REAL ANALYSIS FINAL EXAM.

1. If $\{x_n\}$ is a sequence of strictly positive real numbers, then show that $\liminf_{n \to \infty} \frac{x_{n+1}}{1 + 1} < \liminf_{n \to \infty} \frac{x_{n+1}}{1 + 1}$

$$\operatorname{iiminf} \frac{1}{x_n} \le \operatorname{iiminf} x_n'' \le \operatorname{iimsup} x_n''' \le \operatorname{iimsup} \frac{1}{x_n}$$

(Show your work by the $\epsilon - N$ definition of limsup and liminf)

2. Let f be measurable and finite a.e. in E and $|E| < +\infty$ If $a < f(x) \le b$ (a and b are finite) for $x \in E$, then show that

$$\int_E f = -\int_a^b \alpha d\omega(\alpha)$$

where ω is a distribution function of f on E.

- 3. True or false: Let f be a function whose improper Riemann integral exists and is finite, then f is Lebesgue integrable. (If ture, show the proof, if false, give a counterexample.)
- 4. True or False:
 - (a) Let f and f_k , k = 1, 2, ... be measurable and finite a.e. in E. If $f_k \to f$ a.e. on E, then $f_k \to f$ in measure on E.
 - (b) If $f_k \to f$ in measure on E, then $f_k \to f$ a.e. on E.

If ture, show the proof, if false, give a counterexample.

5. State the following Lemma and Theorems:

- (a) Fatou's Lemma
- (b) Lebesgue's Dominated Convergence Theorem.
- (c) Monotone Convergence Theorem
- (d) Uniform Convergence Theorem
- (You only need to state, don't prove!)
- 6. (a) If $f,g \in L(E)$, then show that $f + g \in L(E)$.
 - (b) If $f \in L(E)$, g is measurable on E, and there exists a finite constant M such that $|g| \leq M$ a.e. in E, then show that $fg \in L(E)$.

Date: 2013.1.15.