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Linear Extensions

Notation. Given a poset P , E(P ) denotes the set of all linear extensions of P .
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Classical Sorting Problem

Problem 1. Determine an unknown linear order L of a set X of n elements by
asking a series of questions of the form:

Is x < y in L?



Classical Sorting Problem

Problem 1. Determine an unknown linear order L of a set X of n elements by
asking a series of questions of the form:

Is x < y in L?

Remark. There are n! possible linear orders, so at least lg n! ∼ n log n questions
are required. Of course, several well known algorithms sort in O(n log n) rounds.



Sorting with Partial Information

Problem 2. Determine an unknown linear extension L of a poset P of n elements
by asking a series of questions of the form:

Is x < y in L?



Sorting with Partial Information

Problem 2. Determine an unknown linear extension L of a poset P of n elements
by asking a series of questions of the form:

Is x < y in L?

Question. If P has t linear extensions, can we always determine L by asking
O(log t) questions?



Linear Extensions Again

Notation. Given a poset P , E(P ) denotes the set of all linear extensions of P .
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An Elementary Probability Space

Notation. Consider E(P ) as a probability space with each L ∈ E(P ) an equally
likely outcome.

Notation. For distinct elements x and y, the event [x < y] is then the subset of
E(P ) consisting of those L with x < y in L.

Notation.

Prob[x < y] =

∣∣[x < y]
∣∣

|E(P )|
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The 1/3–2/3 Conjecture

Conjecture. [Kislytsin, 1966] If P is a finite poset and is not a chain, then there
exist distinct x, y in P with

1
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≤ Prob[x < y] ≤ 2
3



The 1/3–2/3 Conjecture

Conjecture. [Kislytsin, 1966] If P is a finite poset and is not a chain, then there
exist distinct x, y in P with

1
3

≤ Prob[x < y] ≤ 2
3

Remark. If true, the inequality is best possible.



Observation

Remark. It is not at all clear that there is any δ > 0 so that for any P , there
exists a pair x, y with

δ ≤ Prob[x < y] ≤ 1− δ



Observation

Remark. It is not at all clear that there is any δ > 0 so that for any P , there
exists a pair x, y with

δ ≤ Prob[x < y] ≤ 1− δ

Remark. If there exists such a δ, then we can determine an unknown linear
extension of a poset P with t linear extensions in O(log t) rounds.



The Kahn/Saks Theorem

Theorem. [Kahn and Saks] If P is a finite poset and is not a chain, then there
exist distinct x, y in P with
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The Kahn/Saks Theorem

Theorem. [Kahn and Saks] If P is a finite poset and is not a chain, then there
exist distinct x, y in P with

3
11

< Prob[x < y] <
8
11

Remark. Over the next few years, several other papers on balancing pairs
appeared, all with weaker results but somewhat shorter proofs.



A Basic Pigeon-hole

Notation. Given x ∈ P and L ∈ E(P ), let hL(x) denote the height of x in L.
Also, let h(x) denote the average height of x.
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Also, let h(x) denote the average height of x.
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0 ≤ h(y)− h(x) < 1



A Basic Pigeon-hole

Notation. Given x ∈ P and L ∈ E(P ), let hL(x) denote the height of x in L.
Also, let h(x) denote the average height of x.

Remark. When P is not a chain, there exists a pair x, y with

0 ≤ h(y)− h(x) < 1

Remark. Kahn and Saks show that for any such pair, we always have

3
11

< Prob[x < y] <
8
11



Linear Constraints (1)

Let x and y be incomparable elements of P with 0 ≤ h(y)− h(x) ≤ 1. Define

ai = Prob[hL(y)− hL(x) = i] and

bi = Prob[hL(x)− hL(y) = i]



Linear Constraints (1)

Let x and y be incomparable elements of P with 0 ≤ h(y)− h(x) ≤ 1. Define

ai = Prob[hL(y)− hL(x) = i] and

bi = Prob[hL(x)− hL(y) = i]

Then,
Prob[x < y] =

∑
i≥1

ai



Linear Constraints (2)

1 =
∑
i≥1

ai +
∑
i≥1

bi

0 ≤
∑
i≥1

iai −
∑
i≥1

ibi ≤ 1

a1 = b1

a2 + b2 ≤ a1 + b1

ai+1 ≤ ai + ai+2 and bi+1 ≤ bi + bi+2



Linear Constraints (3)

Remark. These linear constraints are not enough, since the optimal solution is
still:

Prob[x < y] = 1



The Alexandrov/Fenchel Inequalities

Let K0 and K1 be convex bodies in Rd, and let Kλ = (1 − λ)K0 + λK1. Then
there exist unique numbers a0, a1, . . . , ad so that the volume of Kλ is given by:

Vol(Kλ) =
d∑

i=0

(
d

i

)
ai(1− λ)d−iλi



The Alexandrov/Fenchel Inequalities

Let K0 and K1 be convex bodies in Rd, and let Kλ = (1 − λ)K0 + λK1. Then
there exist unique numbers a0, a1, . . . , ad so that the volume of Kλ is given by:

Vol(Kλ) =
d∑

i=0

(
d

i

)
ai(1− λ)d−iλi

Furthermore, the sequence {ai : 0 ≤ i ≤ d} is log-concave, i.e.,

a2
i+1 ≥ aiai+2 for i = 0, 1, . . . , d− 2.



Height Sequences are Log-Concave

Notation. Let x ∈ P and let hi = Prob[hL(x) = i].



Height Sequences are Log-Concave

Notation. Let x ∈ P and let hi = Prob[hL(x) = i].

Theorem. [Stanley] For any poset P and any x ∈ P , the height sequence
{hi : 1 ≤ i ≤ |P |} is log-concave, i.e.,

h2
i+1 ≥ hihi+2 for i = 0, 1, . . . |P | − 2.



Height Sequences are Log-Concave

Notation. Let x ∈ P and let hi = Prob[hL(x) = i].

Theorem. [Stanley] For any poset P and any x ∈ P , the height sequence
{hi : 1 ≤ i ≤ |P |} is log-concave, i.e.,

h2
i+1 ≥ hihi+2 for i = 0, 1, . . . |P | − 2.

Remark. No combinatorial proof of this result is known.



Differential Height Sequences are Log-Concave

Remark. Kahn and Saks extended Stanley’s technique to show that {ai : i > 0}
and {bi : i > 0} are log-concave, i.e.,

a2
i+1 ≥ aiai+2 and b2

i+1 ≥ bibi+2



Differential Height Sequences are Log-Concave

Remark. Kahn and Saks extended Stanley’s technique to show that {ai : i > 0}
and {bi : i > 0} are log-concave, i.e.,

a2
i+1 ≥ aiai+2 and b2

i+1 ≥ bibi+2

Remark. Adding these non-linear constraints to the linear ones listed previously
yields the desired inequality:

3
11

≤ Prob[x < y] ≤ 8
11



Improving the Pigeon Hole

Theorem. [Felsner and Trotter] Let x and y be distinct points in a poset P
with |h(y)− h(x)| ≤ 2/3. Then
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Improving the Pigeon Hole

Theorem. [Felsner and Trotter] Let x and y be distinct points in a poset P
with |h(y)− h(x)| ≤ 2/3. Then

1
3

≤ Prob[x < y] ≤ 2
3

Definition. For a finite poset P , let γ(P ) denote the minimum value of |h(y)−
h(x)| taken over all pairs x, y ∈ P .



Improving the Pigeon Hole

Theorem. [Felsner and Trotter] Let x and y be distinct points in a poset P
with |h(y)− h(x)| ≤ 2/3. Then

1
3

≤ Prob[x < y] ≤ 2
3

Definition. For a finite poset P , let γ(P ) denote the minimum value of |h(y)−
h(x)| taken over all pairs x, y ∈ P .

Remark. [Saks, 85] There exists a poset P with γ(P ) ∼ 0.8657.



Could 3/11–8/11 be Tight

Perhaps the 1/3–2/3 conjecture is false and 3/11–8/11 is the right answer. This
would require that for every ε > 0, we can find a poset P with γ(P ) > 1− ε.



Could 3/11–8/11 be Tight

Perhaps the 1/3–2/3 conjecture is false and 3/11–8/11 is the right answer. This
would require that for every ε > 0, we can find a poset P with γ(P ) > 1− ε.

Can this happen? And even if it does, can we use another line of reasoning to
improve the Kahn/Saks bound?



Progress on the 1/3–2/3 Conjecture

Theorem. The 1/3–2/3 conjecture holds for any poset P which satisfies any one
of the following conditions:
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Progress on the 1/3–2/3 Conjecture

Theorem. The 1/3–2/3 conjecture holds for any poset P which satisfies any one
of the following conditions:

1. P has width 2 (Linial).

2. P is a semiorder (Brightwell).

3. For every x ∈ P , there are at most 5 elements incomparable with x (Brightwell
and Wright).

4. γ(P ) ≤ 2/3 (Felsner and Trotter).

