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the two events “there is an open path from s to a”” and “there is an open path from s to b” are positively
correlated. In the present paper we further investigate and generalize the theorem of which this result
was a consequence. This leads to results saying, informally, that, with the above conditioning, the
open cluster of s is conditionally positively (self-)associated and that it is conditionally negatively
correlated with the open cluster of ¢.

We also present analogues of some of our results for (a) random-cluster measures and (b) directed
percolation and contact processes and observe that the latter lead to improvements of some of the
results in a paper of Belitsky et al. (Stoch Proc Appl 67 (1997), 213-225). © 2005 Wiley Periodicals,
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418 VAN DEN BERG, HAGGSTROM, AND KAHN
1. INTRODUCTION AND RESULTS FOR ORDINARY PERCOLATION

This paper is concerned with positive and negative correlation and the stronger notion
of positive association. Recall that events A, B (in some probability space) are positively
correlated if Pr(AB) > Pr(A)Pr(B) and negatively correlated if the reverse inequality holds.
The stronger notion of positive association will be defined below (following Theorem 1.3).

We begin in this section with results for ordinary bond percolation. Our original motiva-
tion here was Theorem 1.4. All results in this section have analogues for site percolation;
our reason for focusing on bond rather than site percolation is that this is the natural setting
for the extensions we consider in the following sections. These extensions deal with (i) the
random cluster model (Section 2) and (ii) percolation on directed graphs, together with
applications to the contact process (Section 3).

A few words about proofs may be in order. The approach given for percolation in
Section 1 is similar to that of [3] (see the proof of the present Theorem 1.1). This approach
does not seem applicable to the random cluster model, and Section 2 takes a completely
different route, based on Markov chains, to extend the results of Section 1 to this more
general setting. We also describe, in Section 2.2, a different way of getting at some of the
random cluster results. This is based on a connection with the so-called fuzzy Potts model
and is included here despite handling only a subset of what’s covered by the Markov chain
approach, because we think the connection is interesting. Most of the results for “directed
percolation” in Section 3 can again be obtained using either the approach of Section 1 or
the Markov chain approach of Section 2, and we do not repeat the arguments. A partial
exception is Theorem 3.4, one part of which we do prove, both because it requires the least
routine extension of earlier ideas and because it is the one place in the present work where
the Markov chain approach seems not to apply.

Consider bond percolation on a (finite or countably infinite, locally finite) graph G =
(V,E), where each edge e is, independently of all other edges, open with probability p, and
closed with probability 1 — p,. For a,b € V the event that there is an open path from a to b
is denoted by a <> b and the complement of this event by a «<» b. For X, Y C V we write
X < Y forthe event {x <» yVx € X,y € Y}.

In an earlier paper [3] we showed that, for any vertices s, t, a, b,

Prs<a, s<b|s«+t)>Pr(s<als+» )Pr(s< b|s<»t). @))

This was a consequence (really a special case) of Theorem 1.2 of [3], to which we will
return below.
Here we show, among other results, a sort of complement of (1), viz.,

Prs<a t<b|ls+»t)<Prs<als+» t)Prt<b|s<1). 2)

In this section we will prove the quite intuitive (2) by way of a generalization of the not
very intuitive (1). Before giving this generalization, we need some further definitions and
notation.

Let s be a fixed vertex. By the open cluster, C, of s we mean the set of all edges that are
in open paths starting at s. As in [3] we define, for X C V, the event

Ry .= {s «» X} = {5 +» x Vx € X}.

Let © = {0, 1}¥ be the set of realizations; elements of  will typically be denoted w.
We write o' > w as short for w'(e) > w(e)Ve € E. For two events A, B C €2, we abbreviate
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A N B as AB. Recall that an event A is increasing (really, nondecreasing) if ' >w €A
implies @’ € A. We also say that A is increasing and determined by the open cluster of s if
w €A and Cy(0') 2 Cs(w) imply @’ € A (note that such an event is increasing in the sense
above) and analogously that A is decreasing and determined by the open cluster of s if
w € A and C(0') C Cs(w) imply o’ € A. A simple example of an event that is increasing
and determined by C;, is {s <> a}.

The following statement is a natural generalization of Theorem 1.2 of [3]. To avoid
technicalities concerning regularity conditions on events (and functions) we restrict here,
as well as in Theorems 1.2-1.4 below, to finite graphs. Our most general result in this
section, Theorem 1.5, does include infinite graphs; but its formulation, in terms of positive
association, avoids the aforementioned technicalities.

Theorem 1.1.  Let the graph G be finite, and let A and B be increasing events determined
by the open cluster of s. Then, forall X,Y C V \ {s},

Pr(A Rx)Pr(BRy) < Pr(A B Rxny) Pr(Rxuy). 3)

Remark. Theorem 1.2 in [3] is the special case where each of A, B is of the form {s <
w VYw € U} for some U C V. The proof of the present more general result is almost the
same and we present it in a slightly abbreviated form, emphasizing the parts that need extra
attention because of the generalization. (One may say that the key idea (in both cases) is
generalizing from statements like (1) to the form (3), which supports an inductive proof.)

Proof. The proof is by induction on the number of vertices. When G has only one vertex,
the result is obvious; so we suppose, for some n > 1, that the result holds for graphs with
at most n vertices and consider G with n + 1 vertices.

For X C V, write Ey for the set of edges with at least one endpoint in X. With notation
as in the theorem, it is easy to see that there is an event A C A with the following properties:
it is increasing and determined by C;; it does not depend on Ey (that is, if w, = w, for all
e Ey,thenw e Aiffo’ € A); and, finally, A Ry =A Ry. A similar remark holds for Band Y.
So we may assume that A does not depend on Ex and B does not depend on Ey.

