , (5.23f)

h̄ = 0 on R× {t = 0} . (5.23g)

Recalling the equation for the evolution of the interface, we have that

|h̄(t)|1.5 ≤
√
tC

√
Ē(t) ≤

√
tC

√
2z∗, |h̄(t)|1.75 ≤ C

4
√
t

√
Ē(t) ≤ C

4
√
t
√

2z∗, (5.24)

μ−1ΔQ̄ = μ−1 div
[
(Id − J1A1A

T
1 )∇(Q1 + ρδψ1) − (Id − J2A2A

T
2 )∇(Q2 + ρδψ2)

]
with jump conditions �Q̄� = 0 and

�
μ−1 ∂Q̄

∂N
� = �μ−1(Id − J1A1A

T
1 )(∇Q1)e2� − �μ−1ρJ1(A1)2i (A1)ji δψ1,j �

− �μ−1(Id − J2A2A
T
2 )(∇Q2)e2� + �μ−1ρJ2(A2)2i (A2)ji δψ2,j �.

Using that

Id − JAAT =
[

δψ,2 −δψ,1

−δψ,1
δψ2

,1
1+δψ,2

+ δψ,2

]
,

elliptic estimates show that

‖∇Q̄‖1.25,± ≤ C [ ‖Id − J1A1A
T
1 ‖1.25,±

(
‖∇Q̄‖1.25,± + ‖∇δ̄ψ‖1.25,±

)
+ ‖∇(Q2 + ρδψ2)‖1.25,±‖∇δ̄ψ‖1.25,±

+ ‖J̄A‖1.25,±‖∇δψ1‖1.25,±(‖A1 − Id‖1.25,± + 1)

+ (‖J2A2 − Id‖1.25,± + 1)‖∇δ̄ψ‖1.25,±(‖A1 − Id‖1.25,± + 1)

+ (‖J2A2 − Id‖1.25,± + 1)‖∇δψ2‖1.25,±‖Ā‖1.25,± ]

≤ C|h1|1.75
(
‖∇Q̄‖1.25,± + |h̄|1.75

)
+ C|h2|1.75|h̄|1.75

+ C|h̄|1.75|h1|1.75(|h1|1.75 + 1) + C(|h2|1.75 + 1)|h̄‖1.75(|h1|1.75 + 1)

+ C(|h2|1.75 + 1)|h2|1.75|h̄|1.75,
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and, using the smallness condition (5.7),

‖∇Q̄‖1.25,± ≤ C|h̄|1.75.

Similarly, we find that

‖∇Q̄‖1.5,± ≤ C
[
‖Id − J1A1A

T
1 ‖1.5,±

(
‖∇Q̄‖1.25,± + ‖∇δ̄ψ‖1.25,±

)
+ ‖∇(Q2 + ρδψ2)‖1.25,±‖∇δ̄ψ‖1.5,±

+ ‖∇(Q2 + ρδψ2)‖1.5,±‖∇δ̄ψ‖1.25,±

+ ‖J̄A‖1.5,±‖∇δψ1‖1.25,±(‖A1 − Id‖1.25,± + 1)

+ (‖J2A2 − Id‖1.25,± + 1)‖∇δ̄ψ‖1.5,±(‖A1 − Id‖1.25,± + 1)

+ (‖J2A2 − Id‖1.25,± + 1)‖∇δψ2‖1.25,± ‖Ā‖1.5,±
]

≤ C(|h1|2 + |h2|2)|h̄|1.75 + C(|h1|1.75 + |h2|1.75 + 1)|h̄|2 ,

so we conclude that

‖∇Q̄‖1.25,± + ‖w̄‖1.25,± ≤ C
4
√
t.

‖∇Q̄‖1.5,± + ‖w̄‖1.5,± ≤ C
4
√
t + C|h̄|2. (5.25)

Next, as we have that

v̄ = ∇δ̄ψw1

J1
+ ∇ψ2w̄

J2
+ ∇ψ2w1

−J̄

J1J2
,

and

|v̄|1.5 ≤ cσ‖∇δ̄ψ‖2,± + C‖w̄‖2,±. ,

using (5.14), we compute that

t∫
0

|h̄(s)|22.5ds ≤ P(Ē(t)). (5.26)

Recalling (3.11) and for i = 1 or 2, denoting the matrix Bi by

Bi =
(

δψi,2 − δψ2
i,1 −δψi,1(1 + δψi,2)

−δψi,1(1 + δψi,2) δψi,2(1 + δψi,2)

)
,

we write the right-hand side in (5.23a) as
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RHS = B1
μw̄

J1
+ B1

−μw2J̄

J2J1
+ (B1 −B2)

μw2

J2
.

Testing against w̄ and integrating-by-parts in (5.23a), we get that

|h̄(t)|20 + min{μ+, μ−}
t∫

0

‖w̄(s)‖2
0,±ds

≤ Cz∗

⎡⎣ t∫
0

‖w̄(s)‖2
0,±ds +

t∫
0

‖w̄(s)‖0,±‖∇δ̄ψ(s)‖0,±ds

⎤⎦ ≤ Cz∗P(Ē(t))t. (5.27)

The energy estimates show that

min{μ+, μ−}
t∫

0

‖w̄′′(s)‖2
0,± − �ρ�

2
d

dt
|h̄(s)|22ds

=
t∫

0

∫
R2

RHS ′′w̄′′dxds ≤ C(
√
t + 4

√
t)P(Ē(t)) , (5.28)

and once again using the Hodge decomposition, we find that

t∫
0

‖w̄(s)‖2
2,±ds ≤ C(t +

√
t + 4

√
t)P(Ē(t)). (5.29)

Collecting the previous estimates (5.24)–(5.29) and using the smallness of σ, we get the 
following polynomial inequality

Ē(t) ≤ (t +
√
t + 4

√
t)P(Ē(t)),

which implies the uniqueness. This concludes the proof of Theorem 2.1 for an infinitely-
deep domain.

6. Proof of Theorem 2.1: local well-posedness for the confined case

We define our reference domains

Ω+ = {(x1, x2), x1 ∈ R (or x1 ∈ T), 0 < x2 < ct},
Ω− = {(x1, x2), x1 ∈ R (or x1 ∈ T), cb < x2 < 0},

and the reference interface

Γ = {(x1, x2), x1 ∈ R (or x1 ∈ T), x2 = 0}.
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We denote by

Γbot = {(x1, x2), x2 = cb}, Γtop = {(x1, x2), x2 = ct},

the fixed bottom and top boundaries.
We consider δψ± as the solution of

Δδψ+ = 0, δψ+ = h if x2 ∈ Γ, δψ+ = t̃(x) if x2 ∈ Γtop,

and

Δδψ− = 0, δψ− = h if x2 ∈ Γ, δψ− = b̃(x) if x2 ∈ Γbot .

We define the mapping ψ± = e + (0, δψ±). In particular,

ψ±(Γ, t) = (x1, h(x1, t)), ψ+(Γtop, t) = (x1, t(x1)), ψ−(Γbot , t) = (x1, b(x1)),

so

ψ : Ω± �→ Ω±(t).

Using estimates similar to those in (3.3), ψ is a diffeomorphism if h, ̃t, ̃b are small in the 
H1.75 norm. We define v = u ◦ ψ, q = p ◦ ψ, A = (∇ψ)−1, J = det(∇ψ), wk = JAk

i v
i

and Q = q + ρx2. We write

nb = (b̃′(x1),−1)√
1 + (b̃′(x))2

and nt = (t̃′(x1), 1)√
1 + (t̃′(x))2

for the normal vectors at t(x) and b(x), respectively. Then, we have the boundary con-
ditions

u · nb = 0 at (x1, x2) ∈ {(x1, b(x1))}, u · nt = 0 at (x1, x2) ∈ {(x1, t(x1))},

which translate to

v · nb = 0 at Γbot , v · nt = 0 at Γtop.

Since JAT e2 = (−ψ2
,1, ψ

1
1), then

JAT e2 = (−b̃′(x1), 1) at Γbot , JA
T e2 = (−t̃′(x1), 1) at Γtop.

Using this, we can write the following boundary conditions for the semi-ALE velocity
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v · (−nb) = v · (JAT e2) = (JAv) · e2 = w · e2 = 0 at Γbot ,

v · nt = v · (JAT e2) = (JAv) · e2 = w · e2 = 0 at Γtop.