5. P has height 2 (Fishburn, Gehrlein and Trotter).



A Conjecture on Large Width

Conjecture. [Kahn and Saks] For every ε > 0, there exists an integer w so that
if the width of P is at least w, then there exists a distinct pair x, y in P with

1
2
− ε < Prob[x < y] <

1
2

+ ε



A Conjecture on Large Width

Conjecture. [Kahn and Saks] For every ε > 0, there exists an integer w so that
if the width of P is at least w, then there exists a distinct pair x, y in P with

1
2
− ε < Prob[x < y] <

1
2

+ ε

Theorem. [Komlós] There exists a function f : N → N with f(n) → ∞ and
f(n) = o(n) so that for every ε > 0, there exists an integer n so that if P has n
elements and at least f(n) maximal elements, then there exists a distinct pair x, y
in P with

1
2
− ε < Prob[x < y] <

1
2

+ ε



Just How Important is “Finite”



Just How Important is “Finite”

Theorem. [Brightwell and Trotter] The 1/3–2/3 conjecture is FALSE for
infinite posets. In fact, there exists a countably infinite poset P satisfying:

1. P has width 2;

2. P is a semiorder;

3. For every x ∈ P , there are at most 2 elements incomparable with x;

4. γ(P ) = 1; and

5. For every incomparable pair x, y,

Prob[x < y] ∈
{5−

√
5

10
,
5 +

√
5

10

}



Incremental Progress

Theorem. [Felsner and Trotter, 96] There exists a constant δ > 0 so that if P
is any poset which is not a chain, then P contains a distinct pair x, y so that

3
11

+ δ < Prob[x < y] <
8
11
− δ



Incremental Progress

Theorem. [Felsner and Trotter, 96] There exists a constant δ > 0 so that if P
is any poset which is not a chain, then P contains a distinct pair x, y so that
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Remark. We didn’t bother to calculate δ since it was very very small!



Incremental Progress

Theorem. [Felsner and Trotter, 96] There exists a constant δ > 0 so that if P
is any poset which is not a chain, then P contains a distinct pair x, y so that

3
11

+ δ < Prob[x < y] <
8
11
− δ

Remark. We didn’t bother to calculate δ since it was very very small!

Remark. This research made extensive use of computation in both the discovery
and proof modes.



The Cross Product Conjecture

Conjecture. [Felsner and Trotter] Let x, y and z be three distinct points in a
poset P . For positive integers i, j, define

a(i, j) = Prob[hL(y)− hL(x) = i, hL(z)− hL(y) = j]



The Cross Product Conjecture

Conjecture. [Felsner and Trotter] Let x, y and z be three distinct points in a
poset P . For positive integers i, j, define

a(i, j) = Prob[hL(y)− hL(x) = i, hL(z)− hL(y) = j]

Then
a(i, j)a(i + 1, j + 1) ≤ a(i, j + 1)a(i + 1, j)



The Cross Product Conjecture

Conjecture. [Felsner and Trotter] Let x, y and z be three distinct points in a
poset P . For positive integers i, j, define

a(i, j) = Prob[hL(y)− hL(x) = i, hL(z)− hL(y) = j]

Then
a(i, j)a(i + 1, j + 1) ≤ a(i, j + 1)a(i + 1, j)

Theorem. [Brightwell, Felsner and Trotter, 97] The Cross Product Conjecture
holds when i = j = 1, i.e.,

a(1, 1)a(2, 2) ≤ a(1, 2)a(2, 1).



Improving Kahn/Saks

Theorem. [Brightwell, Felsner and Trotter] Let P be a countable poset which
is not a chain. If there exists an integer k so that any element of P is incomparable
with at most k others, then there exist distinct x, y with

5−
√
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≤ Prob[x < y] ≤ 5 +
√

5
10



Improving Kahn/Saks

Theorem. [Brightwell, Felsner and Trotter] Let P be a countable poset which
is not a chain. If there exists an integer k so that any element of P is incomparable
with at most k others, then there exist distinct x, y with

5−
√

5
10

≤ Prob[x < y] ≤ 5 +
√

5
10

3
11

= .272727 . . .

5−
√

5
10

= .27639 . . .



Kahn’s Problem

Problem. Let x and y be distinct point in a poset P and suppose that |D[x] ∪
D[y]| = n. Is it true that

max{h(x), h(y)} ≥ n− 1 ?

x
y



Observations

Remark. Kahn’s conjecture is true when P = D[x]∪D[y]. This follows from the
fact that

max{Prob[hL(x)] = n, Prob[hL(y) = n]} ≥ 1
2
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Remark. Kahn’s conjecture is true when P = D[x]∪D[y]. This follows from the
fact that

max{Prob[hL(x)] = n, Prob[hL(y) = n]} ≥ 1
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The argument depends on the log-concavity property of the height sequence.



