Concentration Inequalities

Lecturer: Dr. Hong-GwaS Yeh Department of Mathematics National Central University hgyeh@math.ncu.edu.tw

A simple Start

Thm (Marrovs Inequality)
For $t>0$, we have

$$
\begin{aligned}
& t>0 \text {, we have } \\
& \mathcal{P}(|X| \geq t) \leqslant \frac{\varepsilon|X|}{t}
\end{aligned}
$$

pf:

$$
\begin{aligned}
\varepsilon|x|=\int_{\Omega}|x| d \rho & \geq \int_{|x| \geq t}|x| d \rho \\
& \geq t \rho(|x| \geq t)
\end{aligned}
$$

QED

Chernoff's Inequality
Thy: $X_{1}, X_{2}, \cdots, X_{n} \xrightarrow{i 4} B(1, P)$. Let $\lambda=n p$ and $S_{n}=\sum_{i=1}^{n} X_{i}$. Then, for $0 \leq t \leq n-\lambda$.
pf: For $u \geq 0$

$$
\begin{aligned}
& \operatorname{Fror} u \geq 0 \\
& \operatorname{Pr}\left\{S_{n} z E S_{n}+t\right\} \leq e^{-4(\lambda+t)} \prod_{i=1}^{n} E e^{u x_{i}} \\
&=e^{-4(n+t)}\left(1-p+p e^{4}\right)^{n}
\end{aligned}
$$

let $f(x)=x^{-(\lambda+1)}(1-p+p x)^{n}$

$$
f^{\prime}(x)=-(\lambda+t) x^{-(\lambda+x+1)}(1-p+p x)^{n}+n p x^{-(\lambda+t)}(1-p+p x)^{n-1}
$$

and $f^{\prime}(x)=0 \Rightarrow \hat{X}=\frac{(1-p)(\lambda+t)}{(n-\lambda-t) p}$
$f(x)$ attans its minimum at \hat{x}. assume $n-\lambda-t=0$ ie $¥$ attains its minimum at $e^{u}=\hat{x} \quad$ "

This yields

$$
\begin{aligned}
P\left\{S_{n} \geq E S_{n}+t\right\} & \leqslant\left(\frac{(\lambda+t)(1-p)}{(n-\lambda-t) p}\right)^{-(\lambda+t)}\left(1-p+\frac{(1-p)(\lambda+t)}{(n-\lambda-t)}\right)^{n} \\
& =\left(\frac{\lambda+t}{n-\lambda-t}\right)^{-(\lambda+t)}\left(\frac{1 p}{p}\right)^{-(t+t)}(1-p)^{n}\left(\frac{n}{n-\lambda-t}\right)^{n}
\end{aligned}
$$

Next we me the fact ie. $p=\frac{\lambda}{n}$ to get

$$
P_{r}\left\{S_{n} z E S_{n}+\lambda\right\} \leqslant\left(\frac{\lambda}{\lambda+t}\right)^{\lambda+\lambda}\left(\frac{n-\lambda}{n-\lambda-t}\right)^{n-\lambda-t} \text { as } 0 \leqslant t \leq n-\lambda \text {. }
$$

QED

Chernoff's bounding technique
If S is an arbitrary positive number then for any riv. X and any $t>0$,

$$
P(x \geq t)=P\left(e^{\Delta x} z e^{\Delta t}\right) \leqslant \frac{\varepsilon e^{\Delta x}}{e^{\Delta t}}
$$

In chernoff's method, we find $s>0$ that makes the upper bound small.

Extensions of Chernoff's Ineg. Can be derived from....
Lemma*: Let $X_{1}, \cdots: X_{n}$ be independent with $0 \leq X_{i} \leq 1$ for each i. Let $p=\frac{\varepsilon S_{n}}{n}$, where $S_{n}=\sum_{i=1}^{n} X_{i}$.
Then for any $0 \leq t<1-P$,

$$
P\left(S_{n}-\varepsilon S_{n} \geq n t\right) \leqslant\left(\left(\frac{p}{P+t}\right)^{p+t}\left(\frac{1-p}{1-p-t}\right)^{p+t}\right)^{n}
$$

$$
\text { pf: } P\left(S_{n} \geq n p+n t\right) \leq e_{-u(n+n+t)}^{-u(n+n t)} \pi_{i=1}^{n} \varepsilon e^{u x_{i}} \text {, where } u>0
$$

$$
\begin{aligned}
& \leqslant e^{-u(n p+n t)} \prod_{i=1}^{n} \varepsilon\left(1-x_{i}+x_{i} e^{u}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left[e^{-u(p+t)}\left(1-p+p e^{u}\right)\right]^{n} \\
& =\text { RHS by letting } \\
& e^{u}=\frac{(p+t)(1-p)}{p(1-P-t)}
\end{aligned}
$$