IfXNY = @, the rhs. of (3) is Pr(A B) Pr(Rxuy), and two applications of Harris’
inequality give the result

Pr(A Ry)Pr(BRy) < Pr(A) Pr(B) Pr(Rx) Pr(Ry)
< Pr(A B) Pr(Rxyy) 4

(note Rxuy = RxRy).

Now suppose Z := X NY # (. Let N be the set of all vertices outside Z with at least
one neighbor in Z. Let S be the (random) set of those vertices of N connected to Z by at
least one open edge. We have

Pr(ARy) = ZPr(S = S) Pr(A Rx|S),
s

where the sum is over S € N and we write Pr(:|S) for Pr(-|S = S). Similar expressions
hold for the other terms in (3). Moreover, clearly,

PrS=S)Pr(S=T) =Pr(S=SNT)Pr(S=SUT) VS,T CN.
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So according to the Ahlswede—Daykin (“Four Functions”) Theorem ([1] or, e.g., [5]), (3)
will follow if we show that, for all S, 7 C N,

Pr(A Rx|S) Pr(BRy|T) < Pr(AB Ryny|S N T) Pr(Ryuy|S U T). (5)

Now it is easy to see that, for any set of vertices W D Z, and any event D that does not
depend on Ey,

Pr(D Rw|S) = Pr'(D Rwnzus)- (6)

where Pr’ refers to the induced model on the graph G’ obtained from G by removing Z.
(Strictly speaking, the D on the r.h.s. of (6) is not the same as that on the Lh.s., since it is a
subset of {0, 1}\2z rather than {0, 1}¥; but since D does not depend on Ey, (and hence not
on E7), the two events are essentially the same, so we ignore the irrelevant distinction.)
Applying (6) to each of the four terms in (5), we have
Pr(ARx|S)Pr(BRy|T) = Pr,(AR(X\Z)uS) Pr/(BR(Y\Z)UT)

=< Pr/(ABR((X\Z)US)F\((Y\Z)UT)) Pr/(R(X\Z)uSU(Y\Z)UT)

= Pr,(ABR((XﬂY)\Z)U(SﬂT)) Pr,(R((XUY)\Z)U(SUT))

= Pr(ABRxny|S N T) Pr(Ryuy|SUT),

where the first inequality follows from our inductive hypothesis (applicable since G’ has
fewer vertices than G) and the second from

(X\2D)USHN(Y\2D)HUTD) 2((XNN\Z2HUENT)
and

X\2)USU\2DHUT =((XUY\Z)USUT).

In particular we have the promised generalization of (1):

Theorem 1.2. For G, s, A, B, and X as in Theorem 1.1,

Pr(AB|s < X) = Pr(A|s «+ X)Pr(B | s « X). (N

Proof. Take Y = X in Theorem 1.1. .

Remarks.

1. It is easy to see that Theorem 1.2 is equivalent to the special case where |X| = 1.
(To reduce to this, simply identify the vertices of X, retaining all edges connecting
them to V \ X (edges internal to X may be deleted, but are anyway irrelevant).)
We have used the present form both because it will be convenient for the proof of
Theorem 1.5 and because it is natural from the point of view of the contact process
application in Section 3. Similarly, we could replace s in all results of this section and
t in Theorems 1.4 and 1.5 by sets of vertices. The same easy equivalence holds for
the directed graph results of Section 3; but in the case of the random cluster measures
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of Section 2 the more general statements, while still true, do not seem to follow in
the same way from their specializations.

2. The derivation of Theorem 1.2 may give the impression that it is less general than
Theorem 1.1, butin fact there is an easy way to derive Theorem 1.1 from Theorem 1.2.
To see this, first note that if an event is increasing and determined by C,, then its
complement is decreasing and determined by C,. It follows that Theorem 1.2 also
holds when A and B are both decreasing rather than increasing, while the inequality (7)
reverses if one of A, B is increasing and the other decreasing. Thus, for A, B, X, Y as
in Theorem 1.1, Theorem 1.2 implies that conditioned on Ryny, each of the pairs
(A,Rx\y), (B,Ry\x) is negatively correlated, while each of (A, B), (Rx\y,Ry\x) is
positively correlated. So, writing Pr’ for our percolation measure conditioned on
Rxny, we have (compare (4))

Pr'(ARyx\y) Pr'(BRy\x) < Pr'(A) Pr'(Rx\y) Pr'(B) Pr'(Ry\x)
< Pr'(AB) Pr/(RX\YRY\X),

which is equivalent to (3).

It will be helpful to have the “functional extension” of Theorem 1.2:

Theorem 1.3. Let G, s, and X be as in Theorem 1.1, and let f and g be increasing
functions of Cy. Then

Elfgls« X]=E[f|s« X]E[g]s« X]. ®)

The inequality is reversed if one of f,g is increasing and the other decreasing.

Proof. The firstassertion is a standard reduction: Theorem 1.2 immediately implies that (8)
holds when f and g are indicators of increasing events. Since any increasing f and g can
be written as sums of such indicators with positive weights, (8) follows. The second assertion
of the theorem follows from (8), applied to the pair (f, —g). .

Recall that a finite collection of {0, 1}-valued random variables oy, - - - , 0, is said to be
positively associated if for any two functions f, g of the o;’s that are either both increasing
or both decreasing, one has Efg > EfEg; the corresponding measure on {0, 1}" is then
also said to exhibit positive association. The simplest non-trivial example is when the
o;’s are independent (Harris’ inequality). A countably infinite collection of {0, 1}-valued
random variables is said to be positively associated if each finite subcollection is positively
associated.

If we define a random subset W of a set T to be positively associated if the collection
{n(a) = Lyew : a € T}is positively associated, then Theorem 1.3 says that the open cluster
of s is conditionally positively associated given the event {s <« X}. We will see further,
similar examples later.