As in Section 3.2, we obtain 

μw + ∇(Q + ρδψ) =
(

Id − (∇ψ)T∇ψ

J

)
μw in {x2 �= 0} , (6.1a)

divw = 0 in {x2 �= 0} , (6.1b)

�w2� = �Q� = 0 on {x2 = 0} , (6.1c)

w2 = 0 on {x2 = cb, ct} , (6.1d)

Δδψ± = 0 in Ω±
± , (6.1e)

δψ± = h on {x2 = 0} , (6.1f)

δψ+ = t̃ on {x2 = ct} , (6.1g)

δψ− = b̃ on {x2 = cb} , (6.1h)

ht = w · e2 on {x2 = 0} , (6.1i)

h = h0 on R× {t = 0} . (6.1j)

Multiplying (6.1a) with e2 and evaluating at Γtop, we obtain that

Q2
,2 = −ρ+δψ,2 − μ+w1t̃

′ ,

and similarly at Γbot ,

Q2
,2 = −ρ−δψ,2 − μ−w1b̃

′.

Given |h0|1.75 < σ � 1 and |t̃|2, |b̃|2 ≤ σ̃ � 1, we can regularize the problem as in 
(4.5a)–(4.5f) and we get an approximate solution (wκ, Qκ, hκ) that exists up to time 
Tκ > 0. This solution has a finite energy, E(t), as defined in (5.1). We take Tκ small 
enough so E(t) ≤ z∗ (for a constant that will be chosen later).

With the boundary conditions for Q, we can form the associated elliptic problem as 
in Section 5.1.3 and we get the following bounds (analogous to (5.8), (5.9)):

‖∇Q‖1.25,± ≤ c|h|1.75 + c‖w‖1.25,±(|t̃|1.75 + |b̃|1.75),

and

‖∇Q‖1.5,± ≤ c|h|1.75|h|2 + c‖w‖1.5,±(|t̃|2 + |b̃|2) + c|h|2.
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In particular, using the elliptic estimates for the pressure Q, we have that

‖w‖1.5,± ≤ C|h|2, ‖w‖1.25,± ≤ C|h|1.75,

where we have used the smallness of σ̃ to obtain the desired polynomial bounds. The 
bound h ∈ L2(0, Tκ; H2.5(Γ)) is obtained in the same way as in the proof of Theorem 2.1. 
Using the boundary condition w±

2 = 0 and x2 = ct, cb, the new terms coming from the 
boundaries in the energy estimates vanishes and we obtain the inequality

E(t) ≤ C|h0|22 + Cσ1E(t) + tP(E(t)),

which, since σ1 � 1, implies the existence of a uniform-in-κ T ∗ such that

E(t) ≤ z∗, |h(t)|1.75 < σ1 ∀ 0 ≤ t ≤ min{Tκ, T
∗}.

We reach T ∗ by induction. The uniqueness is obtained in the same way. This proves 
Theorem 2.1.

7. Proof of Theorem 2.2: global existence and decay to equilibrium

Recall that in this case we have Ω+(t) ∪ Ω−(t) = T × R.

7.1. A linearization of (3.9)

We denote by f̂ the Fourier series of f . We write Λ for the square root of the Laplacian:

Λf =
√
−∂2

xf, Λ̂f(ξ) = |ξ|f̂(ξ).

It is well-known that the previous operator has a kernel representation

Λf(x1) = 1
2π p.v.

π∫
−π

f(x1) − f(x1 − s)
sin2 ( s

2
) ds.

From (3.1) and δψ−(x1, x2) = δψ+(x1, −x2), we have that

δψ±,2 = ∓Λh on {x2 = 0} ,

so that the Dirichlet-to-Neumann map is the Zygmund operator.
We define the Neumann-to-Dirichlet map Λ−1 by

Λ̂−1f(ξ) = |ξ|−1f̂(ξ).

Notice that if f has zero mean, the previous operator is well-defined.
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Equation (3.10a) may be written as

μw + ∇(Q + ρδψ) = F

with

F = (F1, F2) =
(

Id − (∇ψ)T∇ψ

J

)
μw.

By taking the inner product of this equation with e2, and then evaluating on {x2 = 0}, 
we find that

μ±ht + Q±
,2 + ρ±δψ±

,2 = F±
2 , (7.1)

where

F±
2 = −(μ±w±

1 h′ + μ±w2(∓Λh)) .

Summing over the two phases,

F+
2 + F−

2 = −(μ+w+
1 + μ−w−

1 )h′ − �μ�Λhw2.

On the other hand, taking the divergence of the equation (3.10a), we get

ΔQ = divF.

The continuity of q gives us the jump condition �Q� = 0. Using equations (3.10a) and 
(3.11),

�Q,2� =
(
ρ+ + ρ−

)
Λh− �μ�ht + �F2�, with �F2� = −(�μw1�h′ − (μ+ + μ−)w2Λh).

We define Q̄± such that

ΔQ̄± = 0 in R2
± ,

Q̄± = −ρ+ + ρ−

2 h + �μ�
2 Λ−1ht on {x2 = 0} .

Then,

Q̄±
,2 = ±ρ+ + ρ−

2 Λh∓ �μ�
2 ht, on {x2 = 0}.

Consequently, �Q̄� = 0 and �Q̄±
,2� = (ρ+ + ρ−)Λh − �μ�ht. Setting Q̃ = Q − Q̄, then Q̃

is a solution of
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ΔQ̃ = divF, (7.2)

with the jump conditions

�Q̃� = 0 and �Q̃,2� = �F2�. (7.3)

As a consequence, equation (7.1) becomes

μ±ht ∓
�μ�
2 ht ∓ ρ±Λh± ρ+ + ρ−

2 Λh = F±
2 − Q̃±

,2.

Summing the equations for both phases, we obtain

μ+ + μ−

2 ht = �ρ�
2 Λh +

F+
2 + F−

2 − Q̃+
,2 − Q̃−

,2

2 . (7.4)

7.2. Energy estimates for the total norm

For notational simplicity, we set �ρ� = −2 and μ+ + μ− = 2, but in what follows, 
any finite values are permissible. Using the Duhamel Principle on (7.4), we write the 
so-called mild solution as

h(t) = h0e
−Λt +

t∫
0

(
F+

2 (s) + F−
2 (s) − Q̃+

,2(s) − Q̃−
,2(s)

2

)
e−Λ(t−s)ds . (7.5)

Note, that in this analysis, we are restricting our attention to zero mean, periodic func-
tions. As to the linear semi-group, it is well-known that

‖e−Λt‖L2 �→L2 ≤ e−t , (7.6)

since the first eigenvalue of Λ agrees with the first eigenvalue of −Δ.
Let σ2 denote a constant that will be fixed later. We choose h0 ∈ H2 such that 

|h0|2 ≤ σ2 � 1. Using Theorem 2.1, there exists a local in time solution up to time 
T = T (h0). Moreover, this solution remains in the Rayleigh–Taylor stable regime and 
satisfies

max
0≤t≤T

|h(t)|22 +
t∫

0

|h(s)|22.5ds ≤ C1|h0|22,

and

max |h(t)|1.75 < σ0.25 � 1, (7.7)

0≤t≤T
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where C1 and σ0.25 are the constants appearing in Theorem 2.1. We define the new total 
norm as

‖|(w, h)‖|2T = max
0≤t≤T

⎧⎨⎩|h(t)|22 + eαt|h(t)|20 +
t∫

0

‖w(s)‖2
2,±ds

⎫⎬⎭ , (7.8)

for a given 0 < α < 2. Hence, a uniform bound for ‖ |(w, h)‖ |T for every t > 0 implies the 
e−αt/2 decay-rate for |h(t)|0.

Just as we obtained the H2.5 estimate for hκκ in (5.15), we have the following estimate:

|h′′|0.5 ≤ C(1 + |h|31.75)
(∣∣v+∣∣

1.5 +
∣∣v−∣∣1.5)+ C|h′′|0.5|v · (−h′, 1)|0.75 . (7.9)

Using the estimates (5.11), (5.12), (5.16)–(5.18) together with (7.7), we obtain that

t∫
0

|h(s)|22.5ds ≤ C

⎛⎝ t∫
0

‖w(s)‖2
2,±ds +

t∫
0

|h|42ds +
t∫

0

|h(s)|22 ‖w(s)‖2
1.5,±ds

⎞⎠ .

Using the interpolation inequality |h|22 ≤ C|h|1.5|h|2.5, together with (7.7), we find that

t∫
0

|h(s)|22.5ds ≤ C‖|(w, h)‖|2
(
1 + ‖|(w, h)‖|2

)
.