Weaker but more useful bounds
Thy: Let $X_{1}, X_{2}, \cdots, X_{n}$ be independent rvs st. $0 \leqslant X_{i} \leqslant 1$ for each i. Let $p=\frac{\varepsilon S_{n}}{n}$, where $S_{n}=\sum_{i=1}^{n} x_{i}$. Then
(a) For any $\epsilon>0$,

$$
\begin{aligned}
P\left(S_{n} \geq(1+\epsilon) n p\right) & \leq \exp (-n p((1+\epsilon) \ln (1+\epsilon)-\epsilon)) \\
& \leqslant \exp \left(-\frac{\epsilon^{2} n p}{2(1+\epsilon / 3)}\right)
\end{aligned}
$$

(b) For any $\in>0$,

$$
\rho\left(S_{n} \leqslant(1-\epsilon) n_{p}\right) \leqslant \exp \left(-\frac{1}{2} \epsilon^{2} n p\right)
$$

bf of (a) In the proof of Lemma*,
let $t=\epsilon P$ and $e^{u}=(1+\epsilon)$, then we have

$$
\begin{aligned}
& P\left(S_{n} \geq(1+\epsilon) n p\right) \\
= & P\left(S_{n} \geq n p+n t\right) \\
\leqslant & {\left[(1+\epsilon)^{-(1+\epsilon)}(1+\epsilon p)\right]^{n} \quad(\text { by the proof of Lemma } *) } \\
\leqslant & {\left[(1+\epsilon)^{-(1+\epsilon)}(1+\epsilon p)^{\frac{1}{p}}\right]^{n p} } \\
\leqslant & {\left[(1+\epsilon)^{-(1+\epsilon)} e^{\epsilon}\right]^{n p}\left(\because 1+\epsilon p \leqslant e^{\epsilon p}\right) }
\end{aligned}
$$

this proves the first inequality in (a).

If of (a): Claim For all $x \geq 0,(1+x) \ln (1+x)-x \geq \frac{3 x^{2}}{6+2 x}$.
Note that $\boldsymbol{*}=e^{-n p[(1+\epsilon) \ln (1+\epsilon)-\epsilon]}$

$$
\leq e^{-n p \frac{3 \epsilon^{2}}{6+2 \epsilon},} \text { done }
$$

pf of (b): Let $f(t)=\ln \left(\left(\frac{p}{p+t}\right)^{p+t}\left(\frac{1-p}{1-p-t}\right)^{1-p-t}\right)$
Let $h(x)=f(-x p)$ for $0 \leq x<1$.
Then $h(0)=f(0)=0, h^{\prime}(0)=f^{\prime}(0)(-p)=0 \quad\left(\because f^{\prime}(t)=\ln \left(\frac{p(1-p-t)}{(p+t)(1-p)}\right)\right)$

$$
h^{\prime \prime}(x)=f^{\prime \prime}(-x p) p^{2}=-\frac{p}{(1-x)(1-p+x p)} \leq-p(\because 0 \leq 1-x \leq 1,0 \leq 1-p(1-x) \leq 1)
$$

(Note $\left.f^{\prime \prime}(t)=-\frac{1}{(p+t)(1-p-t)}\right)$

$$
\begin{aligned}
\text { Taylor Thm } \Rightarrow h(x) & =h(0)+h^{\prime}(0) x+h^{\prime \prime}(\theta) x^{2} \\
& \leq 0 \leq 0 \leq-\frac{p x^{2}}{2}
\end{aligned}
$$

Jo of (b) Lemma* implies that

$$
P\left(\left(n-S_{n}\right)-\left(n-\varepsilon S_{n}\right) \geq n t\right) \leq e^{f(t) n}
$$

$$
\begin{aligned}
& \text { let } t=\varepsilon p \text {. We have } \\
& \begin{array}{l}
P\left(S_{n} \leq(1-\varepsilon) \varepsilon S_{n}\right)=P\left(S_{n} \leq \varepsilon S_{n}-n t\right) \stackrel{\sum}{=} e^{f(t) n} \\
=e^{h\left(-\frac{t}{p}\right) n} \leq e^{-\frac{p}{2}\left(\frac{t}{p}\right)^{2} n}=e^{-\frac{1}{2} \epsilon^{2} n p} \\
\quad\left(\because h(x) \leq-\frac{p x^{2}}{2}, \text { for } 0 \leq x<1\right)
\end{array} \text { QED }
\end{aligned}
$$

Remark: The first inequality in (a) implies

$$
\begin{aligned}
& P\left(S_{n} \geq 2 \varepsilon S_{n}\right) \leqslant e^{-(0.386) \varepsilon S_{n}} \text { and } \\
& P\left(S_{n} \geq \delta \varepsilon S_{n}\right) \leqslant e^{-\delta \ln \left(\frac{f}{e}\right) \varepsilon S_{n}}
\end{aligned}
$$

The second inequality in (a) implies

$$
P\left(S_{n} z(1+\epsilon) \varepsilon S_{n}\right) \leqslant e^{-\frac{1}{3} \epsilon^{2} \varepsilon S_{n}}
$$

Hoeffding's Lemma
Lemma: $\varepsilon X=0, a \leq X \leq b$.
Then for any $s>0$,

$$
\varepsilon\left(e^{\Delta x}\right) \leqslant e^{\frac{\Delta^{2}(b-a)^{2}}{\delta}}
$$

