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Abstract

This study describes the spatial disorder of one-dimensional Cel-

lular Neural Networks (CNN) with a biased term by applying the

iteration map method. Under certain parameters, the map is one-

dimensional and the spatial entropy of stable stationary solutions can

be obtained explicitly as a stair-case function.
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1 Introduction

Cellular neural networks (CNN), a large array of nonlinear circuits, consists
of only locally connected cells. This work investigates the model of one
dimensional CNN proposed by Chua and Yang [1988a, 1988b]. The circuit
equation of a cell is

dxi
dt

= �xi + z + �f(xi�1) + af(xi) + �f(xi+1); i 2 Z1; (1.1)

where f(x) is a piecewise-linear output function de�ned by

f(x) =

8>>>>>><
>>>>>>:

rx+m� r if x � 1;

mx if j x j� 1;

`x+ `�m if x � �1:

(1.2)

Here r, m and ` are nonnegative real constants and the quantity z is called
threshold or biased term, and is related to independent voltage sources in
electric circuits. The coeÆcients of output function �, a and � are real
constants and called the space-invariant A-template denoted by

A � [�; a; �]: (1.3)

For simplicity, f will be denoted by fr, with ` = r and m = 1, i.e.,

fr(x) =

8>>>>>><
>>>>>>:

rx+ 1� r if x � 1;

x if j x j� 1;

rx+ r � 1 if x � �1; :

(1.4)

CNN is applied mainly in image processing and pattern recognition [Chua
& Roska, 1993], [Chua & Yang, 1988a] and [Thiran et al, 1995]. A basic and
important class of solutions of (1.1) are the stable stationary solutions of
(1.1). In particular, the complexity of stable stationary solutions of (1.1)
must be investigated. When the output function is f0, i.e. r = 0 in (1.4),
much work has subsequently been done in the electrical engineering commu-
nity, see [Chua & Roska, 1993], [Chua & Yang, 1988a] and references therein.
In addition, [Juang & Lin, 2000], [Hsu & Lin, 1999, 2000] and [Hsu et al,
1999] recently considered mathematical results involving the complexity of
stable stationary solutions and the multiplicity of traveling wave solutions.
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[Juang & Lin, 2000] partitioned the parameters space (a; z) into a �nite num-
ber of regions in R2 such that in each region (1.1) with f = f0 has the same
spatial entropy.

However, for z = 0 and r 2 (0;1) , [Hsu & Lin, 1999] proved that
(1.1) and (1.4) can release in�nite di�erent spatial entropies and the entropy
function is a devil-staircase like function in r. The method used in [Hsu &
Lin, 1999] considers that the stationary solutions of (1.1) as an iteration map.
In fact, if output v = f(x) is taken as the unknown variable, i.e., let

vi = f(xi) and ui+1 = vi: (1.5)

and if f is invertible with inverse function F , then the stationary solutions
of (1.1) can be written as one- or two-dimensional iteration maps as follows,

T (v) =
1

�
(F (v)� z � av); (1.6)

when � = 0 and � 6= 0 and

T2(u; v) = (v ;
1

�
(F (v)� z � �u� av)); (1.7)

when � 6= 0 and � 6= 0.
For these maps, each bounded trajectory corresponds to the outputs of

bounded stationary solutions. In practice, if the maps are chaotic, then
the stationary solutions of (1.1) are spatially chaos. However, only stable
stationary solutions of (1.1) should be considered and the stability results
can be found in [Hsu, 2000] or [Juang & Lin, 2000]. Therefore, the set of
all stable bounded orbits of T must be considered, denoted by S, and the
entropy h of T jS must be computed. If the entropy is positive, then the
stable stationary solutions of (1.1) are spatial chaos. For convenience, T jS is
denoted herein as T .

[Hsu & Lin, 1999] considered (1.6) with z = 0, the odd symmetry of
the map T makes it is much easier to investigate the complexity of T than
the case of z 6= 0. Therefore, this work focuses on the complexity of the
one dimensional map T with z 2 R1 by some complicated computation.
According to our results, the entropy function is a stair-case function. As for
the two-dimensional map T2, when r is positive and suÆciently small, the
Smale Horseshoe structures of stable stationary solutions of (1.1) and (1.4)
are constructed, for details, see [Hsu, 2000].

