REAL ANALYSIS MIDTERM II

- 1. Let D be a measurable subset in \mathbb{R}^d , and f, g are measurable functions on D, show that
 - (a) f + cg for some constant c
 - (b) *fg*
 - (c) $\frac{f}{a}$ for $g \neq 0$ almost everywhere.
 - (d) $\begin{cases} g \\ \{f > g\} \end{cases}$

are measurable

- 2. (a) Show that the limit of an increasing sequence of functions lsc at x_0 is lsc at x_0
 - (b) Let f be lsc and larger than $-\infty$ on [a, b]. Show that there exist continuous f_k on [a, b] such that $f_k \nearrow f$.
- 3. Suppose $f_k \to f$ and $g_k \to g$ in measure on E. Show that (a) $f_k + g_k \to f + g$ in measure on E.
 - (b) If $|E| < +\infty$, then $f_k g_k \to fg$ in measure on E.
- 4. True or False:
 - (a) Let f and f_k , k = 1, 2, ... be measurable and finite a.e. in E. If $f_k \to f$ a.e. on E, then $f_k \to f$ in measure on E.
 - (b) If $f_k \to f$ in measure on E, then $f_k \to f$ a.e. on E.

If ture, show the proof, if false, give an counterexample.

- 5. Let f be use and less than $+\infty$ on a compact set E. Show that there exists $x_0 \in E$ such that $f(x_0) \geq f(x)$ for all $x \in E$.
- 6. State the following two theorems:
 - (a) Egorov's Theorem
 - (b) Lusin's Theorem