Pf: Note that $e^{\Delta x} \leq\left(\frac{x-a}{b-a}\right)\left(e^{\Delta b}-e^{\Delta a}\right)+e^{\infty a}$ for $a \leq x \leq b$. It follows that

$$
\varepsilon e^{\Delta x} \leq \frac{-a}{b-a}\left(e^{\Delta b}-e^{\Delta a}\right)+e^{\Delta a}
$$

$=e^{\phi(u)}$, where $u \stackrel{\text { def }}{=} \rho(b-a), \phi(u) \stackrel{\text { def s }}{=}-p u+\ln \left(1-p+p e^{u}\right)$ and $p \stackrel{\text { def }}{=}-\frac{a}{b-a}$
Note that $\phi^{\prime}(u)=-p+\frac{p}{p+(1-p) e^{-u}}, \phi^{\prime \prime}(u)=\frac{p(1-p) e^{-u}}{\left(p+(1-p) e^{-u}\right)^{2}} \leq \frac{p(-p) \frac{p}{1-p}}{\left(p+(1-p) \frac{p}{p}\right)^{\frac{p}{4}}}=\frac{1}{4}$ Taylor's Thy \Rightarrow for some $\theta \in[0, u]$,

$$
\phi(u)=\underbrace{\phi(0)}_{0}+\underbrace{\phi^{\prime}(o) u}_{0} u+\frac{\phi^{\prime \prime}(\theta) u^{2}}{2} \leqslant \frac{u^{2}}{8}=\frac{s^{2}(b-a)^{2}}{8}
$$

Hoofing's Inequality
Th
Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent rus st. $a_{i} \leq X_{i} \leq b_{i}$ with probability one, $1 \leq i \leq n$. Then for any $t>0$ we have

$$
\begin{aligned}
& P\left(S_{n}-\varepsilon S_{n} \geq t\right) \leq \exp \left(-\frac{2 t^{2}}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}\right) \\
& P\left(S_{n}-\varepsilon S_{n} \leqslant-t\right) \leq \exp \left(-\frac{2 t^{2}}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}\right)
\end{aligned}
$$

Where $S_{n}=\sum_{i=1}^{n} x_{i}$.

地:

$$
\begin{aligned}
P\left(S_{n}-E S_{n} z t\right) & =p\left(e^{\Delta\left(S_{n}-E S_{n}\right)} z e^{\Delta t}\right) \\
& \leq e^{-\Delta t} E e^{\Delta\left(s_{n}-E s_{n}\right)} \\
& =e^{-\Delta t} \prod_{i=1}^{n} E e^{\Delta\left(x_{i}-E x_{i}\right)} \\
& \leqslant e^{-\Delta t} \prod_{i=1}^{n} e^{\Delta^{2}\left(b_{i}-a_{i}\right)^{2}} \\
8 & \text { by Hoeffding's Lemma } \\
& =e^{-\Delta t} e^{\Delta^{2}} \sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2} \quad\left(\because\left(b_{i}-x_{i}\right)^{-\left(a_{i} E_{i}\right)} \quad=b_{i}-a_{i}\right) \\
& =e^{-\frac{2 t^{2}}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}}\left(b_{y} \text { choosing } A=\frac{4 t}{\left.\sum_{i=1}^{n}{ }^{n}\left(b_{i}-a_{i}\right)^{2}\right)}\right.
\end{aligned}
$$

Chehyshev's Ineq. is Inadequate Let X_{1}, X_{2}, \cdots idid $B(1, p)$
 However, as $n \rightarrow \infty$, Contal Limit Thm suggesto that

$$
\begin{aligned}
& \leqslant \exp \left(-\frac{n \varepsilon^{2}}{2 p(-p)}\right)
\end{aligned}
$$

It seems Hoetding Ineq. is adequate.....

However....
Hoeffdingo' bound is independent of p, so it may loose if p is small (or large).
That is this inequality ignores information about the variance of the X_{i} 's.
The Bernstein's Inequality will give an answer.....

A Lemma first Lemma: If $|X| \leq c, \varepsilon X=0$ and $\operatorname{Var}(X)=\sigma^{2}$ then $\varepsilon\left(e^{a x}\right) \leqslant \exp \left(\frac{\sigma^{2}}{c}\left(e^{o c} 1-\infty\right)\right)$

$$
\text { BE: } \begin{aligned}
& e^{\Delta x}=1+A x+\sum_{r=2}^{\infty} \frac{(\Delta x)^{r}}{r!} \\
& \Rightarrow E e^{\Delta x}=1+\sum_{r=2}^{\infty} \frac{A^{r} E x^{r}}{r!} \quad(\because E x=0) \\
& \leqslant 1+\sum_{r=2}^{\infty} \frac{\lambda^{r} C^{r-2} \sigma^{2}}{r!}\left(\because E x^{r} \leq E|x|^{r-2} x^{2} \leqslant c^{r-2} \sigma^{2}\right) \\
& \text { for } r \geq 2 \\
&=1+\frac{\sigma^{2}}{c^{2}} \sum_{r=2}^{\infty} \frac{(\Delta c)^{r}}{r!} \\
&=1+\frac{\sigma^{2}}{c^{2}}\left(e^{\Delta c}-1-\Delta c\right) \\
& \leqslant e^{\frac{\sigma^{2}}{c^{2}}\left(e^{\Delta c}-1-\infty c\right)}\left(\because e^{x} \geq 1+x \quad \forall x\right)
\end{aligned}
$$

