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‘After that he always chose out a “dog command” and sent them ahead. It had the task of

informing the inhabitants in the village where we were going to stay overnight that no dog must

be allowed to bark in the night otherwise it would be liquidated. I was also on one of those

commands and when we came to a village in the region of Milevsko I got mixed up and told

the mayor that every dog-owner whose dog barked in the night would be liquidated for strategic

reasons. The mayor got frightened, immediately harnessed his horses and rode to headquarters

to beg mercy for the whole village. They didn’t let him in, the sentries nearly shot him and so

he returned home, but before we got to the village everybody on his advice had tied rags round

the dogs muzzles with the result that three of them went mad.’

– The good soldier Svejk, Jaroslav Hasek

1 Martingales

1.1 Preliminaries

Let X and Y be two random variables. Let ρ(x, y) = Pr[(X = x) ∩ (Y = y)]. Then,

Pr
[
X = x

∣∣∣Y = y
]

=
ρ(x, y)

Pr[Y = y]
=

ρ(x, y)∑
z ρ(z, y)

and

E
[
X
∣∣∣Y = y

]
=
∑

x

xPr
[
X = x

∣∣∣Y = y
]

=
∑

x xρ(x, y)∑
z ρ(z, y)

=
∑

x xρ(x, y)
Pr[Y = y]

.

Definition 1.1 The random variable E
[
X
∣∣∣Y ] is the random variable f(y) = E

[
X
∣∣∣Y = y

]
.

Lemma 1.2 E
[
E
[
X
∣∣∣Y ]] = E

[
Y
]
.

Proof:

E
[
E
[
X
∣∣∣Y ]] = EY

[
E
[
X
∣∣∣Y = y

]]
=
∑

y

Pr[Y = y]E
[
X
∣∣∣Y = y

]
=

∑
y

Pr[Y = y]
∑

x xPr[X = x ∩ Y = y]
Pr[Y = y]

=
∑

y

∑
x

xPr[X = x ∩ Y = y] =
∑

x

x
∑

y

Pr[X = x ∩ Y = y]

=
∑

x

xPr[X = x] = E[X] .
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Lemma 1.3 E
[
Y ·E

[
X
∣∣∣Y ]] = E[XY ].

Proof:

E
[
Y ·E

[
X
∣∣∣Y ]] =

∑
y

Pr[Y = y] · y ·E
[
X
∣∣∣Y = y

]
=

∑
y

Pr[Y = y] · y ·
∑

x xPr[X = x ∩ Y = y]
Pr[Y = y]

=
∑

x

∑
y

xy ·Pr[X = x ∩ Y = y] = E
[
XY

]
.

1.2 Martingales

Definition 1.4 A sequence of random variables X0, X1, . . . , is said to be a martingale sequence if
for all i > 0, we have E

[
Xi

∣∣∣X0, . . . , Xi−1

]
= Xi−1.

Lemma 1.5 Let X0, X1, . . . , be a martingale sequence. Then, for all i ≥ 0, we have E[Xi] = E[X0].

An example for martingales is the sum of money after participating in a sequence of fair bets.

Example 1.6 Let G be a random graph on the vertex set V = {1, . . . , n} obtained by indepen-
dently choosing to include each possible edge with probability p. The underlying probability space
is called Gn,p. Arbitrarily label the m = n(n− 1)/2 possible edges with the sequence 1, . . . ,m. For
1 ≤ j ≤ m, define the indicator random variable Ij , which takes values 1 if the edge j is present
in G, and has value 0 otherwise. These indicator variables are independent and each takes value 1
with probability p.

Consider any real valued function f defined over the space of all graphs, e.g., the clique number,
which is defined as being the size of the largest complete subgraph. The edge exposure martingale
is defined to be the sequence of random variables X0, . . . , Xm such that

Xi = E
[
f(G)

∣∣∣ I1, . . . , Ik

]
,

while X0 = E(f(G)] and Xm = f(G). The fact that this sequence of random variable is a martingale
follows immediately from a theorem that would be described in the next lecture.

One can define similarly a vertex exposure martingale, where the graph Gi is the graph induced
on the first i vertices of the random graph G.