Our goal is to show that eαt|h(t)|20 remains small for all time. To do so, we take the 
L2(Γ)-norm of equation (7.5), and find that

|h(t)|0 ≤ e−t|h0|0 + 1
2

t∫
0

|F+
2 (s) + F−

2 (s) − Q̃+
,2(s) − Q̃−

,2(s)|0e−(t−s)ds. (7.10)

We define

I1 = 1
2

t∫
0

|F+
2 (s) + F−

2 (s)|0e−(t−s)ds, (7.11)

I2 = 1
2

t∫
0

|Q̃+
,2(s) + Q̃−

,2(s)|0e−(t−s)ds. (7.12)

We are going to use the linear decay rate (7.6) to establish the nonlinear decay rate for 
small solutions. This will amount to establishing certain integrability properties of the 
nonlinear term (7.10).

Notice now that, using (7.2) and (7.3), we have the bound



76 C.H.A. Cheng et al. / Advances in Mathematics 286 (2016) 32–104
‖∇Q̃‖0,± ≤ C‖F‖0,±.

Given φ ∈ H1(R2), we compute∫
{x2=0}

Q̃,2φdx1 =
∫

Ω±

∇Q̃∇φdx−
∫

Ω±

F∇φ +
∫

{x2=0}

F ·Nφdx1,

so

|Q̃,2|−0.5 ≤ C(‖F‖0,± + |F2|−0.5).

By elliptic estimates and the trace theorem,

|Q̃,2|0.5 ≤ C(‖F‖1,± + |F2|0.5).

Thus, using interpolation,

|Q̃,2|0 ≤ C(‖F‖0.5,± + |F2|0).

Using the Hölder inequality and the boundedness of the Hilbert transform in Lp for 
1 < p < ∞, we have that

|F+
2 (s) + F−

2 (s)|0 ≤ C|w|L4 |h′|L4 .

Due to the Sobolev embedding theorem, the trace theorem and elliptic estimates, we 
have that

|w|L4 |h′|L4 ≤ C|w|0.25|h|1.25 ≤ C‖w‖0.75,±|h|1.25 ≤ C|h|21.25.

In particular,

|F+
2 (s) + F−

2 (s)|0 ≤ C|h|0|h|2.5.

Using (7.11), we find that

I1 ≤ C‖|(w, h)‖|0.5T

t∫
0

(eαs)−0.5|h(s)|2.5e−(t−s)ds

≤ C(1 + ‖|(w, h)‖|2T )0.5‖|(w, h)‖|1.5T e−t

⎛⎝ t∫
0

e(2−α)sds

⎞⎠0.5

≤ C√ (1 + ‖|(w, h)‖|2T )0.5‖|(w, h)‖|1.5T e−t
(
e(2−α)t − 1

)0.5
. (7.13)
2 − α
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The remaining terms (7.12) are written as

I2 ≤ 1
2

t∫
0

(‖F‖0.5,± + |F+
2 (s)| + |F−

2 (s)|0)e−(t−s)ds

The terms with |F+
2 (s)| + |F−

2 (s)|0 are similar to those with |F+
2 (s) + F−

2 (s)|0. Using 
(3.11) and elliptic estimates, we have that

‖F‖0,± ≤ C‖w‖L4‖∇δψ‖L4

≤ C‖w‖0.5,±‖∇δψ‖0.5,±

≤ C|h|1|h|1, (7.14)

and, using (5.11),

‖∇F‖0,± ≤ C
(
‖∇w‖L4‖∇δψ‖L4 + ‖w‖L4‖∇2δψ‖L4

)
≤ C (‖w‖1.5,±‖∇δψ‖0.5,± + ‖w‖0.5,±‖∇δψ‖1.5,±)

≤ C|h|1|h|2. (7.15)

Due to linear interpolation between (7.14) and (7.15), we have

‖F‖0.5,± ≤ C|h|1|h|1.5 ≤ C|h|0|h|2.5. (7.16)

Collecting the estimates (7.13) and (7.16),

1
2

t∫
0

|F+
2 (s)+F−

2 (s)−Q̃+
,2(s)−Q̃−

,2(s)|0e−(t−s)ds ≤ (1+‖|(w, h)‖|2T )0.5‖|(w, h)‖|1.5T e−αt/2,

and

eαt|h(t)|20 ≤ 2
(
e(α−2)t|h0|20 + C

(
1 + ‖|(w, h)‖|2T

)
‖|(w, h)‖|3T

)
≤ 2|h0|20 +

(
1 + ‖|(w, h)‖|2T

)
‖|(w, h)‖|3T .

Now we have to estimate the terms

max
0≤t≤T

|h(t)|22 +
t∫

0

‖w(s)‖2
2,±ds.

Using the same type of estimates as in Sections 5.1.3, 5.1.6 and 5.1.7, we get the inequality

‖|(w, h)‖|T ≤ C2|h0|2 + P(‖|(w, h)‖|T ),
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where the polynomial P has order m with m > 1. Now, by choosing the initial data to 
be sufficiently small, we have a global bound

‖|(w, h)‖|T ≤ 2C2|h0|2 ≤ 2C2σ2.

Furthermore, using interpolation between Sobolev spaces, we have

sup
0≤t≤T

|h(t)|21.75 ≤ 2C2σ2e
−αt

8 .

We take σ2 small enough so that

2C2σ2 < σ0.25,

and we obtain that the smallness of |h|1.75 propagates.
Consequently, at time t = T , the solution remains in the stable regime (see Sec-

tion 5.1.4), and the condition (7.7) is, in fact, improved. Due to this fact, we can apply 
Theorem 2.1 to continue the solution up to t = 2T . As the same estimates hold in the 
time interval nT ≤ t ≤ (n + 1)T for n ∈ Z+, we conclude the proof of Theorem 2.2 by 
means of a classical continuation argument.

8. Proof of Theorem 2.4: local well-posedness for the one-phase problem

We now focus our attention on the one-phase Muskat problem (1.6a)–(1.6e).

8.1. Constructing the family of diffeomorphisms ψ(·, t)

We define our reference domain, fixed bottom boundary, and reference interface, re-
spectively, as follows:

Ω = T× [cb, 0] , Γbot = {(x1, cb), x1 ∈ T} , and Γ = {(x1, 0), x1 ∈ T}. (8.1)

In particular, our reference domain is C∞. We let N = e2 denote the unit normal vector 
on Γ. Given a function h ∈ C(0, T ; H2) with initial data h(0) = h0, we fix 0 < δ � 1
and define

Ωδ(0) = {(x1, x2), x1 ∈ T, cb < x2 < Jδh0(x1)}, (8.2)

Γδ(0) = {(x1,Jδh0(x1)), x1 ∈ T}, (8.3)

and

φ1(x1, x2) =
(
x1, x2 + Jδh0(x1)

(
1 − x2

))
. (8.4)
cb
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This function φ1 : Ω → Ωδ(0) is a C∞ diffeomorphism.
Next, we define the function φ2 : Ωδ(0) → Ω(0) as the solution to the following elliptic 

problem: 

Δφ2 = 0 in Ωδ(0) × [0, T ] , (8.5a)

φ2 = e + [h0(x1) − Jδh0(x1)]e2 on Γδ(0) × [0, T ] , (8.5b)

φ2 = e on Γbot × [0, T ] . (8.5c)

Since Ωδ(0) is a C∞ domain, standard elliptic regularity theory shows that φ2 ∈
H2.5(Ωδ(0)), and since for δ > 0 taken sufficiently small, |h0 − Jδh0|2 � 1, ‖∇φ2 −
Id‖C0 � 1; hence, from the inverse function theorem, φ2 : Ωδ(0) → Ω(0) is an H2.5-class 
diffeomorphism.

We define

ψ(0) = φ2 ◦ φ1 : Ω → Ω(0). (8.6)

This mapping is also a diffeomorphism that maps

ψ(0) : Γ → Γ(0)

Furthermore, using the chain rule, we have that

‖ψ(0)‖2,− ≤ c(δ)|h0|1.5, ‖ψ(0)‖3,− ≤ c(δ)|h0|2.5.

Using interpolation, we obtain

‖ψ(0)‖2.5,− ≤ c(δ)|h0|2. (8.7)

(We note that δ > 0 is fixed number, so the dependence of the constant in (8.7) on δ
is harmless.) We have thus defined our initial diffeomorphism ψ(0); we next define our 
time-dependent family of diffeomorphisms ψ(t) = ψ(·, t) as follows: 

Δψ(t) = Δψ(0) in Ω × [0, T ] , (8.8a)

ψ(t) = e + h(x1, t)e2 on Γ × [0, T ] , (8.8b)

ψ(t) = e on Γbot × [0, T ] . (8.8c)

Writing J(t) = det(∇ψ(t)), we have the bounds

‖J(t) − J(0)‖1.25,− ≤ C‖ψ(t) − ψ(0)‖2
2.25,− ≤ C|h(t) − h0|21.75. (8.9)

Consequently, using h ∈ C(0, T ; H2), for sufficiently small time t, we have
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min
x∈Ω−

J(0)
2 < J(t) < 2 max

x∈Ω−
J(0),

and we once again see that ψ(t) : Ω → Ω(t) is a diffeomorphism. Furthermore, ψ(t) is a 
H2.5-class diffeomorphism thanks to the elliptic estimate

‖ψ(t)‖2.5,− ≤ c(|h(t)|2 + 1).