The Bennett's Inequality
Thy Let $X_{1}, X_{2}, \cdots, X_{n}$ be independent ww s with $\varepsilon X_{i}=0$ and $\left|X_{i}\right| \leq c, \mid \leq i \leq n$. Let $S_{n}=\sum_{i=1}^{n} X_{i}$ and $\sigma^{2}=\frac{1}{n} \sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)$. Then for any $t>0$,

$$
P\left(S_{n}>t\right) \leqslant \exp \left(-\frac{t}{c}\left(\left(1+\frac{n \sigma^{2}}{c t}\right) \ln \left(1+\frac{c t}{n \sigma}\right)-1\right)\right)
$$

The Proof
Proof:

$$
\begin{aligned}
P\left(S_{n}>t\right) & \leqslant e^{-\Delta t} E e^{\Delta S_{n}} \quad(\text { Markov's ineq }) \\
& =e^{-\Delta t} \|_{i=1}^{n} E e^{\Delta x_{i}} \\
& \leqslant e^{-\Delta t} \prod_{i=1}^{n} e^{\frac{\sigma s^{2}}{c^{2}}\left(e^{\Delta c}-\Delta c\right)} \text { by above lemma } \\
& =e^{-\Delta t} e^{\frac{n \sigma^{2}}{c^{2}}\left(e^{\Delta c}-\Delta c\right)}
\end{aligned}
$$

The last term io minimized for

$$
\Delta=\frac{1}{c} \ln \left(1+\frac{t c}{n \sigma^{2}}\right)
$$

Resubstituting this value, we obtain Bennett's ineq.

Bernstein's Inequality
Thy Under the conditions of Bennett's Inez, for $\varepsilon>0$, we have

$$
P\left(S_{n}>n \varepsilon\right) \leqslant \exp \left(-\frac{n \varepsilon^{2}}{2 \sigma^{2}+c \varepsilon}\right)
$$

Pf: Applying the following elementary ing. to Bennett's bound: $\ln (1+x) \geq \frac{2 x}{2+x}, x \geq 0$

$$
\begin{aligned}
& \text { Bennett's bound } \\
& \leq \operatorname{Bexpett}\left(-\frac{n \varepsilon}{c}\left(\left(1+\frac{n \sigma^{2}}{c \varepsilon n}\right)\left(\frac{2 \frac{c n \varepsilon}{n \sigma^{2}}}{2+\frac{c x \varepsilon}{n \sigma^{2}}}\right)-1\right)\right) \\
& =\exp \left(-\frac{n \varepsilon}{c}\left(\frac{c \varepsilon+\sigma^{2}}{c \varepsilon} \frac{2 c \varepsilon}{c \varepsilon+2 \sigma^{2}}-1\right)\right) \\
& =\exp \left(-\frac{n \varepsilon}{c} \frac{c \varepsilon}{2 \sigma^{2}+\varepsilon}\right)=\exp \left(-\frac{n \varepsilon^{2}}{2 \sigma^{2} c \varepsilon}\right)
\end{aligned}
$$

What'sater Bemsteins inez.....
Poisson-type Inequality
Thy let $X_{1}, X_{2}, \cdots, X_{n}$ be independent ins with $0 \leq X_{i} \leq 1 \quad \forall i$ and $m=\varepsilon S_{n}$.
Then for any $t \geq m$.

$$
P\left(S_{n} \geq t\right) \leqslant\left(\frac{m}{t}\right)^{t} e^{t-m}
$$

pf: let $m_{i}=E X_{i}$.

$$
\begin{aligned}
& P\left(S_{n} \geq t\right) \leqslant e^{-\Delta t} \prod_{i=1}^{n} E e^{\Delta X_{i}} \\
& \leqslant e^{-\Delta t} \prod_{i=1}^{n} E\left(X\left(e^{A}-1\right)+1\right) \quad(: \\
& =e^{-\Delta t} \prod_{i=1}^{n}\left[1+m_{i}\left(e^{A}-1\right)\right] \\
& \leqslant e^{-\Delta t} \prod_{i=1}^{n} e^{m i\left(e^{A}-1\right)}=e^{-\Delta t} e^{m\left(e^{A}-1\right)} * \\
& \leqslant\left(\frac{m}{t}\right)^{t} e^{t-m} \text { by choosing } \Delta=\ln \left(\frac{t}{m}\right)
\end{aligned}
$$

to minimizes the bound $*$ QED

An extension of Hoeffding's Lemma Lemma: Suppose for $r v$ and r.vector $\underset{\sim}{x}$ we have (1) $\varepsilon(V \mid \underset{\sim}{x})=0$ ass. (2) $f(\underset{\sim}{x}) \leqslant V \leqslant f(\underset{\sim}{x})+c$, for some fun. f and Then for any $s>0, \varepsilon\left(e^{\Delta V} \mid x\right) \leqslant e^{\frac{D^{2} c^{2}}{\delta}}$ pf: Note that

$$
\begin{aligned}
& \text { PI: Note that } \\
& e^{\Delta v} \leq \frac{V-f(\underline{x})}{c}\left(e^{\Delta f(x)+c)}-e^{\Delta f(x)}\right)+e^{\Delta f(x)} f(x(x) f(x) 0 \\
& \text { Thus } \varepsilon\left(e^{\Delta v} \mid x\right)=\frac{-f(x)}{c}\left(e^{o(f(x)+c)}-e^{\Delta f(x)}\right)+e^{\Delta f(x)}
\end{aligned}
$$

The remains is similar to Hoeffdingo Lemma.