Positive association is often derived from the FKG inequality, which generalizes Harris’
inequality and says that positive association holds for measures on {0, 1}" satisfying the
“positive lattice condition” (also called “FKG lattice condition”), viz.,

pu)n(r) < pulo Atu(o V1) )
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(where (o A 7), and (o V 1), are the minimum and maximum of o, and t,). The positive
lattice condition is much stronger than positive association. It says that the conditional
probability that o, = 1, given the values of ,,y # x, is increasing in those values.

Let us also recall here that for measures v and v’ on {0, 1}" (or some other partially
ordered set), v stochastically dominates v' (v > V') if v(f) > V/(f) for every increasing
function f (where v(f) is the expectation of f w.r.t. v).

As suggested earlier, we find Theorem 1.3 somewhat counterintuitive. (For instance, as
noted in [3], it is easy to see that the analogous statement with s <> ¢ in place of s < ¢ is
false.) Nonetheless, it turns out to imply (see the proof of Theorem 1.5 below) the following
intuitively more natural statement, which says, informally, that conditioned on nonexistence
of an open (s, t)-path, the clusters C; and C, are negatively correlated.

Theorem 1.4. Let G and s be as in Theorem 1.1, t a vertex distinct from s, and f and g
increasing functions of Cs and C,, respectively. Then

E[fgls« t] <E[f|s«t]E[g]|s 1]

Note that (2) is the special case where f is the indicator of the event {s <> a} and g that
of the event {t <> b}.

We have stated Theorem 1.4 above largely because, as mentioned earlier, it was the
original motivation for this work; but the next statement, which contains Theorem 1.3 as
well as Theorem 1.4, seems to be the correct level of generality here.

Theorem 1.5. Let G be a finite or countably infinite, locally finite graph and s and t
(distinct) vertices. Let, for each edge e, X, = 1ieec,y and Y, = Li,cc,y- Then, conditional on
{s <» t}, the collection

{X,:ee E}U{l —Y,:e€E}

is positively associated.

Proof of Theorem 1.5. 'We give the proof for finite G. The inifinite case then follows from
standard limit arguments.

Let f and g be functions of (C;, C,), each increasing in C; and decreasing in C,. We have
to show that

Elfgls« t]1>E[f |5« t]E[g|s < 1]. (10)
Note that the Lh.s. of (10) can be written as

Elfgls« =) Pr(C;=W|s«nElfg|C =Wl (1)
w

where we may restrict to W containing no (s, )-path. Write W for the union of W and its
“boundary”; that is, W consists of all edges having at least one vertex in common with some
edge of W.

When we condition on {C; = W}, f and g become decreasing functions of C,, and the
(conditional) distribution of C, is the same as that for the restriction of our percolation
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model to the graph obtained from G by deleting all edges in W. Thus (on {C, = W}),
f.g are decreasing functions of the independent r.v.’s (w, : ¢ € E \ W), and by Harris’
inequality we have E[ fg|C, = W] > E[f|C, = W] E[g|C, = W].

On the other hand, the conditional distribution of C, given {C; = W} is stochastically
decreasing in W (to couple these distributions, choose all ®,’s independently according to
their p,’s and then for conditioning on {C, = W} simply ignore those w,’s with ¢ € W);
so in particular E[f|C, = W] and E[g|C, = W] are increasing functions of W, and it then
follows from Theorem 1.3 that the right-hand side of (11) is not less than

(Z Pr(C, =W | s« 1) E[f|C, = W]) (Z[Pr(cs =Wls e« )ERIC = W])
W w
= E[f | s +» 1]1E[g | s » 1],

so we have (10). .

As just shown, Theorem 1.5, and hence its special case Theorem 1.4, follows easily from
Theorem 1.3. While one might expect that in a similar (or some) way the reverse implication
(that is, Theorem 1.3 from Theorem 1.4) can be shown, we do not see this. In Section 2
we will (as mentioned earlier) take a completely different approach that, even for the more
general class of random-cluster measures, gives Theorems 1.3 and 1.4 “simultaneously.”

2. RANDOM-CLUSTER MEASURES

2.1. Definitions and a Markov Chain Proof

A well-known generalization of the bond percolation model is the random-cluster model
introduced by Fortuin and Kasteleyn circa 1970 (see, e.g., [7] and [9] for additional back-
ground and references).

Let G = (V, E) be a finite graph. In addition to the parameters p,, e € E, of the ordinary
bond percolation model, the random-cluster model is equipped with a positive parameter g.
To avoid trivialities we assume that 0 < p, < 1 for all e € E. The random-cluster measure
(r.c.m.) with the above parameters on = {0, 1}£ is then given by

0g(@)(= ¢g4(@) g ] pe [[ 1=p) we, (12)
0

ecE:we=1 eeE:we=

where k(w) is the number of connected components in w, and, as usual, f (@) « g(w) means
f(w) = Cg(w) for some (positive) constant C. (For the present discussion we regard the
p.’s as given once and for all and omit them from our notation.)

Thus, ¢ = 1 gives the ordinary bond percolation model. We have, despite serious
attempts, not been able to adapt the approach of Section 1 to ¢ > 1. (We do not consider
q < 1, for which the correlation properties of the model are quite different). Here we take a
different, “dynamical” approach, based on the introduction of a Markov chain whose states
are pairs of clusters (this is not the only possibility; see the remark following the proof of
Theorem 2.1), which converges to a measure (on pairs of clusters) corresponding to (12),
and for intermediate stages of which the correlation properties we are after can be derived
from known properties of the random-cluster model. Similar uses of Markov chains have
turned out to be quite useful in this field; see [13] for a pioneering example.
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For the following extension of Theorem 1.5 to the random-cluster model we replace the
vertices s and ¢ by sets S and T, recalling that the remark following Theorem 1.2 regarding
the easy reduction from sets to singletons is not valid here. Extending our earlier notation,
we use Cs for the set of edges belonging to open paths starting at vertices of S.