8.2. The ALE formulation

With ψ(t) = ψ(·, t) defined in Section 8.1 (see (8.6) and (8.8)), we set A = (∇ψ)−1

and J = det∇ψ. As we noted above, ψ(t, Γ) = Γ(t). We define our ALE variables: 
v = u ◦ ψ, q = p ◦ ψ.

We let

τ̃ = (1, h′(x1, t)), ñ = (−h′(x1, t), 1),

denote the (non-unitary) tangent and normal vectors, respectively, to Γ(t). We let g =
|ψ′|2 denote the induced metric, and define the unit tangent vector τ = τ̃ /

√
g and the 

unit normal vector n = ñ/
√
g. Since the interface Γ(t) moves with the fluid,

v · ñ = ψt · ñ = htN · ñ = ht.

Hence, the ALE representation of the one-phase Muskat problem is given as 

vi + Ak
i (q + ψ2),k = 0 in Ω × [0, T ] , (8.10a)

Ai
jv

j
,i = 0 in Ω × [0, T ] , (8.10b)

h(t) = h0 +
t∫

0

viñids on Γ × [0, T ] , (8.10c)

q = 0 on Γ × [0, T ] , (8.10d)

v · e2 = 0 on Γbot × [0, T ] . (8.10e)

8.2.1. The matrix A
From the identity A∇ψ = Id, we see that

At = −A∇ψtA, A,k = −A∇ψ,kA, A′′ = −2A′∇ψ′A−A∇ψ′′A. (8.11)

These identities will be often used.
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8.3. A smooth approximation of the ALE formulation

Given an initial data h0 ∈ H2 and two regularization parameters ε, κ > 0, we define 
a smooth approximation of the initial height function Jεh0. We write hε,κ(x1, t) for the 
free boundary corresponding to the initial data Jεh0.

We define

Ωδ,ε(0) = {(x1, x2), x1 ∈ T, cb < x2 < JδJεh0(x1)},

Γδ,ε(0) = {(x1,JδJεh0(x1)), x1 ∈ T},

and

φε,κ
1 (x1, x2) =

(
x1, x2 + JδJεh0(x1)

(
1 − x2

cb

))
. (8.12)

We construct φε,κ
2 by solving 

Δφε,κ
2 = 0 on Ωδ,ε(0) × [0, Tε,κ] , (8.13a)

φε,κ
2 (t) = e + [JκJκJεh0(x1) − JδJεh0(x1)]e2 on Γ × [0, Tε,κ] , (8.13b)

φε,κ
2 = e on Γbot × [0, Tε,κ] . (8.13c)

We can use Proposition 4.1 together with (8.12) and (8.13) to construct solutions to 
the approximate εκ-problem on a time interval [0, Tε,κ]:

viε,κ + (Aε,κ)ki (qε,κ + ψ2
ε,κ),k = 0 in Ω × [0, Tε,κ] ,

(8.14a)

(Aε,κ)ij(vε,κ)j,i = 0 in Ω × [0, Tε,κ] ,

(8.14b)

hε,κ(t) = Jεh0 +
t∫

0

viε,κJε,κ(Aε,κ)kiNkds on Γ × [0, Tε,κ] ,

(8.14c)

qε,κ = 0 on Γ × [0, Tε,κ] ,

(8.14d)

vε,κ · e2 = 0 on Γbot × [0, Tε,κ] ,

(8.14e)

ψε,κ = φε,κ
2 ◦ φε,κ

1 in Ω × {t = 0} ,

(8.14f)
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Δψε,κ(t) = Δψε,κ(0) in Ω × [0, Tε,κ] ,

(8.14g)

ψε,κ(t) = e + JκJκhε,κ(t)N on Γ × [0, Tε,κ] ,

(8.14h)

ψε,κ(t) = e on Γbot × [0, Tε,κ] ,

(8.14i)

where

Aε,κ = [∇ψε,κ]−1 and Jε,κ = det∇ψε,κ .

Having solutions to (8.14), we focus on obtaining the uniform (in ε and κ) lifespan. 
We are going to perform the estimates in a two step procedure. First, we focus on 
κ-independent estimates (that may depend on ε), and then we focus on ε-independent 
estimates.

To simplify notation, we drop the ε and κ notation except when it is computationally 
used, but note that our dependent variables implicitly depend upon ε and κ.

8.4. κ-independent estimates

Abusing notation, we redefine

τ̃ = (1,JκJκh
′(x1, t)), ñ = (−JκJκh

′(x1, t), 1).

We define the higher-order energy function to be

E(t) = max
0≤s≤t

|hκ(s)|22 +
t∫

0

‖v(s)‖2
2,−ds.

The solutions to (8.13) have sufficient regularity to ensure that our higher-order energy 
function E(t) is continuous. We take Tε,κ small enough to ensure that the following four 
conditions hold:

(1) for a fixed constant δ1 > 0 that only depends on h0,

‖A(t) −A(0)‖L∞ ≤ δ1 � 1 ; (8.15)

(2) E(t) ≤ z∗ for a fixed constant z∗ (that will be chosen below) ;
(3) min0≤t≤Tκ

−q,2(t) > − q,2(0) ;
2
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(4) with cb given in (8.1),

min
x1

h(x1, t) > cb . (8.16)

Again, we let C denote a constant that may change from line to line. This constant may 
depend on h0 and ε, but not on κ. We let P(x) denote a polynomial with coefficients 
that may depend on h0 and ε, but, again, they do not depend on κ. This polynomial 
may change from line to line.

Our goal is to prove the following polynomial estimate for the energy:

E(t) ≤ M0 + 12
√
tQ(E(t)),

for a certain constant M0 and polynomial Q. We choose Tε,κ ≤ min{1, T ∗
1 } with T ∗

1 such 
that

Q(z∗) (T ∗
1 )1/12 ≤ δ2 � 1,

for δ2 a fixed constant satisfying 0 < δ2 < δ1 � 1.

8.4.1. Estimates for some lower-order norms of hκ

From (8.14c),

t∫
0

|ht|21.5ds ≤ C E(t). (8.17)

Using (8.17) together with the fundamental theorem of calculus, we have that

|h(t) − Jεh0|1.5 ≤
√
t

⎛⎝ t∫
0

|ht|21.5ds

⎞⎠1/2

≤ C
√
t
√

E(t) (8.18)

Now,

|hκ(t) − Jεh
κ
0 |1.75 ≤ C|h(t) − Jεh0|1/21.5 |hκ(t) − Jεh

κ
0 |

1/2
2 ≤ C

√
E(t)t1/4, (8.19)

and

|hκ(t)|1.75 ≤ C|h0|1.75.

Notice that, by taking a small enough time and using (8.18), we recover our bootstrap
assumption (8.16).
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8.4.2. Some estimates for the mapping ψ
We consider here the regularity properties of the mapping ψ given in (8.14e)–(8.14h). 

We have the following estimates

‖ψ(0)‖2,− ≤ C(δ)|h0|1.5, ‖ψ(0)‖2.5,− ≤ C(δ)|h0|2, ‖ψ(0)‖3,− ≤ C(δ)|h0|2.5,

and, using elliptic estimates, (8.9), and (8.19),

‖ψ(t) − ψ(0)‖2.25,− ≤ C|ψ(t) − ψ(0)|1.75 ≤ C|h(t) − h(0)|1.75 ≤ 4
√
tC
√

E(t), (8.20)

‖J(t) − J(0)‖1.25,− ≤ 4
√
tC
√

E(t). (8.21)

By taking a small enough time, we can obtain the uniform bounds

max
0≤t≤Tε,κ

‖J(t)‖1.25,− + ‖ψ(t)‖2.25,− ≤ C, min
0≤t≤Tε,κ

min
x∈Ω

J(t) ≥ C. (8.22)

Using elliptic estimates as in Section 8.1, we have

‖ψ(t)‖2.5,− ≤ C(|h(t)|2 + 1), ‖ψ(t)‖3,− ≤ C(|h(t)|2.5 + 1) (8.23)

Furthermore,

‖A(t) −A(0)‖2
1,− ≤ tE(t) , (8.24)

and using interpolation once again, we have that

‖A(t) −A(0)‖2
1.25,− ≤ C‖A(t) −A(0)‖1,−‖A(t) −A(0)‖1.5,− ≤

√
tC
√

E(t) , (8.25)

‖A(t) −A(0)‖2
1.375,− ≤ 4

√
tC
√
E(t) . (8.26)

In particular, by taking a small enough time, our previous bootstrap assumption (8.15)
is strengthened. Furthermore, using (8.26),

‖A(t)‖1.375,− ≤ C.