McDiarmid's Inequality
ThY: Let $X_{1}, X_{2}, \cdots, X_{n}$ be independent rvs. Let f be a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with a vector $\left(c_{1}, c_{2}, \cdots, c_{n}\right)$ s.t. $\left|f(x)-f\left(y_{\sim}\right)\right| \leq c_{i}$ for all $\underset{\sim}{x}, y$ in \mathbb{R}^{n} that differ only at the isth coordinate, $1 \leq i \leq n$. Then for any $t>0$,

$$
P\left(\left|f\left(x_{1}, \cdots, x_{n}\right)-\varepsilon f\left(x_{1}, \cdots, x_{n}\right)\right| \geq t\right) \leqslant 2 e^{-\frac{2 t^{2}}{\sum_{i=1}^{n} c_{i}^{2}}}
$$

hf: Let $\underset{\sim}{x}=\left(x_{1}, \cdots, x_{n}\right), z_{0}=\varepsilon f(x), z_{i}=\varepsilon\left(f\left(x_{\sim}^{x}\right) \mid x_{1} \cdots, x_{i}\right), z_{n}=f(x)$.

nf: Let $U_{k}=\sup _{u}\left\{\varepsilon\left(f(x) \mid x_{1}, \cdots, x_{k-1}, u\right)-\varepsilon\left(f(x) \mid x_{1}, \cdots, x_{k-1}\right)\right\}$

$$
L_{k}=\inf _{l}\left\{\varepsilon\left(f\left(x_{1}| | x_{1}, \cdots, x_{k-1} l\right)-\varepsilon\left(f(x) \mid x_{1}, \ldots, x_{k-1}\right)\right\}\right.
$$

Note that $U_{k}-L_{k} \leq \sup _{l, 4}\left\{\varepsilon\left(f\left(x_{2}\right) \mid x_{1}, \cdots, x_{k-1}, 4\right) \varepsilon\left(f(x) \mid x_{1}, \ldots, x_{k+1}, l\right)\right\}_{n}$
$\leq C_{k} \quad(\because$ Lipchitz condition)
So $L_{k} \leq Z_{k}-Z_{k-1} \leq U_{k} \leq L_{k}+C$ and hence the -claim is true by the extension of Hoeffdingo lemma, since $\varepsilon\left(Z_{k}-z_{k-1} \mid x_{1} \cdots, x_{k-1}\right)=0$ ass.

If (continued)

$$
\begin{aligned}
& \operatorname{Pr}\{f(x)-\varepsilon f(x) \geq t\} \\
& \leq e^{-\rho t} \varepsilon e^{-[f(x)-\varepsilon f(x)]} \\
& =e^{-\Delta t} \varepsilon e^{\Delta \sum_{k=1}^{n}\left[z_{k}-z_{k-1}\right]} \\
& =e^{-\Delta t} \varepsilon\left(\varepsilon\left(e^{\Delta \sum_{k i}^{n}\left[z_{k}-z_{k-1}\right]} \mid x_{1}, \cdots, x_{n-1}\right)\right) \\
& =e^{-\Delta t} \varepsilon\left(e^{-\sum_{k=1}^{n-1}\left(z_{k}-z_{k-1}\right]} \varepsilon\left(e^{\infty\left(z_{n-1}-z_{n-1}\right)} \mid x_{1}, \ldots, x_{n-1}\right)\right) \\
& \leq e^{-s t} \varepsilon\left(e^{\Delta \sum_{k_{1}^{2}=1}^{n-1}\left[z_{k}-z_{k-1}\right]} e^{\Delta^{\Delta_{k}^{2} C_{k}^{2}}}\right. \\
& \begin{array}{l}
\leq e^{-\Delta t} \varepsilon\left(e^{-\Delta t} e^{\Delta^{2} c_{k}^{2}}\right. \\
\leq e^{-\Delta t} \|_{k=1}^{n} e^{\frac{8}{8}} \text { (by repeating the name a argunentit n times) }
\end{array} \\
& \leq e^{-a s+A^{2} \sum_{k=1}^{n} \frac{c_{k}^{2}}{8}} \leq e^{-\frac{2 t^{2}}{\sum_{k}^{2} c_{k}^{2}}} \quad \text { by choosing } s=\frac{4 t}{\sum_{k=}^{n} C_{k}^{2}}
\end{aligned}
$$

QED

Bin Packing

- The Bin Packing Problem requires finding the minimum number of unit size bins needed to pack a given collection of items with sizes in $[0,1]$. In our model, we have n items to pack, and the size of items are X_{1}, \ldots, X_{n}, i.i.d. over $[0,1]$. We use a fixed procedure for packing.