Carefully examining the orbits of T reveals that the entropy function h
is a stair-case function of r for �xed a, z and �. The main results are
Main Theorem.
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Assume � = 1, 0 < z < �(a)(see Lemma 3.1). Denote

r1(z) =
a+ z � 2

a2 � 2 + az
(1.8)

and h(r) is the entropy function of T in (1.6). Then there exists p(z) 2 Z+

and a strictly decreasing sequence frp;p�1(z)g; p = 3; 4; � � � ; p(z) with
r1(z) < rp;p�1 and rp < rp;p�1 < rp�1

such that
(i) If 3 � p � p(z) and r 2 [rp;p�1(z); rp�1;p�2(z)) then

h(r; z) = ln�p�1;p�2.

Where �p;p�1 is the largest root of �
2[�2p�3 �

p�3P
i=0

�i
p�2P
j=0

�j] = 0.

(ii) if r 2 (r1(z); rp(z);p(z)�1) then h(r; z) = ln�p(z);p(z)�1.
(iii) if r 2 (�r1(z); r1(z)] then h(r; z) = 0.
(iv) if r 2 [0; �r1(z)] then h(r; z) = ln2.

Moreover, p(z) is a decreasing function of z and lim
z!0+

p(z) =1.

r

     h(r;z)

0
 r (z) r4,3 r3,2

r2,1

ln 2

rp(z),p(z)-1       r (z)

Fig. 1. Entropy of T with z 6= 0.

The above results or the proof of the main theorem in section 3 indicate that
the nonzero bias z causes a situation in which map T does not have enough
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periodic orbits when r 2 (�r1(z); r1(z)] and it makes the entropy equal to
zero. Therefore, the entropy function of T has a stair-case structure as shown
in Fig. 1. This di�ers from those results of a devil-staircase like function in
[Hsu & Lin, 1999] with z = 0 as shown in Fig. 2. Additionally, the results
of [Hsu & Lin, 1999] recalled in the following corollary can be considered as
the limiting case of the main theorem when z tends to 0.
Corollary. Assume � > 0, z = 0 and a > � + 1. Denote

r1 = r1(a; �) =
a� � � 1

a(a� 1) + �(a� 2)
;

r2 = r2(a; �) =
a� � � 1

a(a� 1) + �(� � 1)
;

and h(r) is the entropy function of T in (1.6) with F = Fr = f�1r , r > 0.
Then there exists a strictly decreasing sequence frpg; p = 2; 3; � � � ; with

lim
p!1

rp = r1;

such that

(i) If r2 � r <
1

a + �
, then h(r) = 0.

(ii) If r 2 [rp; rp�1), p = 3; 4; � � �, then h(r) is ln�p where �p is the largest
root of �2p�2 � (

p�2P
i=0

�i)2 = 0. Moreover, �p is strictly increasing in p with

1 +
p
5

2
= �3 < �p < 2; for p = 4; 5; � � �

(iii) If r 2 [0; r1], then h(r) = ln2.
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Fig. 2. Entropy of T with z = 0.
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The rest of this paper is organized as follows. Section 2 introduces the
basic properties of the one-dimensional map T in some range of parameters.
Section 3 proves the main theorem by symbolic dynamics, indicating that
the entropy function h(r) is a step function under certain parameters range.

2 Iteration Map

This section considers the one dimensional map T in (1.6) with z 6= 0. If
a > 1, � > 0, and m = 1, then the inverse function F of fr is

F (v; r) =

8>>>>>>>>><
>>>>>>>>>:

1

r
v � 1

r
+ 1 if v � 1;

v if j v j� 1;

1

r
v � 1 +

1

r
if v � �1;

(2.1)

and the map T can be rewritten as

T (v; a; �; r) =

8>>>>>>>>>>>><
>>>>>>>>>>>>:

1

�
(
1

r
v � 1

r
+ 1� av � z) if v � 1;

1

�
(v � av � z) if j v j� 1;

1

�
(
1

r
v +

1

r
� 1� av � z) if v � �1:

(2.2)

Instead of F (v; r) and T (v; a; �; r), F (v) and T (v) will be used if it does not
cause any confusion. For simplicity, assume that � = 1 and z � 0 hereinafter.
The graph of T can be found in the following �gure.
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u=T(v) u=v

v

u
A

BD

C

1-1 0

Fig.  3.  Graph of T.

