Real Analysis I

Total Score : 100

(1) (15%)

- (i) State the respectively following definition of the Lebesgue integral on R^d: Simple functions; Bounded functions supported on a set of finite measure; Non-negative function; Integrable functions (the general case).
- (ii) Prove that: The integral of Lebesgue integrable functions is linear, additive, monotonic, and satisfies the triangle inequality.
- (iii) (Tchebychev inequality) Suppose $f \ge 0$, and f is integrable. If $\alpha > 0$ and $E_{\alpha} = \{x : f(x) > \alpha\}$, prove that $m(E_{\alpha}) \le \frac{1}{\alpha} \int f$.
- (2) (20%) State and prove the following theorem respectively: Bounded convergence theorem; Fatou's lemma; Monotone convergence theorem; Lebesgue dominated convergence theorem.
- (3) (20%) Prove that:
 - (i) The space $\mathbf{R}^d, d \ge 1$, is a complete vector space in its usual norm.
 - (ii) The space L^1 is a complete vector space in its metric.
- (4) (i) (10%) Prove that if f is finite almost everywhere, then f is integrable if and only if

$$\sum_{k=-\infty}^{\infty} 2^k m(F_k) < \infty, \quad \text{if and only if } \sum_{k=-\infty}^{\infty} 2^k m(E_{2^k}) < \infty.$$

(ii) (10%) Let

$$f(x) = \begin{cases} |x|^{-a} & \text{if } |x| > 1, \\ 0 & \text{otherwise.} \end{cases}$$

Then prove that f is integrable on \mathbf{R}^d if and only if a > d.

- (5) (i) (5%) Prove that if f is uniformly continuous on **R** and integrable, then $\lim_{x\to\infty} f(x) = 0$.
 - (ii) (5%) Prove that if f is integrable on \mathbb{R}^d , real-valued and $\int_E f(x) dx \ge 0$ for every measurable E, then $f(x) \ge 0$ a.e x.
 - (iii) (5%) If f is integrable on **R**, show that

$$F(x) = \int_{-\infty}^{x} f(t) \ dt$$

is uniformly continuous.

(6) (10%) Prove or disprove that if $f \in L^1(\mathbf{R}^d)$ and a sequence $\{f_n\} \subset L^1(\mathbf{R}^d)$ such that $||f_n - f||_{L^1} \to 0$, then $f_n(x) \to f(x)$ a.e. x.