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THE XYZ CONJECTURE AND THE FKG INEQUALITY

By L. A. SHEPP

Bell Laboratories

Consider random wvariables x;, ---, %,, independently and uniformly
distributed on the unit interval. Suppose we are given partial information, I,
about the unknown ordering of the x's; eg., I' = {x; < 115, X7 < x5, ---}. We
prove the “XYZ conjecture” (orignally due to Ivan Rival, Bill Sands, and
extended by Peter Winkler, K. L. Graham, and other participants of the
Symposium on Ordered Sets at Banff, 1981) that

P[IL -='-:.rg|1"}| = P[I| -=::r:|1",:c. {IH_:I.

The proof i8 based on the FEKG inequality for correlations and shows by
example that even when the hypothesis of the FKG inequality failz it may be
possible to redefine the partial ordering so that the conclusion of the FKG
inequality still holds.

1. Introduction. Let the incomes x;, «-+, x, of n individuals be initially ordered at
random uniformly on all permutations. Suppose some partial information is available on
the true ordering of the x's; e.g., I' = {x, < xpp, 27 < x5, --+}. Then it is tempting to
conjecture that for any T,

(1.1) Plx,<x:|I')= Pl < x| L, o< x3)

because if it 1s known that x; < x3 then it seems more hkelv that x, 15 “small.” Nevertheless,
the conjecture (1.1} is surprisingly difficult to prove in spite of much effort by combinato-
rialists. Indeed the conjecture appears less tempting if one notes the fact that the following
analogous conjecture is false:

{I.I.:l"II P{I|'ﬂIg"ﬁIqlPJﬂF{I|{Ig'ﬂ:Iqlr1 I]"::Ia_""-:_'l'.'.-;:l'

even though one might analogously reason that if it is known that x, < x; < &, then it
seems more likely that x, is “small” and x, “large.” C. L. Mallows gave the following simple
counterexample to (L.1)": Let A = 6 and let I' = {x; << x5 < x¢ < x5, ; < x3}. Then we see
that Plaxy < 22 < x| ') = %5, Plxy < o < x| T, 2 < 22 < x4) = Yiso (1.1} fails.

There has been much interest in the conjecture (1.1) called the XYZ conjecture in the
combinatorice community [1] in connection with the theory of partial orders [5, 6]. Ivan
Rival points out that “transitivity conjecture” is a more apt name. Peter Winkler [2]
derives a number of interesting consequences of the conjecture (1.1).

The method of proof of (1.1} 15 interesting in itself and extends the technigque used in
[3], based on the FKG inequality [4] which arose in proving correlation inequalities in
statistical physics. The FKG inequality asserts that if: (£, <) is a distributive lattice (1Le.,
il is a finite set with a partial order, <, which satisfies

(1.2) xMhdlyval=xMylyixAz)

where for each pair x, ¥y € i there is a unique x A ¥ x v ¥ which are respectively the
largest (smallest) elements of I less (greater) than x and y); f and g are increasing real-
valued functions on £ {Le., whenever x < v then

{1.3) flxy = fly), glxt =gy
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holds); p is a positive log monotone density on & {i.e., for all x, ¥

{L.4) plx) =0, ploduly) = plx M yiulx v ¥)
holds}, then
(1.5) Veen flx)g(x)p(x) ¥ iee (¥} = Foen Fplx) ¥ en g(yuly)

It is observed in [4] that the Condition {1.4) is not necessary for (1.5). However, even
when (1.4) fails for the “natural” ordering, <, it may be possible, as in the present proof
below, to introduce a new partial order for which {1.4) holds and the same conclusion (1.5)
follows. In the present case, the “natural” order, analogous to the technique in [3], is to
take x < yiff x, = vy, and x, = y, i =2, «+«, n where & = {x = (x1, - -+, x,)} as in Section
2 helow. However, (1.4} fails for this order and it was necessary to find a new order
(namely {2.1) below) for which the hypotheses (1.2) through (1.5} of the FKG inequality
hold.

2. Proof of (1.1)., Let 2 = {1, 2, ..., N}" be the set of x = (x,, - -+, x,) where each
e {1,2 .., N}. We will later let N — o as in [3]. We say x < y if and only if
(2.1) HEY, L-N=y¥—y, i=2 .0
It is easy to verify that < is a partial order on { and that
(2.2) (x A ¥h = min{x, — 1, » — ) + max{x;, y), i=1-,n
(2.3) (x v ¥), = max(x, — xi, ¥ — i) + min(x,, )}, i=1, -+, n

To prove that (£, <) is a distributive lattice; i.e., (1.2} holds, note that the ith component,
(x A ¥);, of x Ay belongs to 1, -+ .+, N and similarly for the th component of x v ¥ in (2.3).
Thus x /A y and x ' ¥ belong to £. To prove the distributive property (1.2) we note that
from (2.2) and (2.3), with w =y 2

(2.4) (x Ay 2)), = min(x, — xy, @, — wn} + maxix, u)
= min(x, — x;, max{y, = ¥, 2 — &)} + max(x,, min{y, 21}
since w; — h = max(y; — ¥, 2 — 21}. Also the rhs of (L.2) has
((x A ¥) oy (x Az, =max({x Ay — (x Ay, XAz —(xNAzh)
(2.5) +miniix Ay, (x A z))
= max{min(x, = x;, ¥ — yi}, min{x, — 31, 2 — 1))
+ min{max(x,, ¥ ), max(x;, z;}).