8.4.3. Some estimates for lower-order norms of v
Just as in Section 5.1.2, we have the following L2 energy law:

|Jκh(t)|20 + 2
t∫

0

‖v(s)‖2
0ds = |JκJεh0|20 ,

from which it follows that

2
t∫

0

‖v(s)‖2
0,−ds ≤ |h0|20. (8.27)
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8.4.4. The estimates for the pressure
The elliptic problem for q is

−(JAi
jA

k
j q,k),i = 0 in Ω ,

q = 0 on Γ ,

q,k JA
k
jA

i
jNi = 1 on Γbot ,

where we recall that on Γ, N = e2 while on Γbot , N = −e2.
We have that A0A

T
0 is symmetric and positive semi-definite: [A0A

T
0 ]ijξiξj ≥ L|ξ|2; 

consequently, due to (8.26),

‖A0A
T
0 −A(t)AT (t)‖L∞ ≤ C

√
t
√
E(t) ,

and we see that for t sufficiently small,

L
2 |ξ|2 ≤ [A(·, t)AT (·, t)]ijξiξj ≤ 2L|ξ|2.

We have that

C‖∇q‖2
0,− ≤

∫
Ω

JAi
jA

k
j q,kq,idx =

∫
Γbot

qds.

In particular, due to Poincaré inequality, there exists a universal constant such that

‖q‖1,− ≤ C.

Elliptic estimates (see Lemma A.6) together with (8.25) show that

‖q‖2.25,− ≤ C‖∇q‖L∞(Ω−) ≤ C‖q‖2.125,

and then, using interpolation and Young’s inequality, we find the bound

‖q‖2.25,− ≤ C. (8.28)

Thus, once again, elliptic estimates show that

‖q‖2.5,− ≤ C
(
1 + ‖A(t)‖1.5,−)‖∇q‖L∞(Ω−)

)
≤ C(1 + ‖A(t)‖1.5,−) , (8.29)

and consequently,

sup
0≤t≤Tε,κ

‖v‖1.5,− ≤ C(|hκκ|2 + 1), sup
0≤t≤Tε,κ

|ht|1 ≤ CE(t). (8.30)
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8.4.5. The Rayleigh–Taylor stability condition revisited
By the assumption (1.8) in the Theorem 2.4, for 0 < ε, κ � 1 taken sufficiently small,

−∇p(0) · ñ(0) > 0 at Γ(t),

so

−A2
i (0)q,2(0)ñi(0) = −JA2

i (0)A2
i (0)q,2(0) > 0 at Γ.

In particular,

λ = min
x1

−q,2(0) > 0 at Γ. (8.31)

To simplify notation, we write

Bik(t) = JAi
j(t)Ak

j (t),

and we study the elliptic problem for

q̄ = q(t) − q(0) :

−(Bik(t)q̄,k),i = −([Bik(0) −Bik(t)]q,k(0)),i in Ω × [0, Tε,κ]

q̄ = 0 inΓ × [0, Tε,κ]

q̄,kB
ik(t)Ni = [Bik(0) −Bik(t)]q,k(0)Ni in Γbot × [0, Tε,κ].

Using elliptic estimates together with the estimates (8.20), (8.25), (8.26) and the 
smallness condition on the time, we obtain

‖q̄‖2,− ≤ C
(
‖([Bik(0) −Bik(t)]q,k(0)),i‖0,− + |[Bik(0) −Bik(t)]q,k(0)Ni|0.5

)
≤ C (‖B(0) −B(t)‖1.25,−‖q(0)‖2,− + ‖∇[B(0) −B(t)]‖0,−‖q(0)‖2.25,−

+ |[B2k(0) −B2k(t)]|0.5|q,k(0)|0.75
)

≤
√
tP(E(t))

≤ δ2.

We use the inequality

‖fg‖r,− ≤ C‖f‖r,−‖g‖s,−, 0 ≤ r ≤ s, s > 1 + r

to find that

‖[Bik(0) −Bik(t)]q,ki(0)‖0.25,− ≤ C‖q(0)‖2.25,−‖[Bik(0) −Bik(t)]‖1.375,−.
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We apply (8.26) to find that

‖[Bik(0) −Bik(t)]q,ki(0)‖0.25,− ≤ 8
√
tP(E(t)).

This is the only place where the bound (8.26) plays an essential role. For any other 
smallness estimate concerning A(t) −A(0) it is enough with (8.25).

We want a bound showing the smallness of q̄,2 pointwise on Γ. As a result, we need an 
estimate stronger than just H2. We focus our attention then in H2.25. Elliptic regularity 
then shows that

‖q̄‖2.25,− ≤C
(
‖([Bik(0) −Bik(t)]q,k(0)),i‖0.25,−

+ |[Bik(0) −Bik(t)]q,k(0)Ni|0.75
+ (1 + ‖B(t)‖1.25,−)‖∇q̄‖L∞(Ω−)

)
≤ 8
√
tP(E(t))

≤δ2. (8.32)

Consequently, on Γ, we have that

−q,2(x1, t) = −q,2(x1, t) + q,2(x1, 0) − q,2(x1, 0) ≥ −q,2(x1, 0) − Cδ2,

and our bootstrap assumption (8.16) is satisfied:

−min
x1

q,2(x1, t) ≥ −min
x1

q,2(x1, 0) − Cδ2 ≥ −minx1 qκ,2(x1, 0)
2 .

8.4.6. The estimate for h ∈ L2(0, Tκ; H2.5(Γ))
From equation (8.14a), we see that

v · τ = −τ · e2 at Γ.

It follows that

− v′ · τ
ñ · e2 + v · ñ = − v′ · τ

1 + ht
= hκκ′′

g3/2 .

Thus,

hκκ′′ = −v′1 + hκκ′v′2
1 + ht

(1 + (hκκ′)2)

= −(v′1 + hκκ′v′2)(1 + (hκκ′)2) + (v′1 + hκκ′v′2)ht

1 + ht
(1 + (hκκ′)2),

and, using (8.30),
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t∫
0

|hκκ|22.5ds ≤ CE(t).

8.4.7. The energy estimates
We write (8.10a) as

vi + Ak
i (q,k + ψ2),k = 0 in Ω.

We take two horizontal derivatives of this expression, test against v′′ and integrate by 
parts to find that

t∫
0

∫
Ω−

|v′′|2dxdy + I1 + I2 + I3 = 0.

The higher-order terms are

I1 =
t∫

0

∫
Ω−

Ak
i (q + ψ · e2)′′,k(vi)′′dxdy,

I2 =
t∫

0

∫
Ω−

(Ak
i )′′(q + ψ · e2),k(vi)′′dxdy,

while

I3 = 2
t∫

0

∫
Ω−

(Ak
i )′(q + ψ · e2)′,k(vi)′′dxdy,

is the lower-order term. Integrating by parts in the term I1 and using JAk
iN

k = √
gni, 

we obtain

I1 = J1 + J2,

with

J1 = −
t∫

0

∫
Ω−

(q + ψ · e2)′′(Ak
i (vi)′′),kdxdy,

J2 =
t∫

0

∫
Γ

ψ′′ · e2J
−1(v′′ · ñ)dsdy =

t∫
0

∫
Γ

J−1JκJκh
′′(v′′ · ñ)dsdy.
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Using the Piola identity (JAk
i ),k = 0 and the divergence-free condition vi,k Ak

i = 0, we 
see that

(Ak
i (v′′)i),k = (Ak

i ),k(v′′)i + Ak
i (v′′)i,k = −J,kA

k
i J

−1(v′′)i − (Ak
i )′′vi,k − 2(Ak

i )′(vi)′,k,

and J1 = K1 + K2 + K3 where

K1 =
t∫

0

∫
Ω−

(q + ψ2)′′(Ak
i )′′vi,kdxdy,

K2 =
t∫

0

∫
Ω−

(q + ψ2)′′2(Ak
i )′(vi)′,kdxdy,

K3 =
t∫

0

∫
Ω−

(q + ψ2)′′J,kJ−1Ak
i (vi)′′dxdy

The term K2 can be easily bounded using (8.11), (8.23) and (8.29) together with the 
Sobolev embedding theorem:

|K2| ≤ C

t∫
0

‖v‖2,−‖A′‖L4 (‖q‖2.5,− + ‖ψ · e2‖2.5,−) dy ≤
√
tP(E(t)).

