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1 Lebesgue integrable but not Riemann Inte-
grable

Remark 1.1 We note that if a real-valued function f is Riemann inte-
grable on [a,b], then f is Lebesgue integrable on [a,b]. But the reverse is not
true always. The following is such an example.

Example 1.1 Let

1if x is an irrational number in [0, 1]
0 otherwise,

(11) )= {

and
0 if x is an irrational number in [0, 1]

(1.2) g(x) = { 1 otherwise.

Then f and g are all Lebesgue integrable but not Riemann integrable.

Proof. Let P:0=20 <z < - <xny_1 < xny = 1 be any partition
of [0,1]. Then it is easy to see that sup f(x) =1and inf f(z)=0
ijlgzng

r;_1<x<x;
forall j =1,--- N, and hence the upper and lower Riemann sums of f w.r.t. P
satisfy
U(P,f)=1and L(P, f) =0.

Hence f is not Riemann integrable. Similarly, we also see that g is not Rie-
mann integrable. Let Ey = {x : z is a rational number of [0,1]} and E; =
{z : x is a irrational number of [0,1]}. Then f and g are all simple functions
satisfying
w3 £(2) = 0, () + 1 v (2)

9(x) =1-xp, () + 0 x5, (2),



and thus, by the definition of the Lebesgue integral for simple functions, we
obtain that f and g are Lebesgue integrable and

Joop £=0-m(E1) +1-m(Es) =

1
(1.4) g=1-m(BEy)+0-m(Ey) = 0.

Jo

2 Necessary Conditions for Bounded Conver-
gent Theorem

The following two examples illustrate the conditions of Bounded Convergent
Theorem are sharp.

Example 2.1 (Necessary for Bounded Functions) For

each positive integer n, let

n if z€0,1]
0 otherwise,

0 if z€(0,1]
oo if x=0.

(2.1)  falx) = { and f(z) = {

Then {f,} is a sequence of Lebesgue integrable with unbounded function on
[0, 1]. Furthermore we easily have f,,(x) — f(x) as n — oo, and f[o 1 fn(x)de =

n-m([0,X]) + 0-m([2,1]) = 1 for all n, and thus 1 = f[o I fu(x)dz 4
f[O,l] f(x)dz =0 as n — oo.

Example 2.2 (Necessary for Bounded Support) For

each positive integer n, let

Loif 2 € [0,n]
(2:2) fol2) = { 0 otherwise.
Then for each n, f[o 00) fn =1 and supp(f,) = [0,n] — [0,00) as n — oo. Fur-
thermore we easily have f,, — f =0 as n — 00, and thus 1 = f[o 00) fo(x)dz £
f[0700) f(xz)dz =0 as n — oo.



3 Monotone Convergent Theorem and its Ap-
plications

First we state the Monotone Convergence Theorem (MCT) in the following.

Theorem 31. Suppose {f,} is a sequence of non-negative measurable func-
tion with f,, / f. Then

(3.1) lim / fn:/f.

n—oo

Now, we give two applications of Monotone Convergence Theorem in the
following

Example 3.1 (Borel-Cantelli lemma) Suppose {E,} is a
sequence of measurable sets satisfying

(3.2) Zm(En) < 0.

Let
(3.3) F = {x : x belongs to infinitely many setsE, }.

Then F' has measure zero, i.e., m(F) = 0.
Proof. For each n, let
(3.4) an(z) = X5, ()
Then we note that x € F if and only if §1 an(z) = 00, and [ a, = m(E,). By
n=

o0 o0
(3.2) and monotone convergent theorem, we have [ > a, = > m(E,) < o,
n=1 n=1

and thus we obtain m(F)=10. =

Actually, the set F in (3.3) satisfies F' = (| |J En, and from this we also
k=1n=k
can prove that m(F) = 0. See Exercise 16 of Chapter 1.

Example 3.2 Consider the function

e if 2#£0
| e i :
(3:5) /(@) { 0 otherwise.

Then f is integrable outside any ball, |z| > €, and

C
(3.6) / f(z) < —, for some constant C > 0.
|

T €