Theorem 2.1. Consider a distribution (12) with g > 1. Let S and T be disjoint sets of
vertices and [ and g functions of (Cs, Cr), each increasing in Cs and decreasing in Cy.
Then, conditional on {S < T},

Efg > EfEg. (13)

Following the Markov chain proof of this result, we also give, in Section 2.2, a different
argument, which unfortunately seems only to work when ¢ > 2 and |S| = |T| = 1. So,
somewhat strangely, we have separate (and distinct) proofs for the cases ¢ = 1 and g > 2,
but for the intermediate case 1 < ¢ < 2, no alternative to the Markov chain approach.

For the proof of Theorem 2.1, we first give some additional notation and state some
(well-known) lemmas we will need. If F is a subset of E (the set of edges of our graph G),
and w € Q = {0, 1}£, we write wp for the restriction of w to F (wp = (w, : e € F)), and
V(F) for the set of vertices incident with edges of F. We continue to use the notation W
introduced following (11).

Lemma 2.2. For g > 1, the random-cluster measure (12) satisfies the positive lattice
condition (9).

(See, e.g., [8] for a proof.)

When ¢, is conditioned on the values of some of the variables w,, the remaining
variables are distributed as they would be under the (natural) r.c.m. on the graph obtained
from G by deleting e¢’s with w, = 0 and contracting those with w, = 1. For our purposes
the relevant cases of this are given by the following.

Lemma 2.3. Fix A C V and F C E such that the event {Cy = F} is nonempty. The
restriction of ¢¢.4 to {0, 1Y\ under conditioning on either of the events {Cy = F}, {wp = 0}
(i.e., {w. = 0Ve € F}) is the r.c.m. with parameter q on G — F (the graph obtained from G
by deleting all edges in F); more formally,

€0G,q(0)E\F =-|Cy=F)= €0G,q(0)E\F =-|op=0)= §0G—F,q(')-

If A,F are as in Lemma 2.3, and B € V \ V(F), then {Cy = F} C {A < B}; so
Lemma 2.3 implies

Lemma 2.4. IfA, F are as in Lemma 2.3, B C V \ V(F), and ¢* is ¢, conditioned on
{A <» B}, then

90*(0)E\F =-|C=F)= €06,q(U)E\F =-|lwp=0)= §0G—F,q(')-

_ We now turn to the proof of Theorem 2.1. We consider a Markov chain with state space
Q consisting of pairs (Cs, Cr) satisfying Q := {S <> T}. (So the states are pairs (C, C")
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such that C,C’ € E; C (resp., C’) is a union of paths beginning at vertices of S (resp.,
vertices of T); and V(C) NV (C') = @.)

We write ¢ for the measure ¢, conditioned on Q and ¢ for the measure that ¢ induces
on .

Initially our chain is in some fixed state (C?, C%) € €. Given (Ci™!, Ci™"), the state of
the chain at time i — 1, we choose (C%, Ci.) in two steps, first choosing C. according to ¢
conditioned on {Cs = Cg’l}—that is,

Pr(C; =) = ¢(Cr = |Cs = C§ )
—and then, similarly, C; according to
Pr(Cy =) = ¢(Cs = -|Cr = C}).

It is clear (for instance by noting that the chain is a Gibbs sampler (see, e.g., [11]) for @)
that ¢ is stationary for this chain and that the chain is irreducible and aperiodic, so to prove
Theorem 2.1 it is enough to show:

Claim 2.5. For f, g as in the statement of Theorem 2.1 and any n, (13) holds for expec-
tation taken with respect to the law of (Cg, C}).

Let X! and Y/ be the indicators of the events {e ¢ Ci.} and {e€ Ci} (e€E, i=0,1,...).
These are, of course, not independent, but we will show, using the following presumably
well-known observation, that they are positively associated.

Lemma 2.6. Suppose W,,...,W, and Z,,...,7Z, are (say) {0, 1}-valued r.v.’s with joint
distribution  satisfying

i) Wy,..., W, are positively associated;

(1) Zi,...,Z, are conditionally positively associated given Wy, ..., W, and

@iii) for W, W' € {0,1}* with W' > W, ¥ (-|W’') > ¥ (-|W), where ¥ (-|W) is the
conditional distribution of (Z,,...,Zy) given (Wy,...,W,) = W.

Then Wy, ..., W, Z\,...,Z, are positively associated.

Proof.  Suppose f, g are increasing functions of Wy,...,Z,, and for W e {0, 1}9, set
F(W) = E[f|W] := E[f|(W,,...,W,) = W])and G(W) = E[g|W]. Then

Efg = E{ElfgIW1]}
> E{E[fIW]IE[gIW]}
> EFEG
= EfEg.

where the first inequality follows from (ii) and the second from (iii) and (i). .
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Lemma 2.7. The collection
YU v (14)
i>1 ecE

is positively associated.
Note that this is enough for Claim 2.5 due to the following trivial observation.

Remark 2.8.  For each n, Cy is increasing in the variables X!, Y!, and C} is decreasing
in these variables.

Proof of Lemma 2.7.  Of course it’s enough to show positive association for finite subsets
of the collection (14). We will show by induction on n that for each n, each of the collections

{X':e€E,i<nfU{Y :e€E,i<n} (15)
and
{Xé:eeE,ign}U{Y;:eeE,ign} (16)

is positively associated. (The base cases—those with n = O—are, of course, trivial.) Actually
we just give the argument for (15), that for (16) being essentially the same.
We want to apply Lemma 2.6 with

(Wl,...,Wa):{Xé:eeE,i<n}U{Y;:eeE,i<n}

and (Zy,...,7Z,) = (X! : e € E), so we need to verify conditions (i)—(iii) of the lemma.
Of course (i) is just our inductive hypothesis, so our concern is really with (ii) and (iii).