An elementary computation produces that

A = (A1; A2) = (
rz � r + 1

1� ra� r
;
rz � r + 1

1� ra� r
); B = (B1; B2) = (1; 1� a� z);

C = (C1; C2) = (�1; a� 1� z); D = (D1; D2) = (
rz + r � 1

1� ra� r
;
rz + r � 1

1� ra� r
):

According to [Hsu, 2000] and [Juang & Lin, 2000], any orbit fT k(v)g of
T with jT k(v)j � 1 for some k � 0 is unstable. Hence, only trajectories
of T lying outside the unit rectangle in (u; v) plane should be considered.
Therefore, assume that B2 < �1 and C2 > 1 while these conditions are
equivalent to 2 � a < z < a � 2: For further computation, we give the
following notations.

De�nition 2.1 Assume a > 2.
(i) De�ne functions r1(z) and �r1(z) by

r1(z) =
a + z � 2

a2 � 2 + az
and �r1(z) =

a� z � 2

a2 � 2� az
: (2.3)

(ii) Let m;n 2 Z+, if the slope of f , r = rm;n satis�es

Tm�1(B2) = �1 and T n�1(C2) = 1; (2.4)

then we call map T is of (m;n)�type and denote rm;m, km;n and �m;n by

rm;m = rm, km;n =
1

rm;n

� a and �m;n = k�1m;n:
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(iii) De�ne polynomials E(x;m) and U(x;m) by

E(x;m) = a
mX
i=1

xi � a+ 2; (2.5)

U(x;m;n) = (a+ z)
mX

i=n+1

xi + 2a
nX
i=1

xi � 2a+ 4: (2.6)

From Fig. 3, the relative positions of A;B;C and D are easily obtained in
the following.

Lemma 2.1 Assume a > 2, then r1(z) and �r1(z) are increasing and de-
creasing functions of z, respectively. Moreover, we have

(1) If r 2 (r1(z);1), then A2 > C2 and B2 > D2.
(2) If r = r1(z) then A2 > C2 and B2 = D2.
(3) If r 2 (�r1(z); r1(z)), then A2 > C2 and D2 > B2.
(4) If r = �r1(z), then A2 = C2 and D2 > B2.
(5) If r 2 (0; �r1(z)), then A2 < C2 and D2 > B2.

Proof. By elementary computation, we have

r0
1
(z) =

2a� 2

(a2 � 2 + az)2
and �r0

1
(z) =

2� 2a

(a2 � 2� az)2

and r1(z) and �r1(z) are increasing and decreasing functions of z respec-
tively. The proofs from (1) to (5) are also simple and omitted.

The proof of the main theorem in section 3 indicates that the case of (1)
in Lemma 2.2 are more interesting and complicated.

3 Proof of Main Theorem

In this section, we prove the main theorem by introducing some lemmas. If
z > 0, the following lemmas will show that unique rm;m�1 lies between rm;m

and rm�1;m�1 such that (2.4) holds.

Lemma 3.1 Assume m � 3 and de�ne �(a) by

�(a) � minfa� 2;
�a3 + 6a2 � 4a

3a2 � 6a+ 4
g:

If 0 < z < �(a), p > q and rp;q satis�es (2.4) with rm;m < rp;q < rm�1;m�1,
then p = m and q = m� 1.
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Proof.