Ref:
Rhee \& Talagrand (1987) "Martingale inequalities and NP-complete problem" Math. of Oper. Res., 12, 177-181.

Bin Packing
Discussion: We denote by $f\left(x_{1}, \cdots, x_{n}\right)$ the number of b ins needed to pack $X_{1}, X_{2}, \cdots, X_{n}$ using proceduce \mathscr{A}.
(a) If $s A$ is optimum then f is 1 -Lipchitz. McDinammitid Ing. says that $P(|f(\underset{\sim}{x})-\varepsilon f(\underset{\sim}{x})|>t) \leq 2 e^{-\frac{2 z^{2}}{n}}$
(b) If A is the procedure Next Fit then f is 2 -Lipschity, and hence $P(|f(x)-\varepsilon f(x)|>t) \leqslant 2 e^{-\frac{t^{2}}{n}}$

Next Fit Procedure

- Where the bins are filled one at a time and a new bin is started when the current element does not fit in the bin being currently filled. To see f is 2-Lipschitz:
$\left(x_{1}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n}\right)$

Concentration of the Chromatic Number
The (shamir-Spencer) let $n \geq 2$ and $p \in(0,1)$.
Then we have

$$
P\left(\left|X\left(G_{n, p}\right)-\varepsilon X\left(G_{n p}\right)\right| \geq t\right) \leqslant 2 e^{-\frac{2 t^{2}}{n-1}}
$$

 With probability measure $P(\omega)=p m$ ($(1-)^{(s)-m}$ whee $m=E E(\omega)$.
 Sometimes we consider $G_{n, p}$ as a prob. space.
pf: Let ${\underset{\sim}{1}}^{x}=\left(X_{12}, X_{13}, x_{14}, \ldots, X_{1 n}\right)$

$$
\begin{aligned}
& \dot{X}_{n-2}=\left(X_{n-2, n-1}, X_{n-2, n}\right) \quad n-2<_{n}^{n-1} \\
& {\underset{\sim}{X}}_{n-1}=X_{n-1, n} \quad n-1 \longrightarrow n
\end{aligned}
$$

We have $X\left(G_{n, p}\right)=f\left(\underline{x}_{1},{\underset{x}{2}}^{2}, \cdots,{\underset{x}{n-1}}\right)$ for some function f. Note that $f: S_{1} \times S_{2} \times \cdots \times S_{n-1} \rightarrow \mathbb{R}$, where $S_{i}=\{0,1\}^{n-i}$, and f is a 1 -lipschitz function.
By McDiarmids Inequality, we arrive at

$$
P\left(\left|X\left(G_{n, p}\right)-\varepsilon X\left(G_{n \cdot p}\right)\right| \geq t\right) \leq 2 e^{-\frac{2 t^{2}}{n-1}}
$$

A Remark on Shamir-Sperness' The.

- Since $P\left(\mid X\left(G_{\text {m. }}\right)-\varepsilon X\left(G_{\text {mp }} \mid \geq t \sqrt{n-1}\right) \leqslant 2 e^{-2 t^{2}}\right.$ so the chromatic number is almost always concentrated on about $O(\sqrt{n})$ values.
- Note that we have no clue to what the value of $\mathcal{X}\left(G_{n, p}\right)$ is.

A technique lemma...
Thin Let α, c be fixed and $\alpha>\frac{5}{6}$. Let $p=n^{-\alpha}$. Then almost always every $c \sqrt{n \log n}$ vertices of $G_{n, p}$ induce a 3-colorable subgraph.
pf: $P\left(\forall\right.$ subgaph H of $G_{n . p}$ with $\nu_{H} \leqslant \sqrt{n \log _{n}}$ having $\left.\chi(H) \leqslant 3\right)$

$$
\begin{aligned}
& =1-P\left(\int_{t=4}^{c \sqrt{n g_{g}}}\left\{\exists H \subseteq G_{n, p} \text { with } z_{H}=t \text { having } X(H)>3\right\}\right) \\
* & \leqslant \sum_{t=4}^{c \sqrt{\log n}} P\left(\exists \text { minimal } H \subseteq G_{n, p} \text { with } x_{H}=t \text { having } X(H)>3\right) \\
& \leqslant \sum_{t=4}^{c \sqrt{\log _{n}}} P\left(\exists H \subseteq G_{n, p} \text { with } \nu_{H}=t \text { having } d_{H}(x) \geq 3 \text { for all } x \in V(H)\right) \\
& \leq \sum_{t=4}^{c \sqrt{\log _{n}}}\binom{n}{t} P\left(H \cong G_{n, p}[\{1,2, \cdots, t\}] \text { has } e_{H} \geq \frac{3}{2} t\right)
\end{aligned}
$$

pf (continued)