To bound the term K3, we use Hölder’s inequality with an L2 − L4 − L4 − L∞ bound, 
we have that

K3 ≤
√
tP(E(t)).

The term K1 can be simplified using (8.11); we write K1 = L1 + L2, with

L1 = −
t∫

0

∫
Ω−

(q + ψ2)′′(2A′∇ψ′A)ki vi,kdxdy,

L2 = −
t∫

0

∫
Ω−

(q + ψ2)′′Ak
jψ

j
,11rA

r
i v

i
,kdxdy,

where we recall that ψ,11 = ψ′′. L1 is estimated using Hölder’s inequality and the Sobolev 
embedding theorem:

|L1| ≤
t∫

0

(‖q‖2.5,− + ‖ψ‖2.5,−)‖A‖L∞‖v‖1.5,−‖A‖1.5,−‖∇ψ‖1.5,−dy

≤ C
√
tP(E(t)).
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Similarly,

|L2| ≤ C(‖q‖2.5,− + ‖ψ2‖2.5,−)‖A‖2
L∞

√
t

⎛⎝ t∫
0

‖ψ(y)‖2
3,−dy

⎞⎠0.5

‖v‖1.5,−

≤
√
tP(E(t)).

Next, using (8.11), we write I2 = K4 + K5, where

K4 = −
t∫

0

∫
Ω−

Ak
jψ

j
,11rA

r
i (q + ψ2),k(vi)′′dxdy,

K5 = −
t∫

0

∫
Ω−

2(A′)kjψ
j
,1rA

r
i (q + ψ2),k(vi)′′dxdy.

We have that

|K5| ≤
t∫

0

C‖A‖1.5,−‖∇ψ‖1.5,−‖A‖L∞‖∇(q + ψ2)‖L∞‖v‖2,−dy ≤
√
tP(E(t)).

For K4, we integrate-by-parts and write K4 = L3 + L4, where

L3 =
t∫

0

∫
Ω−

ψj
,11(Ak

jA
r
i (q + ψ2),k(vi)′′),rdxdy,

L4 = −
t∫

0

∫
Γ

ψj
,11A

k
jA

r
i (q + ψ2),k(vi)′′Nrds.

We further decompose L3 as L3 = M1 + M2 + M3, where

M1 =
t∫

0

∫
Ω−

ψj
,11A

k
j,rA

r
i (q + ψ2),k(vi)′′dxdy,

M2 =
t∫

0

∫
Ω−

ψj
,11A

k
jA

r
i,r(q + ψ2),k(vi)′′dxdy,

M3 =
t∫ ∫

ψj
,11A

k
jA

r
i (q + ψ2),rk(vi)′′dxdy,
0 Ω−
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M4 =
t∫

0

∫
Ω−

ψj
,11A

k
jA

r
i (q + ψ2),k(vi)′′,rdxdy.

For the first three terms,

|M1| + |M2| + |M3| ≤
t∫

0

‖∇ψ‖1.5,−‖v‖2,−‖A‖L∞ [‖A‖1.5,−(‖∇q‖1.25,−

+ ‖∇ψ‖1.25,−) + ‖A‖L∞(‖∇q‖1.5,− + ‖∇ψ‖1.5,−)] dy

≤
√
tP(E(t)).

In the term M4, we use vi,k Ak
i = 0 and write M4 = N1 + N2, where

N1 = −
t∫

0

∫
Ω−

ψj
,11A

k
j (Ar

i )′′(q + ψ2),kvi,rdx,

N2 = −2
t∫

0

∫
Ω−

ψj
,11A

k
j (Ar

i )′(q + ψ2),kvi,1rdx.

These terms can be estimated in the same fashion as the term K1 above. Also,

|N1| ≤
√
tC

⎛⎝ t∫
0

‖ψ(y)‖2
3,−dy

⎞⎠0.5

‖v‖1.5,−‖∇ψ‖1.5,−(‖∇q‖1.25,− + ‖∇ψ‖1.25,−)

≤
√
tP(E(t)),

and

|N2| ≤
√
tC

⎛⎝ t∫
0

‖v(y)‖2
2,−dy

⎞⎠0.5

‖∇ψ‖2
1.5,−(‖∇q‖1.25,− + ‖∇ψ‖1.25,−)

≤
√
tP(E(t)).

The term I3 can be bounded using Hölder’s inequality and the Sobolev embedding 
theorem:

|I3| ≤
√
tP(E(t)).

We next analyze the boundary integrals. We have that

BI = J2 + L4 =
t∫ ∫

(ψ′′ · (v + e2))((vi)′′ñiJ
−1)ds.
0 Γ



92 C.H.A. Cheng et al. / Advances in Mathematics 286 (2016) 32–104
To estimate this terms we will extensively use the lower bound for J . We write BI =
O1 + O2 + O3, where

O1 =
t∫

0

∫
Γ

(ψ′′ · (v + e2))h′′
t J

−1dsdy,

O2 = −
t∫

0

∫
Γ

(ψ′′ · (v + e2))(v · ñ′′J−1)dsdy

O3 = −2
t∫

0

∫
Γ

(ψ′′ · (v + e2))(v′ · ñ′J−1)dsdy.

The inequality |v|1 ≤ C‖v‖1.5,− together with the embedding H0.25(Γ) ⊂ L4(Γ) shows 
that

|O3| ≤ C(|v|21 + 1)
t∫

0

|hκκ|22.25dy ≤
√
tP(E(t)).

The term O2 reads

O2 =
t∫

0

∫
Γ

hκκ′′(v2 + 1)(v1h
κκ′′′)J−1dsdy.

By forming an exact derivative, integrating-by-parts and using (8.23), we see that

|O2| ≤ C

t∫
0

|hκκ′′|2L3 |∇ψ′|L3dy ≤ C

t∫
0

|hκκ|22+1/6‖ψ‖2+2/3,−dy ≤ C

t∫
0

|hκκ|32+1/6dy.

Consequently, due to the interpolation inequality

|hκκ|32+1/6 ≤ C|hκκ|22|hκκ|2.5,

we find that

|O2| ≤
√
tP(E(t)).

Using [(v + e2) · τ ] = 0 and 
√
gni = JAk

iN
k, the term O1 can be written as

O1 =
t∫ ∫

(ψ′′ · [(v + e2) · n]n)h′′
t J

−1dsdy
0 Γ
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=
t∫

0

∫
Γ

(ψ′′ · [−A2
i q,2(

√
g)−1A2

i ]n)h′′
t dsdy

=
t∫

0

∫
Γ

ψ′′ · [−q,2]ñh′′
t J

−2dsdy

=
t∫

0

∫
Γ

hκκ′′[−q,2]h′′
t J

−2dsdy

=
t∫

0

∫
Γ

hκκ′′
[
−q,2(t)
J−2(t) + q,2(0)

J−2(0) − q,2(0)
J−2(0)

]
h′′
t dsdy

= P1 + P2 + P3.

Using (8.32),

|P1| =

∣∣∣∣∣∣
t∫

0

∫
Γ

hκκ′′J−2(t)[q,2(t) − q,2(0)]h′′
t dsdy

∣∣∣∣∣∣
≤ C

t∫
0

|hκκ|2.5‖J−2‖L∞‖q,2(t) − q,2(0)‖1.25,−|ht|1.5dy

≤ δ2CE(t).

The second error term can be bounded in the same way using (8.21):

|P2| =

∣∣∣∣∣∣
t∫

0

∫
Γ

hκκ′′q,2(0)[J−2(t) − J−2(0)]h′′
t dsdy

∣∣∣∣∣∣
≤ C

t∫
0

|hκκ|2.5‖J(t) − J(0)‖1.25,−|ht|1.5dy

≤ δ2CE(t).

Finally, P3 = Q1 + Q2 with

Q1 =
t∫

0

∫
Γ

hκ′′[Jκ(−q,2(0)J−2(0)h′′
t ) − [−q,2(0)J−2(0)]Jκh

′′
t ]dsdy, (8.33)

Q2 =
t∫

0

∫
Γ

hκ′′[−q,2(0)J−2(0)]hκ′′
t dsdy.
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The term Q1 can be bounded using Proposition A.5:

|Q1| ≤
t∫

0

|hκκ|2|q,12(0)J−2(0) + q,2(0)J−3(0)J,1(0)|L∞ |hκ
t |1dy.