First, we claim that U(�p;q; p; q) = 0 and E(�m;m;m) = 0. By simple
computation, it is obvious that

T�1(1) =
rz + 1

1� ra
and T�1(�1) = rz � 1

1� ra
: (3.1)

De�ne R and L by

R = T�1(1)� 1 and L = 1� T�1(�1): (3.2)

If p > q and r = rp;q satis�es (2.4), then it is not diÆcult to compute that
�p;q satis�es

L(1� �qp;q)

1� �p;q
+
R(1� �pp;q)

1� �p;q
= 2a� 4: (3.3)

By (3.1) and (3.2), we know that

R + L =
2�p;q
rp;q

� 2, R =
rp;q(z + a)

1� rp;qa
,

and (3.3) can be rewritten as

(
2�p;q
rp;q

� 2)
q�1X
j=0

�jp;q +R
p�1X
j=0

�jp;q = 2a� 4; (3.4)

�p;q(a + z)
p�1X
j=q

�jp;q + (
2�p;q
rp;q

� 2)
q�1X
j=0

�jp;q = 2a� 4: (3.5)

According to the de�nition of �p;q, we have U(�p;q; p; q) = 0. Similarly, we
have E(�m;m;m) = 0. Next, we show that rm;m�1 satis�es (2.4) and rm;m <
rm;m�1 < rm�1;m�1. Since z > 0 and �m;m�1 > 0, by (2.5), (2.6) and (3.5),
we have

a
m�1X
i=1

�im;m�1 < a� 2; a
m�1X
i=1

�im�1;m�1 = a� 2; (3.6)

and

a
mX
i=1

�im;m�1 > a� 2; a
mX
i=1

�im;m = a� 2: (3.7)

From (3.6) and (3.7), rm;m�1 satis�es (2.4) and rm;m < rm;m�1 < rm�1;m�1,
for m > 2.
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Now, we claim that no rp;q satis�es (2.4) and rm;m < rp;q < rm�1;m�1
except for p = m and q = m � 1. For convenience, let h = rm�1;m�1,
k = rm;m and � = rp;q, where p = m+ n, q = m� n� 1 and 1 � n < m� 2.
By (2.6) and elementary computation, we have

U(h; p; q) < 0 if and only if 2a� (a+ z)hn + (z � a)h�(n+1) < 0 (3.8)

and

U(k; p; q) < 0 if and only if 2a� (a+ z)kn+1 + (z � a)k�n < 0: (3.9)

Obviously that U 0(x; p; q) > 0 and if U(h; p; q)U(k; p; q) > 0; by intermediate
value theorem, no � lies between h and k and satis�es (2.4). Therefore, we
claim that U(h; p; q) < 0 and U(k; p; q) < 0, if a; z satisfy 0 < z < �(a).
Denote P (x) and Q(x) by

P (x) = 2a� (a+ z)xn+1 + (z � a)x�n

and
Q(x) = 2a� (a + z)xn + (z � a)x�(n+1);

then P (x) and Q(x) are concave functions in (0,1] and P (1) = Q(1) = 0. By
elementary computation or [13], we know that r2;2 = r2 =

a�2
a2�a

and

0 < k < h <
1

1
r2;2

� a
=

a� 2

a
: (3.10)

If a; z satisfy 0 < z < �(a), we have P (a�2
a
) < 0. Since P (x) is concave,

by (3.9) we obtain that U(k; p; q) < 0. Furthermore, the zero of Q(x) is
obviously larger than the zero of P (x) in (0; 1). By the concavity of Q(x), we
also obtain P (a�2

a
) < 0 and which implies U(h; p; q) < 0. Hence, the proof is

complete.

Corollary 3.1 Under the same assumptions of lemma 3.1, we have rm+1;m <
rm;m�1 for all integer m > 1.

Now, if z is �xed, since lim
p!1

rp = r1 and r1(z) is an increasing function

of z, by lemma 3.1, we obtain that there exists a maximal positive integer
p(z) such that (2.4) holds for sequence frp;p�1(z)g with p = 3; 4; � � � ; p(z) and
no rm;m�1(z) satis�es (2.4) with m > p(z). As demonstrated later that this
observation reveals the stair-case structure of entropy function h of T . For
completeness, this study recalls the de�nitions and some results of entropy
for a dynamical system. Details can be found in [Bowen, 1973] or [x1.6,
Afraimovich & Hsu, 1998].

