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Linear Extensions

Notation. Given a poset P, £(F) denotes the set of all linear extensions of P.
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Classical Sorting Problem

Determine an unknown linear order L of a set X of n elements by
asking a series of questions of the form:
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Linear Extensions Again

Notation. Given a poset P, £(F) denotes the set of all linear extensions of P.
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An Elementary Probability Space

Notation. Consider £(P) as a probability space with each L € £(P) an equally
likely outcome.

Notation. For distinct elements x and y, the event [x < y| is then the subset of
E(P) consisting of those L with x < y in L.
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The 1/3-2/3 Conjecture

If P is a finite poset and is not a chain, then there
exist distinct x, y in P with
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Observation

It is not at all clear that there is any 0 > 0 so that for any P, there
exists a pair x, y with
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If there exists such a 0, then we can determine an unknown linear
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Linear Constraints (1)

Let  and y be incomparable elements of P with 0 < h(y) — h(z) < 1. Define

a; = Problhr(y) —hr(x) =14] and

bi = Problhr(z) —hr(y) =i
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Linear Constraints (2)

1 = ) ai+ ) b

i>1 i>1

0 < Ziai—Zz'bi < 1

i>1 i>1




Linear Constraints (3)

These linear constraints are enough, since the optimal solution is
still:

Problz <y] = 1




The Alexandrov/Fenchel Inequalities

Let Ky and K be convex bodies in R and let Ky = (1 — A\)Ky + AK;. Then
there exist unique numbers ag, aq, ..., aq so that the volume of K is given by:
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Differential Height Sequences are Log-Concave

Kahn and Saks extended Stanley’s technique to show that {a; : i > 0}
and {b; : i > 0} are log-concave, i.e.,
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Improving the Pigeon Hole

Let x and y be distinct points in a poset P
with |h(y) — h(z)| < 2/3. Then
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Improving the Pigeon Hole
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with |h(y) — h(z)| < 2/3. Then
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Remark. [Saks, 85]




Could 3/11-8/11 be Tight

Perhaps the 1/3-2/3 conjecture is false and 3/11-8/11 is the right answer. This
would require that for every € > 0, we can find a poset P with v(P) > 1 —e.




Could 3/11-8/11 be Tight

Perhaps the 1/3-2/3 conjecture is false and 3/11-8/11 is the right answer. This
would require that for every € > 0, we can find a poset P with v(P) > 1 —e.

Can this happen? And even if it does, can we use another line of reasoning to
improve the Kahn/Saks bound?
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A Conjecture on Large Width

For every ¢ > 0, there exists an integer w so that
if the width of P is at least w, then there exists a distinct pair x, y in P with
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Just How Important is “Finite”

The 1/3-2/3 conjecture is for
infinite posets. In fact, there exists a countably infinite poset P satisfying:

1. P has width 2;

2. P is a semiorder;




Incremental Progress

There exists a constant 6 > 0 so that if P
IS any poset which is not a chain, then P contains a distinct pair x, y so that
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The Cross Product Conjecture

Let x, y and z be three distinct points in a
poset P. For positive integers 1, j, define

a(i,j) = Problhg(y) —he(z) =i, hi(z)—ho(y) = 7]

Then
a(i,jla(i+1,5+1) < a(i,j+1a(i+1,7)

Theorem. [Brightwell, Felsner and Trotter, 97]




Improving Kahn/Saks

Let P be a countable poset which
Is not a chain. If there exists an integer k so that any element of P is incomparable
with at most k others, then there exist distinct x, y with
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Kahn’s Problem

Let x and y be distinct point in a poset P and suppose that |D|x] U
Dly]| = n. Is it true that




Observations
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Let x, y and z be distinct points in a poset P. Then

Prob[z > y] Problz > 2] < Problx > y,x > z].




Correlation: The XYZ Theorems

Let x, y and z be distinct points in a poset P. Then

Prob[z > y] Problz > 2] < Problx > y,x > z].

Let {z.,vy, 2z} be a 3-element antichain in a poset P. Then




Correlation: The XYZ Theorems

Let x, y and z be distinct points in a poset P. Then
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The Ahlswede/Daykin Four Functions Theorem

Let . be a distributive lattice. For sets X,
Y and a function f, let

L f(X) = ¥oex f(@).

2 XANY={zAny:zeX,yeY}.

33 XvY={zvy:zeX,yeY}.




Fishburn’s Lemma

Let A and B be down-sets in a poset P with |A| = n,
|B| =m and |[AN B| =k. Then
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A Combinatorial Approach to Correlation

In 1999, Brightwell and Trotter gave a combinatorial proof of Fishburn’s lemma by
providing an explicit injection between two sets of appropriate sizes.

They then extended this approach to give combinatorial proofs for the XYZ
correlation results of Shepp and Fishburn.

These new arguments do not use the Ahlswede/Daykin theorem or any of its variant




Ahlswede/Daykin and Stanley

Some modest progress to report:

Suppose x is point in a poset P so that x is incomparable with exactly two other
points of P. Then there are three non-zero terms in the height sequence of x. If
these terms are h;, h;+1 and h;1o, then it is possible to prove that

2
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Ahlswede/Daykin and Stanley

Some modest progress to report:

Suppose x is point in a poset P so that x is incomparable with exactly two other
points of P. Then there are three non-zero terms in the height sequence of x. If
these terms are h;, h;+1 and h;1o, then it is possible to prove that

2
hz'_|_1 > hihi-l—Z

However