Consider a possible value W of (W,,..., W,), with F the corresponding value of Cg’_l.
Under conditioning on {(W,..., W,) =W}, we have X! fixed for e € F (namely X! =1
Vee Fand X! =0Ve € F \ F), while, by Lemma 2.4, the remaining X!'’s are distributed as
the variables 1j.¢cy ), Where (@, : e € E \ F) is chosen according to ¢;_,. Conditional
positive association of these remaining X”’s follows from Lemma 2.2, so we have (ii).

Now let W’ be a second possible value of (W, ..., W,), with W > W and F’ the corres-
ponding value of Cg". According to Remark 2.8 we have F € F’. So (iii) amounts to
saying that for F € F’ C E and h any increasing function of Cr,

@(h|Cs = F) > p(h|Cs = F') a7
(note £ is a decreasing function of the X!’s). But using Lemmas 2.3 and 2.4, we may rewrite
the left- and right-hand sides of (17) as
P6-Fq(h)

and

Py (N9G_ig (Mg 7 = 0);
and then (17) follows from Lemma 2.2 (which gives positive association for the measure
(prl:‘,q)' .

This completes the proof of Theorem 2.1. We end this section by briefly indicating an
alternative proof of Theorem 2.1, again using a Markov chain and based on a similar idea.

This, our original proof, is perhaps more natural than that given above, but does not seem
as easily adapted to prove the directed version of Theorem 1.5 (Theorem 3.6).
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We again use ¢ for ¢, conditioned on {S +» T}. Our chain in this case is 0°, @', ?, . ..
drawn from the state space Q:={weQ:S~»T} Initially the chain is in some fixed
state . Given '™, the state of the chain at time i — 1, we choose ' in two steps, first
choosing an intermediate configuration T/ according to ¢ conditioned on {Cs = Cs(w'™!)}—
that is, for ¢ € © with Cs(¢) = Cs(o'™"),

Pr(t' = ¢) = ¢(0 = {|Cs(w) = Cs(@™))
—and then, similarly, ' according to
Pr(o' = ¢) = ¢(w = {|Cr(w) = Cr(1)).

It is clear that ¢ is stationary for this chain and that the chain is irreducible and aperiodic;
so to prove Theorem 2.1 it’s enough to show:

Claim. Forf,g as in the statement of Theorem 2.1 and any n, (13) holds for expectation
taken with respect to the law of (@").

To prove this we introduce independent r.v.’s Xé, Y e’ (e € E,i =1,...), each uniform
on [0, 1], and some fixed ordering, “<,” of E. Then to decide the value of t ef we compute
the conditional probability, say «, that t/ = 1 given the values of the w!~'’s (or just the
value of Cs(w'™")) and those t/,’s with ¢’ < e and set 7/ = 1 iff X! < «. For ' we proceed
analogously, with the requirement for @’ = 1 now being ¥/ > 1 — a.

Itis then not hard to show, again using Lemmas 2.2-2.4, that (for each n) »" is increasing
in the variables X, Y/, so that the claim follows from Harris’ inequality applied to these

variables, and Theorem 2.1 follows.

2.2. A Separate Proof for q > 2

As mentioned earlier, it turns out, somewhat curiously, that for ¢ > 2 and S and T consisting
of single vertices s and ¢, we can prove Theorem 2.1 in a different way by exploiting a con-
nection between the random cluster model and the fuzzy Potts model. (The corresponding
connection involving the ordinary Potts model again goes back to Fortuin and Kasteleyn.)
Before doing so, we need to review some classical and more recent facts concerning this
connection.

Letg = o+ B with, B > 0. Using the random-cluster measure ¢ we generate a random
spin configuration o € {0, 1} as follows.

(i) Choose w € {0, 1}* according to ¢,.

(i1) For each component C of w, let o take the value 1 (resp., 0) on all vertices of C with
probability «/q (resp., B/q), independently of the values of o on other components.
Let u, s denote the distribution of o.

(In [10] this is called the fractional fuzzy Potts model.) This procedure produces a
coupling measure P of w and o, or, rather, of ¢, and (.. So we may also think of
first choosing o and then drawing from the conditional distribution P(- | o) to obtain a
typical (with distribution ¢,) edge configuration w. It is known (and easy to check) that this
“reversed” procedure can be described as follows.

(iii) Choose o according to fiq g.
(iv) Fori = 1,0, let G(i) = G[o~'(i)] (the (induced) subgraph consisting of vertices
in 0~!(i) and edges of G contained in this set). Set w, = 0 whenever o assigns
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different values to the ends of e € E, and choose the restrictions of w to E(G(1))
and E(G(0)) (independently) according to ¢g1y« and @) -

Furthermore, if in (iii) we choose o according to the conditional distribution

Rap() = Bap(- | 0(s) = 1o(1) =0),

then w (in (iv)) has the distribution we want, namely ¢g4(- | s += 1); so for Theorem 2.1
we may take w to be chosen in this way.

The salient points for our purposes are then as follows. (For clarity we now add subscripts
to the expectation symbol E to indicate measures with respect to which expectation is
taken.)

(a) For any graph H and ¢ > 1, ¢y satisfies the positive lattice condition (9) (see
Lemma 2.2).

(b) Itis shownin [10] that forany o, 8 > 1, u = g satisfies (9), whence, by the FKG
inequality, /44 and (i, are positively associated.

(c) If, B> 1andf is a function of (Cy, C,) that is increasing in C; and decreasing in C,,
then Ep[f | o] is increasing in o on the event {o(s) = 1,0 (¢) = 0}. (This follows
from (iv) and (a)).