10



De�nition 3.1 Let G : X �! X be a dynamical system on the complete
metric space X and S � X be an invairant set.

(i) The set �n(x) = fGk(x)gn�1k=0 is called an orbit segment of temporal
length n. Two segments �n(x) and �n(y) are said to be (n; �)-separated if
thers exists k 2 Z1; 0 � k � n� 1, such that dist(Gk(x); Gk(y)) � �.

(ii) Let Sn;� be a set of segments of temporal length n such that
(a) if �n(x);�n(y) 2 Sn;�, then they are (n; �)-separated;
(b) if w 2 S and �n(w) =2 Sn;�, then there is x 2 S such that �n(x) 2 Sn;�

and dist(Gkx;Gkw) < � for each k = 0; 1; � � � ; n� 1.
De�ne ~Cn;� = ]Sn;�, the number of elements of the set Sn;� and Cn;� =

inf
Sn;�

~Cn;�. Then, the entropy function of G, denoted by h(G), is de�ned as

follows:

h(G) = lim
�!0

lim
n!1

lnCn;�

n
: (3.11)

Proposition 3.1 ([x2.4,Afraimovich & Hsu, 1998] & [Robinson, 1995]) Let
�M : �M �! �M being a subshift of �nite type with the transition matrix
M on N symbols. Denoted by Kn the number of admissible words of length
n+ 1, then the entropy of �M is equal to

h(�M ) = lim
n!1

lnKn

n
= lnj�1j;

where �1 is the real eigenvalue of M such that j�1j � j�jj for all other eigen-
values �j of M .

By Proposition 3.4, we must �nd a subshift of �nite type such that T is
topologically conjugate to the subshift. The subshift can be constructed by
�nding some subintervals of In(�1; 1) with the covering relation as shown in
the proof of the main theorem later.

De�nition 3.2 An interval I1 T -covers an interval I2 provided I2 � T (I1).
This study writes I1 ! I2.

Proof of Main Theorem.

First, we consider the case r > r1(z), i.e. A2 > C2 and B2 > D2. Let
R+
1 (r) and R�1 (r) be the �rst components of the intersection points of AB

with u = +1 and u = �1, respectively. A simple computation produces

R�1 (r) =
1� 2r + rz

1� ra
and R+

1 (r) =
1 + rz

1� ra
: (3.12)

Then, the continuity of T (v; r) with respect to r and lemma 3.1 make it easy
to prove that for any positive integer 2 < p � p(z), there exists a unique
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rp;p�1 > 0 such that fT i(C2; rp;p�1)gi=1i=�1 is a 2p � 1-periodic orbit, i.e. of
(p; p � 1) type. Where p(z) is the largest integer such that rp(z) less than
r1(z). Restated, after 2p� 1 iteration, (v; T (v; rp;p�1)) maps C to B and B
to C respectively.
Denote

R+ = (R+
1 ; R

+
2 ) = AB

Tfu = 1g; R� = (R�1 ; R
�

2 ) = AB
Tfu = �1g;

L+ = (L+
1 ; L

+
2 ) = CD

Tfu = 1g, L� = (L�1 ; L
�

2 ) = CD
Tfu = �1g,


r = f(v; u)j jvj � ra� 2r + 1

1� ra
and juj � ra� 2r + 1

1� ra
g;

here fu = D2gTCD = (
2r � ra� 1

1� ra
; 1�a�z) and 
r � 
. Figures 4 and 5

give the 5-periodic orbit and 7-periodic orbit of T at r3;2 and r4;3, respectively.
Now, if 3 � p � p(z) and rp;p�1 � r < rp�1;p�2 or r1(z) < r < rp(z);p(z)�1,
de�ne the 2p� 1 stable subintervals by

Ip+1 = (1; R�2 ); Ip+k = (T�k+1(R+
2 ); T

�k(R�2 )) for k = 1 to p� 2:

and

Ip = (L+
2 ;�1); Ip�k = (T�k(L+

2 ); T
�k+1(L�2 )) for k = 1 to p� 1:

        u=T(v)
  u=v

v

 u

-1 0 1

    B

  C

D

  R+   L +

L- R-

  I5I4    I 3    I 2   I 1

Fig. 4. Graph of T in (3; 2) type and its stable subintervals.
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A

B    D

    C

  u

v

R+   L +

R-   L -

0 1-1

     u=v   u=T(v)

    I
6
I

7   I 5
   I

4I
1
I

2 
I
3

Fig. 5. Graph of T in (4; 3) type and its stable subintervals.