$$
\begin{aligned}
& \leq \sum_{t=4}^{c \sqrt{\log _{n}}}\binom{n}{t}\binom{\left(\begin{array}{c}
t \\
2
\end{array}\right.}{\frac{3}{2} t} p^{\frac{3}{2} t} \\
& \leqslant \sum_{t=4}^{c \sqrt{\log \pi}}\left(\frac{e n}{t}\right)^{*}\left(\frac{e\left(\frac{1}{2}\right)}{\frac{s}{2} t}\right)^{\frac{3}{2 t}} p^{\frac{3}{2 t}} \quad\left(\because\binom{n}{k} \leqslant\left(\frac{e n}{k}\right)^{k}\right) \\
& \leqslant \sum_{t=4}^{c \sqrt{n \log n}}\left(\frac{e n}{t} \frac{t^{\frac{3}{2}} e^{\frac{3}{2}}}{3^{\frac{2}{2}}} n^{-\frac{3}{2} \alpha}\right)^{\star} \quad\left(\because p=n^{-\alpha}\right) \\
& \leqslant \sum_{t=4}^{c \sqrt{n \log n}}\left(c_{1} n^{1-\frac{3}{2} \alpha} t^{\frac{1}{2}}\right)^{t} \\
& \leqslant \sum_{t=4}^{r \sqrt{\log n}}\left(c_{2} n^{1-\frac{3}{2} \alpha} n^{\frac{1}{4}}(\log n)^{\frac{1}{4}}\right)^{t} \\
& =\sum_{t=4}^{\sqrt{\log n}}\left(c_{2} n^{-\varepsilon}(\log n)^{\frac{1}{4}}\right)^{t} \quad\left(\because \frac{5}{4}-\frac{3}{2} \alpha<0 \Leftrightarrow \frac{5}{6}<\alpha\right) \\
& \leqslant\left(c_{2} n^{-\varepsilon}\left(\log _{n}\right)^{\frac{1}{4}}\right)^{4} \frac{1}{1-c_{2} n^{-\epsilon}\left(\log _{n}\right)^{\frac{1}{4}}}=o(1)
\end{aligned}
$$

Four-Value Concentration
Th Let $\alpha>\frac{5}{6}$ be fixed, and let $p=n^{-\alpha}$ (ie. p is not toolagy) Then for any $n, \exists u=U(\alpha, n)$ such that $X\left(G_{n, p}\right) \in\{u, u+1, u+2, u+3\}$ almost surely ie. $\operatorname{Pr}\left\{X\left(G_{n \cdot p}\right) \notin\{u, u+1, u+2, u+3\}\right\} \rightarrow 0$ as $n \rightarrow \infty$
pf: Let $u=u(n, \alpha)$ be the smallest integer st. $P\left(x\left(G_{n, p}\right) \leq u\right)>\frac{1}{n}$. Claim A: $P\left(X\left(G_{n . p}\right) \geq u\right) \geq 1-\frac{1}{n}$
Pf: The choice of $u \Rightarrow P\left(x\left(G_{\text {np }}\right) \leq u-1\right) \leq \frac{1}{n} \Rightarrow P\left(x\left(G_{\text {n }}\right) \geq u\right) \geq 1-\frac{1}{n} \quad$ DA
Let X be the minimum number of vertices whose deletion makes Gm.p u-colorable. Then $X=f\left(x_{1}, x_{2}, \cdots, \frac{x_{n-1}}{\sim}\right)$ for some function f, where $x_{1}, x_{2}, \cdots, x_{n}$, were defined in the proof of shamir-Spencesis The. Note that f is $1-$ Lipsciites.
Claim B: $\sqrt{2(n-1) \log n}>\varepsilon X$
Pf: $\frac{1}{n}<P(X(G, p) \leqslant u)=P(X=0)$

$$
\begin{aligned}
& =\rho(x \leq \varepsilon x-\varepsilon x) \\
& =P\left(f\left(x_{1} \cdots, \cdots, x_{n-1}\right) \leq \varepsilon f\left(x_{1}, \cdots x_{n-1}\right)-\varepsilon x\right) \\
& \leq \exp \left(-\frac{2(x x)^{2}}{n-1}\right) \text { by Moliarmid's Inequality }
\end{aligned}
$$

Therefore $\sqrt{\frac{1}{2}(n-1) \log _{n}}>\varepsilon X$.

Bf (continued)
Claim $C: P(X<2 \sqrt{2(n-1) \log n}) \geq 1-\frac{1}{n}$

$$
\text { pf: } \begin{aligned}
\text { IHS } & =1-P\left(X \geq 2 \sqrt{2(n-1) \log _{n}}\right) \\
& \geq 1-P(X \geq \varepsilon X+\sqrt{2(n-1) \log n}) \\
& \geq 1-\exp \left(-\frac{2(n-1) \log n}{2(n-1)}\right) \quad \text { by McDiarmidó Inez. again! } \\
& =1-\frac{1}{n . \quad I C}
\end{aligned}
$$

Let $A=\left\{X\left(G_{n, p}\right) \geq u\right\}$ and $B=\{X<2 \sqrt[2]{2(n-1) \log n}\}$ be two event.
Then $P(A \cap B)=1-P(\bar{A} \cup \bar{B}) \geq 1-P(\bar{A})-P(\bar{B})$

$$
\geq 1-\frac{1}{n}-\frac{1}{n}=1-\frac{2}{n} \rightarrow 1 \text { as } n \rightarrow \infty
$$

The the. follows from the technique lemma we proved.