Observations

Remark. Kahn’s conjecture is true when P = D[x]∪D[y]. This follows from the
fact that

max{Prob[hL(x)] = n, Prob[hL(y) = n]} ≥ 1
2

The argument depends on the log-concavity property of the height sequence.

Remark. When
D[x] ∪D[y] ( P

there seems to be nothing which would prevent max{h(x), h(y)} from being far
below n.



Error Analysis on Log-Concavity

Let {hi : 1 ≤ i ≤ n} be the height sequence of a point x in a poset P . Consider
the log-concave inequality

h2
i+1 ≥ hihi+2.
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Error Analysis on Log-Concavity

Let {hi : 1 ≤ i ≤ n} be the height sequence of a point x in a poset P . Consider
the log-concave inequality

h2
i+1 ≥ hihi+2.

1. When is the inequality tight?

2. When it is not tight, what is the magnitude of the minimum error term as a
function of n?



Correlation: The XYZ Theorems

Theorem. [Shepp] Let x, y and z be distinct points in a poset P . Then

Prob[x > y] Prob[x > z] ≤ Prob[x > y, x > z].
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Correlation: The XYZ Theorems

Theorem. [Shepp] Let x, y and z be distinct points in a poset P . Then

Prob[x > y] Prob[x > z] ≤ Prob[x > y, x > z].

Theorem. [Fishburn] Let {x, y, z} be a 3-element antichain in a poset P . Then

Prob[x > y] Prob[x > z] < Prob[x > y, x > z].

Remark. Both proofs require the Ahlswede/Daykin four functions theorem.



The Ahlswede/Daykin Four Functions Theorem

Theorem. [Ahlswede and Daykin] Let L be a distributive lattice. For sets X,
Y and a function f , let

1. f(X) =
∑

x∈X f(x).

2. X ∧ Y = {x ∧ y : x ∈ X, y ∈ Y }.

3. X ∨ Y = {x ∨ y : x ∈ X, y ∈ Y }.

Let α, β, γ and δ be four functions mapping L to the non-negative reals. If

α(x)β(y) ≤ γ(x ∨ y)δ(x ∧ y)

for all x, y ∈ L, then

α(X)β(Y ) ≤ γ(X ∨ Y )δ(X ∧ Y )

for all X, Y ⊆ L.



Fishburn’s Lemma

Lemma. [Fishburn] Let A and B be down-sets in a poset P with |A| = n,
|B| = m and |A ∩B| = k. Then

|E(A)| |E(B)|
(

n + m

n

)
≤ |E(A ∪B)| |E(A ∩B)|

(
n + m

n + m− k

)



Fishburn’s Lemma

Lemma. [Fishburn] Let A and B be down-sets in a poset P with |A| = n,
|B| = m and |A ∩B| = k. Then

|E(A)| |E(B)|
(

n + m

n

)
≤ |E(A ∪B)| |E(A ∩B)|

(
n + m

n + m− k

)

Remark. Fishburn’s argument also uses the Ahlswede/Daykin theorem.



A Combinatorial Approach to Correlation

In 1999, Brightwell and Trotter gave a combinatorial proof of Fishburn’s lemma by
providing an explicit injection between two sets of appropriate sizes.
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A Combinatorial Approach to Correlation

In 1999, Brightwell and Trotter gave a combinatorial proof of Fishburn’s lemma by
providing an explicit injection between two sets of appropriate sizes.

They then extended this approach to give combinatorial proofs for the XYZ
correlation results of Shepp and Fishburn.

These new arguments do not use the Ahlswede/Daykin theorem or any of its variant
forms.



Ahlswede/Daykin and Stanley

Some modest progress to report:

Suppose x is point in a poset P so that x is incomparable with exactly two other
points of P . Then there are three non-zero terms in the height sequence of x. If
these terms are hi, hi+1 and hi+2, then it is possible to prove that

h2
i+1 ≥ hihi+2

via an entirely combinatorial argument.



Ahlswede/Daykin and Stanley

Some modest progress to report:

Suppose x is point in a poset P so that x is incomparable with exactly two other
points of P . Then there are three non-zero terms in the height sequence of x. If
these terms are hi, hi+1 and hi+2, then it is possible to prove that

h2
i+1 ≥ hihi+2

via an entirely combinatorial argument.

However, the proof does require the Ahlswede/Daykin four functions theorem.