The 2p� 1 subintervals have the following covering relation:

Ii �! Ii+1 for i = 1 to p� 1;

Ip �! Ij for j = p+ 1 to 2p� 2;

Ip+1 �! Ik for k = 2 to p;

Il �! Il�1 for l = p+ 2 to 2p� 1:

Therefore, we obtain the following transition matrix M �M [p; p� 1] of the
2p� 1 subshifts of �nite type.

0 1 0
0 10 0

0 0 1 0 0
0 1 1 0
110 0 0

1 0 000

0 0010
0100

0
0

p-th row with p-2 terms of 1

p+1-th row with p-1 terms of 1

    (2p-1)      (2p-1)

M=
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This study de�nes spaces �2p�1 and �M by

�2p�1 = f1; 2; � � � ; 2p� 1; 2p� 1gN,

�M = fs 2 �2p�1 : Msksk+1 = 1 for k = 0; 1; 2; � � �g,
with a metric on �M by

d(s; t) =
1P
k=0

Æ(sk; tk)

3k
,

for s = (s0; s1; � � �) and t = (t0; t1; � � �) in �M , where

Æ(i; j) =

(
0 if i = j;
1 if i 6= j:

Let �M : �M ! �M be the subshift of �nite type for the matrix M , i.e.
�(s) = t where tk = sk+1. Therefore, if rp;p�1 � r < rp�1;p�2 then there
exists an invariant subset �p in 
 such that T j�p

is topological conjugate to
the 2p� 1 subshift (�M ; �M) with entropy h equals to ln�p;p�1, where �p;p�1
is the positive maixmal root of characteristic polynomial of M . To derive
�p;p�1, we need the following lemma.

Lemma 3.2 Given p 2 Z1and p > 1, then the characteristic polynomial
g(x; p; p� 1) of transition matrix M [p; p� 1] is

g(x; p; p� 1) = x2(x2p�3 �
p�3P
i=0

xi
p�2P
j=0

xj):

Proof. By elementary matrix computation, see appendix A, we obtain

g(x; p; p� 1) = xg(x; p� 1; p� 1)� x2
p�3P
i=0

xi:

Where, g(x; p � 1; p � 1) is the characteristic polynomial of M with z = 0,
for details see [Hsu & Lin, 1999]. In [Hsu & Lin, 1999], we also have

g(x; p � 1; p � 1) = x2[x2p�4 � (
p�3P
i=0

xi)2]. Therefore, the result follows by

simple computation.

By lemmas 3.1 and 3.6, we proof results (i) and (ii) of the main theorem.
As for the assumption (iii) of the main theorem, it is equivalent to the con-
ditions of (2) and (3) in lemma 2.2. By the same arguments, we obtain the
entropy h of T is zero, see e.g. Fig. 6. In case (iv), which is equivalent to the
conditions of (4) and (5) in lemma 2.2., we know that D2 > B2 and C2 � A2
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in Fig. 7 such that the behavior of the map T resembles that of the logistic
map as discussed in (Theorem 5.2. [Robinson, 1995]). Therefore, there exists
an invariant Cantor set such that T is topologically conjugate to a one-sided
Bernoulli shift of two symbols. Since the entropy of the one-sided Bernoulli
shift of two symbols is ln2, the result follows by Proposition 3.4.
Finally, since lim

z!0
r1(z) = r1, by lemma 3.1 we obtain that p(z) is a decreas-

ing function of z with lim
z!0

p(z) = 0. The proof is complete.

v

    u=v u=T(v)
u

A  B

C  D

  10-1

I1    I 2
I3

I4

Fig. 6. Graph of T with r = r1(z) and its stable subintervals.
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  D

   I 1   I 2     I 3
   I 4

10-1
v

   u

u=T(v)
u=v
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Fig. 7. Graph of T with r = �r1(z) and its stable subintervals.