Alternative proof of Theorem 2.1 forq > 2, S = {s}and T = {t}. Let f,g be as in the
statement of the theorem. Fix some «, 8 > 1 with o 4+ 8 = ¢. For simplicity we write
u for u, g and ¢ for ¢,. The connections described above give

Elfg |5 «» 1l =) i(0) Eplf(@)g(w)lo]
> Y ii(0) Eplf (@)|o] Eplg(@)|o]

>3 40) Eplf@)lo] Y (o) Eplg(@)lo]

=E,lf | s« 1IE,[g | s «» 1],

where the first inequality follows from (a) (and (iv)) and the second from (b) and (c). .

3. DIRECTED PERCOLATION AND CONTACT PROCESSES

In this section we consider another generalization of ordinary percolation: as in Section 1
we have a product distribution on {0, 1}, but now some (or all, or none) of the edges of our
graph are oriented. Graphs of this type (allowing both directed and undirected edges) are
sometimes called mixed graphs.

There are (at least) two natural ways to try to extend the results of Section 1 to this setting,
corresponding to two possible extensions of the conditioning event {s « 7}. As we will see,
both extensions are reasonable for Theorems 1.1—1.3, but only one of them makes sense for
Theorem 1.4 (and Theorem 1.5). The first set of extensions yield in particular improvements
of some of the results of Belitsky et al. [2] regarding the contact process (defined below).
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We will first indicate these extensions (proofs of which are essentially identical to the
proofs of the corresponding statements in Section 1) and discuss their relevance to the
contact process, before turning to the second set of extensions.

We will need the following additional notation. Unoriented edges will be denoted by
{v, w} and oriented edges by (v, w) (where the orientation is from v to w). When we speak of
a path, we will now mean one that respects the orientations of its oriented edges. We write
{s — t} for the event that there is an open path from s to 7 and {s — ¢} for the complement
of this event. The open cluster, Cy, of s is again the set of all edges contained in open paths
starting at s. As in Section 1, we fix a vertex s and set Ry = {s - xVx € X} for each
X C V\ {s}. Of course all these definitions collapse to those of Section 1 in case there are
no oriented edges; so the next result contains Theorem 1.1.

Theorem 3.1.  With the preceding modified definitions, Theorem 1.1 holds for directed
percolation.

Proof. The proof is essentially the same as that of Theorem 1.1, the only difference being
that we should now take N to be the set of those i ¢ Z for which there is at least one edge
(i,j) or {i,j} with j € Z and modify the definition of S similarly. .

Write Cy, for the set of edges in paths ending in X. The most straightforward extension
of Theorem 1.5 to directed percolation is:

Theorem 3.2. Let G as above be finite, s € V(G) and X C V(G) \ {v}, and letf and g be
Sunctions of (Cs, Cy), each increasing in Cs and decreasing in Cy. Then

Elfg|s»X]>E[f|s—» X]E[g]|s—» X]. (18)

This can be derived beginning with Theorem 3.1 in the same way as Theorem 1.3 was
derived beginning with Theorem 1.1. It can also be proved using Markov chains (following
either the proof of Theorem 2.1 or the alternate sketched afterward).

Remarks and consequences for Contact Processes.

(i) Analogously to what we said in Section 1, Theorem 3.2 can be stated in terms of
(conditional) positive association; namely for any X € V, the random variables
n(y) := 1{_,, conditioned on the event {n = 0 on X}, are positively associated.

(i) Taking A = B = Q in Theorem 3.1 gives

Pr(Rx) Pr(Ry) < Pr(Rxuy) Pr(Rxny). (19)

(iii) Belitsky etal. ([2], Theorem 1.5) proved a special case of (19) involving a particular
graph on the vertex set Z>. Their argument actually applies whenever V admits a
partition (Vy = {s}) U V; U - - . such that each edge is directed from V;_; to V; for
some i and X U Y is contained in some V;, but does seem to depend essentially on
these properties.

(iv) Much of [2] deals with the contact process on a countable set S. See [15] and [16]
for background on this model; very briefly: Each site (individual) in S can be in
either of the states 1 (ill and contagious) or O (healthy, noncontagious). Time is
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continuous, with 1,(x) denoting the state of site x at time 7. An infected site x
becomes healthy at rate §,, and a healthy site becomes ill at rate Zy A, IN ().
Here §,,x € S, and A(x,y),x,y € S, are the parameters of the model. They are
assumed to be non-negative and, if S is infinite, to satisfy the following conditions
(see [2]): sup,.s 8(x) < oo and sup, ¢ Z},GS[A(x,y) 4+ A(y,x)] < 0.

A nice aspect of the model is that it can be viewed in terms of percolation, via a
graphical representation (see, e.g., [16], pages 32-34): being ill at some given time
corresponds to the existence of an appropriate path in space-time. In fact, as is well-
known, the process can, by time-discretization and standard limit arguments, be
approximated by a directed percolation model on a finite graph. (See the subsection
on correlation inequalities, in particular page 11, of [16] for the general idea of how
correlation inequalities for collections of independent Bernoulli random variables
can be extended to continuous-time interacting particle systems and page 65 of [16]
for a concrete example for the contact process).

Combining this with the present results, one obtains, in a straightforward way,
contact process analogues of the conditional association property stated in (i) above.
In particular this gives the following theorem.

Theorem 3.3. Suppose (1, : t > 0) is a contact process as above, with deterministic initial
configuration ny. Then, for each finite W C S and t > 0, the collection (n,(x) : x € S\ W)
is conditionally positively associated given {n, = 0 on W}.

An example of Liggett [17] shows that if we instead condition on {n, = 1 on W}, then the
above positive association need not hold. In fact, building on the present ideas, we recently
showed [4] that in dimension 1, conditioning on 7,(0) = 1 leads to negative dependence
between the n,-values of the sites to the left of 0 and those to the right of 0. (This contains
a conjecture of Konno [14, Conjecture 4.5.2].)