Theorem 1.7 (Azuma’s Inequzality) Let X0, . . . , Xm be a martingale with X0 = 0, and |Xi+1−
Xi| ≤ 1 for all 0 ≤ i < m. Let λ > 0 be arbitrary. Then

Pr
[
Xm > λ

√
m
]

< e−λ2/2.

Proof: Let α = λ/
√

m. Let Yi = Xi −Xi−1, so that |Yi| ≤ 1 and E
[
Yi

∣∣∣X0, . . . , Xi−1

]
= 0.

We are interested in bounding E
[
eαYi

∣∣∣X0, . . . , Xi−1

]
. Note that, for −1 ≤ x ≤ 1, we have

eαx ≤ h(x) =
eα + e−α

2
+

eα − e−α

2
x,
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as eαx is a convex function, h(−1) = e−α, h(1) = eα, and h(x) is a linear function. Thus,

E
[
eαYi

∣∣∣X0, . . . , Xi−1

]
≤ E

[
h(Yi)

∣∣∣X0, . . . , Xi−1

]
= h

(
E
[
Yi

∣∣∣X0, . . . , Xi−1

])
= h(0) =

eα + e−α

2

=
(1 + α + α2

2! + α3

3! + · · · ) + (1− α + α2

2! −
α3

3! + · · · )
2

= 1 +
α2

2
+

α4

4!
+

α6

6!
+ · · ·

≤ 1 +
1
1!

(
α2

2

)
+

1
2!

(
α2

2

)2

+
1
3!

(
α2

2

)3

+ · · · = eα2/2

Hence,

E
[
eαXm

]
= E

[
m∏

i=1

eαYi

]
= E

[(
m−1∏
i=1

eαYi

)
eαYm

]

= E

[(
m−1∏
i=1

eαYi

)
E
[
eαYm

∣∣∣X0, . . . , Xm−1

]]
≤ eα2/2 E

[
m−1∏
i=1

eαYi

]
≤ emα2/2

Therefore, by Markov’s inequality, we have

Pr
[
Xm > λ

√
m
]

= Pr
[
eαXm > eαλ

√
m
]

=
E
[
eαXm

]
eαλ

√
m

= emα2/2−αλ
√

m

= exp
(
m(λ/

√
m)2/2− (λ/

√
m)λ

√
m
)

= e−λ2/2,

implying the result.
Alternative form:

Theorem 1.8 (Azuma’s Inequzality) Let X0, . . . , Xm be a martingale sequence such that and
|Xi+1 −Xi| ≤ 1 for all 0 ≤ i < m. Let λ > 0 be arbitrary. Then

Pr
[
|Xm −X0| > λ

√
m
]

< 2e−λ2/2.

Example 1.9 Let χ(H) be the chromatic number of a graph H. What is chromatic number of a
random graph? How does this random variable behaves?

Consider the vertex exposure martingale, and let Xi = E
[
χ(G)

∣∣∣Gi

]
. Again, without proving

it, we claim that X0, . . . , Xn = X is a martingale, and as such, we have: Pr[|Xn −X0| > λ
√

n] ≤
e−λ2/2. However, X0 = E[χ(G)], and Xn = E

[
χ(G)

∣∣∣Gn

]
= χ(G). Thus,

Pr
[∣∣∣χ(G)− E

[
χ(G)

]∣∣∣ > λ
√

n
]
≤ e−λ2/2.

Namely, the chromatic number of a random graph is high concentrated! And we do not even know,
what is the expectation of this variable!
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2 Even more probability

Definition 2.1 A σ-field (Ω,F) consists of a sample space Ω (i.e., the atomic events) and a col-
lection of subsets F satisfying the following conditions:

1. ∅ ∈ F.

2. C ∈ F ⇒ C ∈ F.

3. C1, C2, . . . ∈ F ⇒ C1 ∪ C2 . . . ∈ F.

Definition 2.2 Given a σ-field (Ω,F), a probability measure Pr : F → IR+ is a function that
satisfies the following conditions.

1. ∀A ∈ F, 0 ≤ Pr[A] ≤ 1.

2. Pr[Ω] = 1.

3. For mutually disjoint events C1, C2, . . . , we have Pr[∪iCi] =
∑

i Pr[Ci].

Definition 2.3 A probability space (Ω,F,Pr) consists of a σ-field (Ω,F) with a probability measure
Pr defined on it.
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