Remark. (i) If we consider the output function are not symmetric, i.e.
r 6= ` in (1.2), then lemma 3.1 is no longer valid. In fact, there exists many
di�erent m;n such that r = rm;n lies between rp and rp�1 for any p � 3
and T is of (m,n) type. Hence, by the similar arguments in the proof of
the main theorem, we also obtain transition matrix M [m;n] such that the
corresponding characteristic ploynomial g(x;m;n) is

g(x;m;n) = x2(xm+n�2 �
m�2X
i=0

xi
n�2X
j=0

xj): (3.13)

(ii) By some further computation, the ordering relation of the maximal root
�m;n of g(x;m;n) can also be obtained as following lemma.

Lemma 3.3 Given (m1; n), (m2; n+1) and m1 > m2, then g(�m1;n;m2; n+
1) < 0. Moreover, we have

(1) If n1 > n2 then �m1;n1 > �m2;n2.
(2) If n1 = n2 and m1 > m2 then �m1;n1 > �m2;n2.

Proof. Since

xm1�m2+ng(�m1;n;m2; n+ 1)

=
n�2X
i=0

xi[
m1�m2+n�1X

i=n+1

xi �
m1�2X
i=0

xi]�
m1+n�3X

m1�m2+2n�1

xi

< 0;

the results follows.
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Appendix

To compute the g(�; p; p�1) ofM in the proof of the main theorem, This
work only computes the special case when m = 6. For other m, g(�; p; p� 1)
can be obtained analogously.

If m = 6 then

det[M(6; 5)] = det

2
666666666666666666664

�� 1 0 0 0 0 0 0 0 0 0
0 �� 1 0 0 0 0 0 0 0 0
0 0 �� 1 0 0 0 0 0 0 0
0 0 0 �� 1 0 0 0 0 0 0
0 0 0 0 �� 1 0 0 0 0 0
0 0 0 0 0 �� 1 1 1 1 0
0 1 1 1 1 1 �� 0 0 0 0
0 0 0 0 0 0 1 �� 0 0 0
0 0 0 0 0 0 0 1 �� 0 0
0 0 0 0 0 0 0 0 1 �� 0
0 0 0 0 0 0 0 0 0 1 ��

3
777777777777777777775

= det

2
666666666666666666664

�� 1 0 0 0 0 0 0 0 0 0
0 �� 1 0 0 0 0 0 0 0 0
0 0 �� 1 0 0 0 0 0 0 0
0 0 0 �� 1 0 0 0 0 0 0
0 0 0 0 �� 1 0 0 0 0 0
0 0 0 0 0 �� 1 1 1 1 0
� 0 1 1 1 1 �� 0 0 0 0
0 0 0 0 0 0 1 �� 0 0 0
0 0 0 0 0 0 0 1 �� 0 0
0 0 0 0 0 0 0 0 1 �� 0
0 0 0 0 0 0 0 0 0 1 ��

3
777777777777777777775

= ��g(�; 5; 5) + �2det

2
6664
1 1 1 1
1 �� 0 0
0 1 �� 0
0 0 1 ��

3
7775

= ��g(�; 5; 5) + �2det

" �1� �� �2 �1
1 ��

#

Hence g(�; 6; 5) = det[M(6; 5)] = ��g(�; 5; 5) + �2
3P

i=0
�i:

Induction produces

g(�; p; p� 1) = ��g(�; p� 1; p� 1) + �2det

" ��p�4 � �p�2 � � � � 1 �1
1 ��

#
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= ��g(�; p� 1; p� 1) + �2
p�3X
i=0

�i:

By [Hsu & Lin, 1999], we know that

g(�; p� 1; p� 1) = �2[�2p�4 � (
p�3X
i=0

�i)2];

and the formula of Lemma 3.6 is obtained by simple computation.
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