Suppose now that at time O each site is ill. Let v, be the law of 1, (= (1,(x) : x € S)). It
is well known (and follows easily from standard monotonicity arguments) that as t — oo,
v, tends to a limit, called the upper invariant measure of the process and denoted v. Clearly
the preceding conditional association property for finite times extends to v. So, for each
finite W C S,

v(- | n = 0on W) is positively associated. (20)

This is a considerable strengthening of a conjecture of Konno ([14], Conjecture 3.4.13,
itself a strengthening of a theorem of Harris [12]), which was proved in—and seems to
have been the main motivation for—[2] (see inequality (1.3) in [2]), namely: for any
K,LCS,

v(IKNLyv(KUL) > v(K)v(L), 21

where, for M C S, v(M) :=v{n : n=0on M}. (Of course (21) is easily obtained from (20):
First note that it is sufficient to prove (21) for finite K, L. Next, for such K and L, take
W =K N L and consider the events A={n=00onK \ L}, B={n=00onL\ K}, and Q =
{n =0onK N L}. Then (20) says that

VAB| Q) = v(A | Qv(B | O),

which is equivalent to (21).)
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Recently, Liggett and Steif (see [18], Section 2, in particular Theorem 2.1) have used
our result (20) as a key ingredient in their proof that the upper invariant measure of the
contact process dominates certain product measures. It is interesting to note that for that
application (21) seems not to be sufficiently strong.

Random Initial Configurations

Recall that a measure i on 2V (V any finite set, although here it will be V(G)) is called
log-supermodular (Ism) if for any X, Y C V,

hXNY)hXUY) > hX) h(Y).

For a probability measure won 2V, defineh = h, : 2V — Rby h(A) = u(SNA = ), where
S is chosen according to w. Say u is Rlsm if h,, is Ism. (The perhaps suboptimal name is for
“Radon log-supermodular,” the stated condition being equivalent to log-supermodulariy of
the “Radon transform” of u: @(X) = Y _{n(Y) : ¥ € X}.) Following Liggett and Steif [18]
we say that p is downward FKG (dFKG) if the random variables 1;,cs) are conditionally
positively associated given any event {S N A = @J}. (Note this implies RIsm.)

Note that (21) says v is Rlsm: the (standard) contact process notation of (21) recycles v,
using it for what we would call 4,,. Belitsky et al. actually prove something more general
than (21): if the law of 1, (no longer assumed deterministic) is Rlsm, then so is the law of
n, for each t. (They also prove a corresponding generalization of the special case of (19)
mentioned in item (iii) following (19).) It is natural to ask—as did one of the referees of
this paper—whether Theorem 3.3 can be similarly generalized. As we shall see, this and
more is true.

Let S be a random subset of V = V(G) with law p, n a random edge configuration,
chosen independently of S, with law ¢, and p* the law of C,(S) :={x € V : S — x}
(where “—,” has the obvious meaning, and in particular, “—" is the same as “<” if G is
undirected).

Theorem 3.4 (With notation as above).

(a) if G is a mixed graph and ¢ an ordinary percolation measure, then each of the
properties Rlsm, dFKG holds for w* if it holds for

(b) if G is undirected and ¢ is a random cluster measure (12) with g > 1, then dFKG
for v implies dFKG for p*.

“Two-sided” versions extending Theorems 1.5, 2.1, and 3.2 are also true, but we omit the
slightly awkward statements. Part (a) gives the corresponding extension of Theorem 3.3:

Theorem 3.5. Suppose (n, : t > 0) is a contact process, with |, the law of n,. Then each
of the properties Rlsm, dFKG holds for every wu, provided it holds for .

The Rlsm part of Theorem 3.5 is of course the aforementioned result of Belitsky et al. [2].

Fartial proof of Theorem 3.4. We will prove only the “Rlsm” portion of (a). We include
this partly because, as mentioned in the Introduction, it is the one result in the present paper
that seems unlikely to be susceptible to the Markov chain approach. (It is also appealing
as a natural extension to general graphs of the version of (19) proved in [2].) The dFKG
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portion (of (a)) can be proved either using the approach of Section 2 or by combining parts
of the following argument with the ideas of Section 1; and (b) can again be proved using
Markov chains. (These extensions are somewhat less straightforward than, for instance,
what’s needed for Theorem 3.1.)

LetPr = u x ¢, and for X C V, set h*(X) = Pr(S =, X) (thatis, h* = h,+). Our task
is to show that, forany X,Y C V,

R XOR (YY) < *(X U)X N Y). (22)

Suppose first that X N Y = @. For W € V we may write

H\(W) =Y p()h(D,(W)),
n

where D, (W) ={v e V:v —, W}and h = h,. Thus, we want

> ehD,(0) Y ehD,(1)) < > emhD,X U Y)).
n

n n

Set f(n) = (D, (X)), g(n) = h(D,(Y)). Noting that D,(X UY) = D,(X) UD,(Y), we
have, since p is Rlsm,

Fmg(m) < h(Dy(X) U Dy(Y)h(D,(X) N D,(Y))
< h(Dy(X UY));

and then, since f, g are decreasing functions of 1, Harris’ inequality gives

EfEg <Efg =) ¢(nf (me(n)
<Y @mhD,(X UY)),

which is what we want.