Kim's Lemma
Thy (J.H. Kim 1995) suppose that

- $X_{1}, X_{2}, \cdots, X_{n}$ are independent $r v s$ s.t. $X_{i} \sim B\left(1, P_{i}\right) \quad \forall i$.
- $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ and g is a convex function.

Then for any $i, 1 \leqslant i \leqslant n$, we have

$$
\mathcal{E}\left(g\left(V_{i}\right) \mid X_{1}, \cdots, X_{i-1}\right) \leqslant \mathcal{E}\left(p_{i} g\left(q_{i} r_{i}\right)+q_{i}^{l} g\left(-p_{i} r_{i}\right) \mid x_{1}, \cdots, X_{i-1}\right)
$$

where

$$
\begin{aligned}
& \gamma_{i}=f\left(x_{1}, \cdots, x_{i-1}, 1, x_{i+1}, \cdots, x_{n}\right)-f\left(x_{1}, \cdots, x_{i-1}, 0, x_{i+1}, \cdots, x_{n}\right) \\
& V_{i}=\varepsilon\left(f(\underset{\sim}{x}) \mid x_{1}, \ldots, x_{i}\right)-\varepsilon\left(f(\underset{\sim}{x}) \mid x_{1}, \cdots, x_{i-1}\right) \\
& x=\left(x_{1}, \cdots, x_{n}\right)
\end{aligned}
$$

An extension of Devroye's Inequality
Thu If we have
(1) $X_{1}, X_{2}, \cdots, X_{n}$ are independent. $X_{i} \sim B\left(1, p_{i}\right) \quad \forall i$
(2) $f:\{0,1\}^{n} \longrightarrow \mathbb{R}$ having a vector $\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ s.t. $|f(\underset{\sim}{a})-f(\underset{\sim}{b})| \leq c_{i}$ for all $\underset{\sim}{a}, \underset{\sim}{b}$ that differ only in the it coordinate.
Then

$$
\operatorname{Var}\left[f\left(X_{1}, X_{2}, \cdots ; X_{n}\right)\right] \leqslant \sum_{i=1}^{n} c_{i}^{2} p_{i}\left(1-p_{i}\right)
$$

pf: Let $f=f\left(x_{1}, x_{2}, \cdots x_{n}\right)$ and $V_{i}=\varepsilon(f \mid \underbrace{x_{1}, \cdots, x_{i}}_{x_{i}})-\varepsilon(f \mid \underbrace{x_{2}}_{x_{i-1}, \ldots, x_{i-1} \leqslant i \leqslant})$
Then $\operatorname{Var} f=\varepsilon(f-\varepsilon f)^{2} \quad V_{1} \stackrel{\text { def }}{ } \varepsilon\left(f \mid x_{1}\right)^{x_{i}}-\varepsilon\left(f \mid \sigma_{0}\right)$

$$
\begin{aligned}
& =\varepsilon\left(\left(\sum_{i=1}^{n} V_{i}\right)^{2}\right) \quad \because \varepsilon\left(f \mid \mathcal{F}_{0}\right)=\varepsilon f \text { where } \mathscr{F}_{0}=\left\{\phi_{,}, \Omega\right\} \\
& =\varepsilon\left(\sum_{i=1}^{n} V_{i}^{2}+\sum_{1 \leq i<j \leq n} \sum_{i} V_{j}\right) \\
& =\varepsilon\left(\sum_{i=1}^{n} V_{i}^{2}\right) \quad \because \varepsilon v_{i} V_{j}=\varepsilon\left(\varepsilon\left(V_{i} V_{j} \mid X_{1}, \cdots, X_{j-1}\right)\right) 1 \leq i<j \leqslant n \\
& =\varepsilon\left(V_{i} \varepsilon\left(V_{j} \mid x_{1}, \cdots, x_{j-1}\right)\right)=\varepsilon\left(V_{i} \cdot 0\right)=0 \\
& =\sum_{i=1}^{n} \varepsilon\left(\varepsilon\left(V_{i}^{2} \mid X_{i-1}\right)\right) \text { here we define } \varepsilon\left(V_{i}^{2} \mid X_{i}\right) \stackrel{\text { def }}{=} \varepsilon\left(V_{1}^{2} \mid \not \nabla_{0}\right) \\
& \begin{array}{l}
\leq \sum_{i=1}^{n} \varepsilon\left(\varepsilon\left(p_{i}\left(g_{i} r_{i}\right)^{2}+g_{i}\left(p_{i} r_{i}\right)^{2} \mid x_{i-1}\right)\right) \text { Airy, } \text { mimith }_{\text {with }} g(x)=x^{2} \text {. } \\
=\sum_{i=1}^{n} p_{i} q_{i}^{2}
\end{array} \\
& =\sum_{i=1}^{n} p_{i} q_{i} r_{i}^{2} \\
& \leq \sum_{i=1}^{n} p_{i} q_{i} c_{i}^{2} \quad \because\left|r_{i}\right| \leq c_{i} \text { Lipchitz property }
\end{aligned}
$$