The term |q,12(0)|L∞ can be bounded (using standard elliptic estimates) in terms of the 
initial data as long as the initial data verifies |Jεh0|2.5+s < ∞, s > 0. The same situation 
arises when dealing with J,1(0). Consequently, this term Q1 requires ε > 0, and, in this 
latter case, we have

|Q1| ≤
√
tP(E(t)).

Recalling (8.22) and (8.31), the term Q2 gives us an energy term

C
λ

2
[
|hκ′′|20 − |hκε′′

0 |20
]
≤ 1

2

∫
Γ

−q,2(0)J−2(0)[(hκ′′)2 − (hκε′′
0 )2]ds ;

hence,

t∫
0

‖v(y)‖2
0,− + ‖v′′(y)‖2

0,−dy + |hκ(t)|22 ≤ M0 + 12
√
tP(E(t)), (8.34)

where M0 is a number depending only on the initial data, h0, and the value of the 
regularizing parameter ε > 0.

8.4.8. The Hodge decomposition elliptic estimates
Since in each phase, curlu = 0, it follows that v2,j A

j
1 − v1,j A

j
2 = 0. Therefore,

(Aj
1(t) −Aj

1(0))v2
,j − (Aj

2(t) −Aj
2(0))v1

,j = −Aj
1(0)v2

,j + Aj
2(0)v1

,j ,

so that

‖Aj
1(0)v2

,j −Aj
2(0)v1

,j‖1,− ≤ C‖A(t) −A(0)‖L∞‖v‖2,− + ‖A(t) −A(0)‖1.5,−‖v‖1.5,−,

and

t∫
0

‖Aj
1(0)v2

,j(y) −Aj
2(0)v1

,j(y)‖2
1,−dy ≤

√
tP(E(t)).

Similarly, since in each phase vj ,i Ai
j = 0,

[Ai
j(t) −Ai

j(0)]vj,i = −Ai
j(0)vj,i,
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and

t∫
0

‖Ai
j(0)vj,i(y)‖2

1,−dy ≤
√
tP(E(t)).

Finally,

|v2|1.5 ≤ |v′′ ·N |−0.5 ≤ C‖v′′‖0,− ≤ M0 + 12
√
tP(E(t)).

Applying Proposition A.3, we obtain

t∫
0

‖v(y)‖2
2,−dy ≤ M0 + 12

√
tP(E(t)). (8.35)

(8.35) together with (8.34) and the properties of the mollifiers gives us the bound

E(t) ≤ M0 + 12
√
tQ(E(t)),

with E(t) being a continuous function. Thus, we infer the existence of T ∗
ε such that

E(t) ≤ 2M0 ∀0 ≤ t ≤ T ∗
ε .

Notice that T ∗
ε depends only on ε and h0.

8.4.9. Passing to the limit and uniqueness
Once the uniform bounds are obtained, we can pass to the limit κ → 0 in the standard 

way using Rellich–Kondrachov theorem.

8.5. ε-independent estimates

In the above analysis, only the integral Q1 in (8.33) depends on our smoothing pa-
rameter ε > 0; nevertheless, upon passing to the limit κ → 0, the integral Q1 no longer 
appears. The main point is that the regularizing effect due to ε > 0 was only necessary 
because of κ > 0. As κ = 0, we can now close the estimates and tend ε to zero.

After taking the limit in κ, we have a solution to the following system

viε + (Aε)ki (qε + ψ2
ε ),k = 0 in Ω × [0, Tε] ,

(Aε)ij(vε)
j
,i = 0 in Ω × [0, Tε] ,

hε(t) = Jεh0 +
t∫
viεñids on Γ × [0, Tε] ,
0
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qε = 0 on Γ × [0, Tε] ,

vε · e2 = 0 on Γbot × [0, Tε] ,

ψε = φε
2 ◦ φε

1 in Ω × {t = 0} ,

Δψε(t) = Δψε(0) in Ω × [0, Tε] ,

ψε(t) = e + hε(t)N on Γ × [0, Tε] ,

ψε(t) = e on Γbot × [0, Tε] ,

and φε
2 and φε

2 are given by

φε
1(x1, x2) =

(
x1, x2 + JδJεh0(x1)

(
1 − x2

cb

))
,

and

Δφε
2 = 0 on Ωδ,ε(0) × [0, Tε] ,

φε
2(t) = e + [Jεh0(x1) − JδJεh0(x1)]e2 on Γ × [0, Tε], ,

φε
2 = e on Γbot × [0, Tε] .

Now we define the energy

E(t) = max
0≤s≤t

|h(s)|2 +
t∫

0

‖v(s)‖2
2,−ds.

We repeat the energy estimates. The only modification affects the term O1, that now 
reads

O1 =
t∫

0

∫
Γ

(ψ′′ · [(v + e2) · n]n)h′′
t J

−1dsdy

=
t∫

0

∫
Γ

(ψ′′ · [−A2
i q,2(

√
g)−1A2

i ]n)h′′
t dsdy

=
t∫

0

∫
Γ

ψ′′ · [−q,2]ñh′′
t J

−2dsdy

=
t∫ ∫

h′′[−q,2]h′′
t J

−2dsdy
0 Γ
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=
t∫

0

∫
Γ

h′′
[
−q,2(t)
J−2(t) + q,2(0)

J−2(0) − q,2(0)
J−2(0)

]
h′′
t dsdy

= P1 + P2 + P3.

These terms can be bounded in a straightforward way. We get the polynomial estimate

E(t) ≤ M0 + 12
√
tQ(E(t)),

and the existence of T ∗ such that

E(t) ≤ 2M0 ∀0 ≤ t ≤ T ∗.

This T ∗ only depends on the initial data h0. Now, we can pass to the limit ε → 0 using 
Rellich–Kondrachov theorem. The uniqueness is obtained using the energy method as in 
Section 7. This concludes with the proof of Theorem 2.4.

9. Proof of Theorem 2.6: instantaneous parabolic smoothing

The proof of this result is a two-step procedure. First, we show that we always can 
gain an extra half derivative almost everywhere in time. The second step of the argument 
is a classical bootstrapping procedure.

9.1. Two-phase Muskat problem

We begin with the two-phase case, and consider initial data hδ0 ∈ H3 for the infinitely-
deep Muskat problem (1.5a)–(1.5e) or the confined Muskat problem (1.5a)–(1.5d), 
(1.5e′), (1.5f) satisfying the smallness criterion (2.1) in Theorem 2.1.

We define the higher-order energy function

E(t) = max
0≤s≤t

{|h(s)|23} +
t∫

0

‖w(s)‖2
3,±ds. (9.1)

Repeating our energy estimates using three tangential derivatives rather than two, we 
obtain the polynomial inequality

E(t) ≤ C|hδ0|23 +
√
tP(E(t)).

As a consequence, there exists a time T ∗ such that we have the bound

max
0≤s≤T∗

{|h(s)|23} +
t∫
|h(s)|23.5ds ≤ C|hδ0|23.
0
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Interpolating with the bound obtained in Theorem 2.1, we have that

max
0≤s≤T∗

{|h(s)|22.5} +
t∫

0

|h(s)|23ds ≤ C|hδ0|22.5. (9.2)

Now, given h0 ∈ H2 satisfying the smallness condition (2.1), due to Theorem 2.1, we have 
a solution h ∈ C(0, T ∗; H2) ∩L2(0, T ∗; H2.5(Γ)). In particular, we can choose 0 < δ ≤ T ∗

arbitrarily small so that h(δ) = hδ0 ∈ H2.5(Γ) and verifies the smallness criterion (2.1). 
Applying (9.2), we have thus that the initial data hδ0 provides us with a solution

hδ ∈ C(0, T ∗;H2.5(Γ)) ∩ L2(0, T ∗;H3(Γ)).

As δ was arbitrarily small, we conclude that the original initial data h0 gives us a solution 
h(δ) ∈ H3(Γ) for an arbitrarily small δ > 0. Now we proceed by bootstrapping. We can 
repeat the argument and show that for every positive time, we have that the unique 
solution in Theorem 2.1 is

h ∈ C∞(Γ) if δ ≤ t ≤ T ∗, ∀δ > 0.

9.2. One-phase Muskat problem

For the one-phase Muskat problem (1.6a)–(1.6e), we consider hδ0 ∈ H3 satisfying the 
Rayleigh–Taylor stability condition (1.7). Redoing the argument with three tangential 
derivatives, we obtain that there exists a time T ∗ such that we have the bound

max
0≤s≤T∗

{|h(s)|23} +
t∫

0

|h(s)|23.5ds ≤ C|hδ0|23.

