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1 Lebesgue integrable but not Riemann Inte-
grable

Remark 1.1 We note that if a real-valued function f is Riemann inte-
grable on [a, b], then f is Lebesgue integrable on [a, b]. But the reverse is not
true always. The following is such an example.

Example 1.1 Let

f(x) =
{

1 if x is an irrational number in [0, 1]
0 otherwise,(1.1)

and

g(x) =
{

0 if x is an irrational number in [0, 1]
1 otherwise.(1.2)

Then f and g are all Lebesgue integrable but not Riemann integrable.

Proof. Let P : 0 = x0 < x1 < · · · < xN−1 < xN = 1 be any partition
of [0, 1]. Then it is easy to see that sup

xj−1≤x≤xj

f(x) = 1 and inf
xj−1≤x≤xj

f(x) = 0

for all j = 1, · · ·N , and hence the upper and lower Riemann sums of f w.r.t. P
satisfy

U(P, f) = 1 and L(P, f) = 0.

Hence f is not Riemann integrable. Similarly, we also see that g is not Rie-
mann integrable. Let E1 = {x : x is a rational number of [0, 1]} and E2 =
{x : x is a irrational number of [0, 1]}. Then f and g are all simple functions
satisfying

f(x) = 0 · χE1(x) + 1 · χE2(x)
g(x) = 1 · χE1(x) + 0 · χE2(x),(1.3)
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and thus, by the definition of the Lebesgue integral for simple functions, we
obtain that f and g are Lebesgue integrable and

∫
[0,1]

f = 0 ·m(E1) + 1 ·m(E2) = 1∫
[0,1]

g = 1 ·m(E1) + 0 ·m(E2) = 0.
(1.4)

2 Necessary Conditions for Bounded Conver-
gent Theorem

The following two examples illustrate the conditions of Bounded Convergent
Theorem are sharp.

Example 2.1 (Necessary for Bounded Functions) For
each positive integer n, let

fn(x) =
{

n if x ∈ [0, 1
n ]

0 otherwise, and f(x) =
{

0 if x ∈ (0, 1]
∞ if x = 0.

(2.1)

Then {fn} is a sequence of Lebesgue integrable with unbounded function on
[0, 1]. Furthermore we easily have fn(x) → f(x) as n →∞, and

∫
[0,1]

fn(x)dx =
n · m([0, 1

n ]) + 0 · m([ 1
n , 1]) = 1 for all n, and thus 1 =

∫
[0,1]

fn(x)dx 6→∫
[0,1]

f(x)dx = 0 as n →∞.

Example 2.2 (Necessary for Bounded Support) For
each positive integer n, let

fn(x) =
{

1
n if x ∈ [0, n]
0 otherwise.(2.2)

Then for each n,
∫
[0,∞)

fn = 1 and supp(fn) = [0, n] → [0,∞) as n →∞. Fur-
thermore we easily have fn → f ≡ 0 as n →∞, and thus 1 =

∫
[0,∞)

fn(x)dx 6→∫
[0,∞)

f(x)dx = 0 as n →∞.
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3 Monotone Convergent Theorem and its Ap-
plications

First we state the Monotone Convergence Theorem (MCT) in the following.

Theorem 31. Suppose {fn} is a sequence of non-negative measurable func-
tion with fn ↗ f . Then

lim
∫

n→∞
fn =

∫
f.(3.1)

Now, we give two applications of Monotone Convergence Theorem in the
following

Example 3.1 (Borel-Cantelli lemma) Suppose {En} is a
sequence of measurable sets satisfying

∞∑
n=1

m(En) < ∞.(3.2)

Let
F = {x : x belongs to infinitely many setsEn}.(3.3)

Then F has measure zero, i.e., m(F ) = 0.

Proof. For each n, let

an(x) = χEn(x).(3.4)

Then we note that x ∈ F if and only if
∞∑

n=1
an(x) = ∞, and

∫
an = m(En). By

(3.2) and monotone convergent theorem, we have
∫ ∞∑

n=1
an =

∞∑
n=1

m(En) < ∞,

and thus we obtain m(F ) = 0.

Actually, the set F in (3.3) satisfies F =
∞⋂

k=1

∞⋃
n=k

En, and from this we also

can prove that m(F ) = 0. See Exercise 16 of Chapter 1.

Example 3.2 Consider the function

f(x) =
{ 1

|x|d+1 if x 6= 0,

0 otherwise.
(3.5)

Then f is integrable outside any ball, |x| ≥ ε, and
∫

|x|≥ε

f(x) ≤ C

ε
, for some constant C > 0.(3.6)
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