Real analysis midterm I

Date:2012/11/20

- 1 Let $\{x_n\}$ be a sequence of strictly positive real numbers.
- (1.a) State the following definitions respectively by ϵN method: A cluster point; lim sup x_n ; lim inf x_n .
- (1.b) Show that $\lim \sup x_n$ and $\lim \inf x_n$ is the largest and smallest cluster points of the sequence $\{x_n\}$ respectively.
- (1.c) If $\{x_n\}$ is a sequence of real numbers, then show that

$$lim infx_n = lim supx_n = l$$

if and only if l is the limit of $\{x_n\}$

(1.d) Show that

$$\lim \inf \frac{x_{n+1}}{x_n} \le \lim \inf x_n^{1/n} \le \lim \sup x_n^{1/n} \le \lim \sup \frac{x_{n+1}}{x_n}$$

(Show your work by the $\epsilon - N$ definition of lim sup and lim inf)

2 Show that there exist disjoint sets $E_1, E_2, \dots, E_k, \dots$ such that

$$|\bigcup E_k|_e < \sum |E_k|_e$$

with strict inequality.

3 State the following definition respectively: (a) Outer Measure (b) The Cantor Set (c) Lebesgue Measurable Set. Let

 $S = \{ E \subset \mathbb{R}^n | E \text{ is a measurable set} \}.$

Prove that S is a σ -algebra.

- 4 State the following definition: the Cantor Set C of the interval [0, 1]; Borel set. Prove that (a) the Cantor set C is uncountable, perfect, measurable set, and find the measure of C; every Borel set is measurable.
- 5 Let $\{A\}$ be a collection of sets A. State the definition respectively: A_{σ} set; G_{δ} set. Let $E \subset \mathbb{R}^d$. Prove the following statements are equivalent. (a) E is measurable. (b) E^c is measurable. (c) For every set A, $m(A) = m(A \cap E) + m(A - E)$. (d) Given $\varepsilon > 0$, there is a closed set F such that $F \subset E$ and $m^*(E - F) < \varepsilon$. (e) There is a G_{δ} set with $E \subset G_{\delta}$, $m^*(G_{\delta} - E) = 0$. (f) There is a F_{σ} set with $F_{\sigma} \subset E$, $m^*(E - F_{\sigma}) = 0$. If $m^*(E)$ is finite, then the above statements are equivalent the following: (g) Given $\varepsilon > 0$, there is a union U of open intervals such that

$$m^*(U\Delta E) < \varepsilon.$$

6 Construct a Nonmeasurable Set.