Interpolating with the bound obtained in Theorem 2.4 for the C(0, T ∗; H2(Γ)) ∩
L2(0, T ∗; H2.5(Γ)) norm, we obtain the bound (9.2). Now, given h0 ∈ H2(Γ) satisfying 
the Rayleigh–Taylor stability condition (1.7), due to Theorem 2.4, we have a solution 
h ∈ C(0, T ∗; H2(Γ)) ∩ L2(0, T ∗; H2.5(Γ)). In particular, we can choose 0 < δ ≤ T ∗ as 
small as we want so h(δ) = hδ0 ∈ H2.5(Γ). Applying (9.2), we have gained an extra 
half derivative for every time. By bootstrapping, we show that the unique solution in 
Theorem 2.4 is h(t) ∈ C∞(Γ) if t ≥ δ > 0.
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Appendix A. Auxiliary results

A.1. The Hd/2-norm of products

We need the following

Proposition A.1. For all δ > 0, there exists Cδ > 0 such that

|fg|0.5 ≤ Cδ|f |0.5+δ|g|0.5 ,

and, in two dimensions,

‖fg‖1,± ≤ Cδ‖f‖1+δ,±‖g‖1,± .

Proof. The L2 part can be bounded as follows:

|fg|20 ≤ ‖f‖2
L∞(R)|g|20 ≤ Cδ|f |20.5+δ|g|20.5, (A.1)

where we have used the Sobolev embedding

H0.5+δ(R) ↪→ L∞(R).

The seminorm term can be bounded using Kato–Ponce inequality for Λ =
√
−∂2

x

|Λ0.5(fg)|0 ≤ Cδ

(
‖g‖

L
1
δ (R)

‖Λ0.5f‖
L

2
1−2δ (R)

+ ‖f‖L∞(R)‖Λ0.5g‖L2(R)

)
.

The Sobolev embeddings

Hδ(R) ↪→ Lq(R), q ∈
[
2, 2

1 − 2δ

]
, H0.5(R) ↪→ Lq(R), q ∈ [2,∞ ) ,

give us

|Λ0.5(fg)|0 ≤ Cδ‖g‖0.5‖f‖0.5+δ. (A.2)

Collecting the estimates (A.1) and (A.2), we conclude the first statement. With the same 
ideas and the embedding
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Hδ(R2) ↪→ Lq(R2), q ∈
[
2, 2

1 − δ

]
, H1(R2) ↪→ Lq(R2), q ∈ [2,∞ ) ,

we conclude the result. �
A.2. The Hodge decomposition elliptic estimates

Proposition A.2. Let Ω be a domain with boundary ∂Ω of Sobolev class Hk+0.5. Then for 
v ∈ Hk(Ω),

‖v‖Hk(Ω) ≤ C
[
‖v‖L2(Ω) + ‖ curl v‖Hk−1(Ω) + ‖ div v‖Hk−1(Ω) + ‖v ·N‖Hk−0.5(∂Ω)

]
,

where N denotes the outward unit normal to ∂Ω.

Proposition A.3. Let Ω be a domain with boundary ∂Ω of Sobolev class Hk+0.5. Let ψ0

be a given smooth mapping and define

curlψ0 v = curl(v ◦ ψ0) = (A0)j1(v ◦ ψ0)2,j − (A0)j2(v ◦ ψ0)1,j ,

divψ0 v = div(v ◦ ψ0) = (A0)ij(v ◦ ψ0)j,i,

where A0 = (∇ψ0)−1. Then for v ∈ Hk(Ω),

‖v‖Hk(Ω) ≤ C
[
‖v‖L2(Ω) + ‖ curlψ0 v‖Hk−1(Ω) + ‖ divψ0 v‖Hk−1(Ω) + ‖v ·N‖Hk−0.5(∂Ω)

]
,

where N denotes the outward unit normal to ∂Ω.

The proof of Propositions A.2 and A.3 are given in Cheng & Shkoller [11].

Proposition A.4. Suppose that v′ ∈ L2(Ω) with divv ∈ L2(Ω). Then v′ · N ∈ H− 1
2 (∂Ω)

and

‖v′ ·N‖H−1/2(∂Ω) ≤ C
(
‖v′‖L2(Ω) + ‖ div v‖L2(Ω)

)
.

A.3. A commutator estimate

The following is Lemma 5.1 in Coutand & Shkoller [24]:

Proposition A.5. Let Ω be a domain and assume that its boundary, ∂Ω, is smooth. Then

|Jκ(fg′) − fJκg
′|0 ≤ C‖f‖W 1,∞ |g|0.
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A.4. An elliptic estimate

Let’s consider

Ω = T× [−1, 0],

and the elliptic problem 

− div(A∇u) = f in Ω , (A.3a)

u = 0 on ∂Ω . (A.3b)

Then, we have the following elliptic estimate

Lemma A.6. Suppose that the matrix A ∈ H1.5(Ω) with A > 0, and that f ∈ H0.5(Ω). 
Then the solution to (A.3a)–(A.3b) verifies

‖Λ1.25∇u‖L2(Ω) ≤ C
(
‖Λ0.25f‖L2(Ω) + ‖Λ1.25A‖L2(Ω)‖∇u‖L∞(Ω)

+ ‖Λ0.5∇u‖L2(Ω)‖Λ0.25∇A‖L2(Ω)
)
,

and

‖Λ1.5∇u‖L2(Ω) ≤ C
(
‖Λ0.5f‖L2(Ω) + ‖Λ1.5A‖L2(Ω)‖∇u‖L∞(Ω)

+ ‖Λ0.75∇u‖L2(Ω)‖Λ0.25∇A‖L2(Ω)
)
.

Proof. We proof only the first estimate, being the second one straightforward. We con-
sider the approximate problem 

−(Ãi
j ũ,j),i = f in Ω , (A.4a)

ũ = 0 on ∂Ω , (A.4b)

where Ã is a C∞ regularization of A. For a given φ ∈ H1(Ω), we consider the weak 
formulation of the problem (A.4a)–(A.4b):∫

Ω

Ãi
j ũ,jφ,idx =

∫
Ω

fφdx.

These problems have solutions ũ which are smooth. We focus on high norm uniform esti-
mate. To do that, we pick φ = Λ3ũ, where Λ̂u = |k|û(k). Then, using the self-adjointness 
of the Λ operator, the weak formulation reads∫

Λ1.5 (Ãi
j ũ,j

)
Λ1.5ũ,idx =

∫
Λ0.5fΛ2.5ũdx.
Ω Ω
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We write

I =
∫
Ω

Λ1.5 (Ãi
j ũ,j

)
Λ1.5ũ,idx

=
∫
Ω

[Λ1.5, Ãi
j ]ũ,jΛ1.5ũ,idx +

∫
Ω

Ãi
jΛ1.5ũ,jΛ1.5ũ,idx.

Notice that the first term can be estimated by layers (i.e. fixing x2 ∈ [−1, 0]) using the 
Kenig–Ponce–Vega estimate (see [42] and [43]) along the x1 coordinate:

‖[Λ1.5, Ãi
j ]ũ,j‖L2(T) ≤ C

(
‖Λ1.5Ãi

j‖L2(T)‖∇ũ‖L∞(T) + ‖Λ0.5∇ũ‖L4(T)‖∇A‖L4(T)
)

≤ C
(
‖Λ1.5Ãi

j‖L2(T)‖∇ũ‖L∞(T) + ‖Λ0.75∇ũ‖L2(T)‖Λ0.25∇Ã‖L2(T)
)

Using Tonelli’s theorem, together with ‖ · ‖2
L2(Ω) =

∫ 0
−1 ‖ · ‖2

L2(T)dx2, we have

‖[Λ1.5, Ãi
j ]ũ,j‖L2(Ω) ≤ C

(
‖Λ1.5Ãi

j‖L2(Ω)‖∇ũ‖L∞(Ω) + ‖Λ0.75∇ũ‖L2(Ω)‖Λ0.25∇Ã‖L2(Ω)
)
.

The second integral provides us with the estimate

‖Λ1.5∇ũ‖L2 ≤ C
(
‖Λ0.5f‖L2(Ω) + ‖Λ1.5Ãi

j‖L2(Ω)‖∇ũ‖L∞(Ω)

+ ‖Λ0.75∇ũ‖L2(Ω)‖Λ0.25∇Ã‖L2(Ω)
)
.

Passing to the limit Ã → A, we conclude the desired uniform estimate for ũ. �
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