Now suppose Z := X N'Y # @. In this case we proceed by induction on |V|. Let A be
the set of vertices in V' \ Z from which Z can be reached by an open edge. We use p for the
law of A, noting that for any A, B,

pA)p(B) = p(AN B)p(AU B). (23)
Since

h(W) = Z p(A)Pr(S =, W|A)
A

(where Pr(-|A) means Pr(:|A=A)), it follows from (23) and the Ahlswede-Daykin
Theorem that to establish (22) it’s enough to show that (for any A, B)

Pr(S -, X|A)Pr(S -, Y|B)
< Pr(S », X UY)|[AUB)P(S -, (XN Y)|ANB). 4)
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We would like to rewrite this in terms of the smaller graph G’ = G — Z. Let ¢’ be the
percolation measure that ¢ induces on G" and n’ the corresponding configuration. Let Q be
the event {S N Z = #}. Then (e.g.),

Pr(S —», X|A) = (@) (1 x ¢")(S +», X UAIQ),
and we can further rewrite

(1 x @)(S =y XUA|IQ) = (1 x ) (S =, X UA),

where §' is the random subset of V' \ Z with law p/(-) = w(-|Q).
So, setting Pr' = ' x ¢" and ¥ (W) = Pr'(§’ -, W), we will have (24) if we can show

HXUARKYUB) <H(XUY)U@AUB)K(XNY)UANB)). (25)

This will follow from our inductive hypothesis.
Notice that u is again Rlsm: with & = h,, as earlier,

WS NK =00 hKUZ)

"SNK =¢) = = ;
wEnk=0m Q) Q)

so Rlsm for p’ is equivalent to the statement that for all K,L C V \ Z,
hWKUZhW(LUZ) <h(KULUZ)h(KNL)UZ),

which (since (K NL)UZ = (K UZ) N (LU Z))is contained in Rlsm for pu.
So /' is Ism by induction, and this gives (25):

B (X UAW (Y UB) <K ((XUA)U (Y UB)K (X UA)N (Y UB))
<H(XUY)U@AUB)K(XNY)U(ANB))

(where we used (X UA)N(YUB) D (XNY)U(ANB)). .

A Directed Version of Theorem 1.5

For a sensible generalization of Theorems 1.4 and 1.5 to the present setting we need a
different substitute for {s <> t}. It is easy to see that neither {s - ¢} nor {s - t - s} will
do here (e.g., consider the graph on {s, t, v, a} with (oriented) edges (s, v), (¢, V), (v,a) and
events A = {s — a}, B = {t — a}); but there is another natural choice that does work, at
least when we assume there are no undirected edges. Recall that V (F) is the set of vertices
incident with edges of F. In our formulation we restrict to finite graphs.

Theorem 3.6. Assume G is a finite digraph in the usual sense (that is, all its edges are
directed). Let s and t be (distinct) vertices and f and g functions of (Cy, C,), each increasing
in C,; and decreasing in C,. Then, conditional on the event Q := {V(C,) N V(C,) = ¢},

Ef¢ > EfEg. (26)
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As mentioned in Section 1, this can be proved along the lines of either Theorem 1.5
or Theorem 2.1, with Theorem 3.2 a crucial ingredient in either case. Here we only give
(sketchily) the second argument, leaving the reader to fill in the first (which, like the second,
depends on Observation 3.7 below).

It’s a little strange that we can so far prove Theorem 3.6 only in the absence of undirected
edges, and we conjecture that it remains true without this restriction. (The difficulties in
extending the proof below—those for the other version are essentially the same—are the
(related) failures of Observation 3.7 and of the validity of the hypothesis (iii) when we come
to apply Lemma 2.6.)

Proof. 'We will not repeat the proof of Theorem 2.1, but just indicate what changes are
needed in the present situation.

The state space €2 and transitions for our Markov chain are essentially as before. (Here
we have chosen to say Cy, C; rather than Cs, Cr, but as noted earlier (following Theorem 1.2)
this really makes no difference.) Of course {V(C;) N V(C,) = @} now replaces {S <> T} as
the conditioning event Q.

Let us write ¢ for our (unconditioned) percolation measure, ¢ for our i conditioned
on Q, and ¢ for the measure which ¢ induces on 2. The argument here then follows that
for Theorem 2.1 verbatim until, in proving positive association of the collection (15), we
come to establishing conditions (ii) and (iii) of Lemma 2.6. For these we need the easily
verified (but crucial):

Observation 3.7. For U C V the distribution of C; is the same under ¢ conditioned on
{V(C)) = U} as under  conditioned on {s - U} (and similarly with the roles of s and t
reversed).

Note now that (ii) is an immediate consequence of Observation 3.7 in conjunction with
Theorem 3.2 (the relevant information from conditioning on W being just the value of C"~!
that results from W).

For (iii) we first observe that if W, W’ are possible values of (W;,..., W,) with W < W',
and U, U’ are the corresponding values of V(C"™"), then according to Remark 2.8 we have
U C U’'. Moreover, by Observation 3.7, the distribution of (Z;,...,Z,) (= (X! : e € E))
given W is simply the distribution of the indicators of E \ C, under i conditioned on
{t - U}. So, writing ¢y for this distribution on (X” : e € E), we need to show that U’ 2 U
implies ¢y > @y (note that increasing C;' corresponds to decreasing the X''’s). This follows
from Theorem 3.2: Note that ¢y is the same as ¢y conditioned on B := {t -» U’\ U}. (More
accurately, ¢ is the distribution of the collection (1i.¢c,; : € € E) induced by ¢ (-|t - U)
conditioned on B.) But then, since B is a decreasing event determined by C,, Theorem 3.2
says that under @y, B is positively correlated with any decreasing event determined by C;;
that is, ¢y > @y. .

Remark.  The choice of € is a key to the preceding argument. For instance, taking the
state space to be the analogue of that in the alternative proof of Theorem 2.1 sketched at
the end of Section 2.1—namely {w € {0, 1}£ : O holds for w}—gets in trouble because we
lose some positive correlations, e.g., of events {w, = 1}.

Note added in proof. In a recent preprint (Conditional Association and Spin Systems
(2005)), Tom Liggett gives, among other things, a more direct proof of the dFKG part
of Theorem 3.5.
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