For any three real numbers a, b, ¢ we have

(2.6) min(ae, maxib, c}) = maximinia, &), min{a, c))
and its dual
(2.7} max(a, min{b, ¢)) = min{max(e, b), max(a, ¢)).

It follows from (2.7), replacing a, b, ¢ by x1, ¥, 2; respectively that the last summands in
(2.4) and (2.5) are equal, and from (2.6), replacing a, b, ¢ by x, — x;, ¥y — ¥, & — &1
respectively that the first summands in (2.4) and (2.5) are equal. Thus the left sides of (2.4)
and (2.5) are equal and (1.2} holds; i.e., ({1, <) is a distributive lattice. Peter Winkler has
found a simpler proof of this based on the map: (x;, -, Xa} = (=%1, X2 — X1, - -, X — X1 ).
Now let f{x)} be the indicator x(x, = x:) of the event x; = X,
1 if x=x:

(2.8a) fix) = { 0 olse
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and g{x) = y(x; = x3); i.e,,

_ 1 if n=xy
(2.8b) gi{x) = {ﬂ else.

That f is increasing follows easily from (2.1) since if X < y and f(x) = 1 then 0 = x; — x;
= ya — ¥; and zo f(y) = 1. Similarly g is increasing, so (1.3) holds. We now take p(x) to be
the indicator, x{I'}, of I'; 1.e.,,

(2.9)

(x) = 1 if x satisfies the inequalities I
HXI=10 else

where I' is the set of inequalities representing the partial information or partial ordering
of the x;. To prove (1.4) it is necessary only to show that if u(x) = p(y) = 1 then also p(x
Mow) = nix v ¥) = 1. This is what fails for the simpler natural partial order referred to at
the end of Section 1. So suppose p(x) = p(y) = 1; i.e, that x and y satisfy the inequalities
in I'. If x, < x; is one of the inequalities in I" then we have x; < x;, ¥; < ¥;. From (2.2) we
have

(2.10) {(x A ¥k =min (x; — x1, % — 1) + max(x, y1) = (x Ayl

and similarly, (x v ¥} = (x v ¥);. Since x A ¥y and X v ¥ both satisfy each inequality in
Ioplx Ayl =pix v y) =1 and so (1.4) holds. The hypothesis of the FKG mequallty is
verified and so (1.5} holds.
From (1.5) we obtain

(2.11) Prxi=x, x1i=2x, NP = Pl = 0,V Plx=s a0, ).

Letting N — oo, the probability that x; = x; for some i # j tends to zero and so (2.11) also
holds for permutations induced by x1, -+, x,. Dividing by P(["}P{x; < x3, I'} we obtain
(1.1} and the XYZ conjecture is proved. We remark that taking {2 = {1, ..., N}" with
N — oo rather than {1 = §,, the set of permutations on n objects, was needed because
(8., =) itself 13 not a distributive lattice,

3. Conjectures. It is tempting in general to assume that if a correlation inequality is
true then it can be proved by using the FKG inequality with a proper choice of 2, <, f, 5,
and g, This assumption motivated a search for the ordering in (2.1). On the other hand it
is generally false that (1.4) is necessary for (1.5) as was shown in [4]. In our context, is it
true or false that

(3.1) Piny<muon<n|l=sPun<x n<o|lxn<i, o<y, I)
or that
(3.2) Plxy < x| ') = Pl < x|, 11 < X3, x4 < 23}

holds in general? It would be nice to have a systematic way to use the FKG inequality for
true correlation inequalities as well as a systematic way to generate counterexamples to
false ones,

A few days after the preceding paragraph was written, C. L. Mallows, who had
formulated the question of whether (3.1) holds, gave the simple counterexample I" =
{x1 < x4, X2 < X3}, n = 4. He also gave the counterexample I' = {xi < x3, x4 < 2}, n =4
to (3.2). He then posed the following general question. If A, B, ' are each events of the
same form as I, based on x;, - - -, xs, for which pairs A, B is it true that

(3.3) P(A|C)P(B|C) = P(A N B|C)

holds for all n and C?7 Peter Winkler [7] has now obtained a complete answer to this
question, showing that if (3.3} holds for any pair A, B and all C and n then {3.3} can be
proved from (1.1} which is thus, in a sense, the basic inequality, and, speaking loosely, A
= {x; < x2}, B = {x; < x3} is the basic case for which (3.3) holds for all C and n.
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