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Abstract

Many scientific and engineering applications require accurate, fast, robust, and scalable numerical
solution of large sparse algebraic polynomial eigenvalue problems (PEVP’s) that arise from some
appropriate discretization of partial differential equations. The polynomial Jacobi-Davidson (PJD)
algorithm has been numerically shown as a promising approach for the PEVP’s to finding the
interior spectrum. The PJD algorithm is a subspace method, which extracts the candidate eigenpair
from a search space and the space updated by embedding the solution of the correction equation
at the JD iteration. In this research, we develop and study the two-level PJD algorithm for
PEVP’s with emphasis on the application of the dissipative acoustic cubic eigenvalue problem. The
proposed two-level PJD algorithm consists of two important ingredients: A good initial basis for
the search space is constructed on the fine-level by using the interpolation of the coarse solution of
the same eigenvalue problem in order to enhance the robustness of the algorithm. Also, an efficient
and scalable two-level preconditioner based on the Schwarz framework is used for the correction
equation. Some numerical examples obtained on a parallel cluster of computers are given in order
to demonstrate the robustness and scalability of our PJD algorithm.

Key words: Acoustic wave equation, cubic eigenvalue problems, Jacobi-Davidson methods,
domain decomposition, two-level Schwarz preconditioner, parallel computing.

1. Introduction

Polynomial eigenvalue problems (PEVP’s) represent a broad range of applications in computa-
tional science and engineering modeled by partial differential equations (PDE’s) [4, 8, 11, 12, 13,
14, 15, 27]. One of the fundamental numerical difficulties for solving such higher-degree polyno-
mial eigenvalue problems is that no simple canonical form is available as the Schur form for the
standard eigenvalue problem, which is useful for designing a new algorithm. Additional numerical
challenges include the problem dimension in practice that is too large to prevent us from using a
direct method because of an excess number of floating-point operations and limited memory source.
Also, the power-type method or its variants can find efficiently the largest eigenvalues in the mag-
nitude, but for real application, we are often interested in the search for some selected eigenvalues
located within the interior of the spectrum, which corresponds to lower frequency modes. Hence,
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a computationally expensive shift-and-invert technique is required. Furthermore, the nonlinearity
of the problems makes the theoretical analysis of an iterative method harder to establish.

On the other hand, the Jacobi-Davidson (JD) algorithm first proposed by Sleijpen and Van
der Vorst [22, 23] for solving algebraic linear eigenvalue problems, then was extended to higher-
degree polynomial cases [11, 12, 13, 14]. Now, JD has been shown a promising and powerful
approach for solving such large, sparse polynomial PDE eigenvalue problems, especially for the
cases that few selected interior spectrum is of interest. The JD algorithm, which belongs to a class
of subspace iterative methods, consists of three key steps: extraction, correction, and expansion.
More specifically, one first expands a subspace (or referred to as the search space) by adding a
new basis vector, and then extracts the approximate eigenpair from the search space through the
Rayleigh-Ritz procedure. To obtain a new basis vector for the search space, at each JD iteration,
one needs to solve a large sparse linear system of equations, also known as the correction equation,
by some preconditioned Krylov subspace type method, such as GMRES or CG methods [20].

As the computer power gets rapidly increased, the fast and efficient numerical solutions to
PDE eigenvalue problems become more demanding. The question is naturally asked: how can we
take advantages of that when the PDE model and its geometric/grid information are provided to
enhance the robustness and efficiency of the JD algorithm? The past numerical evidence suggested
that the robustness and the efficiency of the JD algorithm strongly depend on three factors: (1) the
initial search space, (2) the Ritz pair selection strategy, and (3) the solution quality of the correction
equation. Similar to the Newton-type methods for solving nonlinear systems, the JD algorithm
is a locally convergent iterative method, i.e., if the initial guess is not close to the exact solution,
the JD algorithm often exhibits some oscillatory behavior or even worse, the convergence failure
happens. Without any available information about the target eigenpair, the normalized single
constant vector or a vector with random values can be a choice. However, its convergence starting
with such initial search space is unpredictable and unreliable. An alternative is to construct the
initial search space using Fourier series expansion, but only for simple geometrical configuration
or simple boundary condition setting. On the other hand, one of the important features of the JD
algorithm is that at each JD iteration, only mild solution accuracy of the correction equation is
required. As a result, an efficient correction equation solver plays an important role in the success
of JD eigensolver for convergence; hence, designing such a correction equation solver is one of the
currently active topics for JD research. A few related research works include: Feng [7] applied a
multilevel JD method for the generalized eigenvalue problem with application in the finite element
analysis of structural dynamic problems. A multigrid-type preconditioner was in conjugation with
the FGMRES as numerical solution of the correction equation, where the incomplete Cholesky
decomposition without fill-ins was employed as the pre- and post-smoothers, and the coarse grid
was solved by a direct solver. Arbenz et al. [1] proposed a hybrid preconditioner combining a
hierarchical basis method and an algebraic multigrid method for the correction equation in the JD
algorithm; their parallel code for solving symmetric generalized Maxwell eigenvalue problems did
not attain below 65% parallel efficiency using up to 16 processors.

In this paper, we develop and study the two-level JD algorithm for the large sparse polynomial
PDE eigenvalue problems. We apply the two-level approach for the JD algorithm from two aspects.
The first one is to construct a set of “good” initial basis vectors for the search space [11]. For many
applications, the smooth eigenvector corresponding to the low-frequency mode of the vibration is
of interest, which can be well represented by the coarse grid data. The second one is to construct
the multilevel domain decomposition preconditioner for accelerating the convergence of a Krylov
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subspace method as an efficient correction equation solver. Our proposed two-level preconditioner
is based on the Schwarz framework [19, 25, 28], which has a long, successful history with linear
elliptic PDE’s. Recently, Schwarz methods, (one-level or multi-level), have been extended to more
complex, coupled, nonlinear systems of multi-physics equations in the context of the Newton-
Krylov algorithm. For example, a multilevel Schwarz preconditioner is used to accelerate the
convergence of a Krylov subspace method for solving the Jacobian system in Newton iteration
with applications in the numerical simulation of the semiconductor device [18]; that of the cardiac
bioelectrical activity [21], and that of the blood-flow in compliant arteries [3, 29]. On the other
hand, comparatively fewer studies address how a multi-level approach affects the performance of
an eigensolver and most of them focus on linear or generalized EVP’s [10, 24].

The rest of this paper is organized as follows. Section 2 describes the two-level PJD algorithm
for solving the PDE eigenvalue problems in detail. Section 3 formulates a large, sparse cubic
acoustic dissipative eigenvalue problem, which is derived from the finite element discretization of a
rational acoustic EVP with an absorbing wall in the pressure variable form [4, 5]. Section 4 reports
the study on the numerical performance of the proposed algorithm on a cluster of PCs. Section 5
concludes the paper.

2. Parallel two-level polynomial Jacobi-Davidson algorithm

In this section, we give a detailed description of the proposed parallel two-level polynomial
Jacobi-Davidson algorithm for solving large sparse polynomial eigenvalue problems as follows.

Ah(λ)u ≡
d∑

τ=0

λτAhτu =
(
λdAhd + · · ·+ λ2Ah2 + λAh1 +Ah0

)
u = 0, (1)

where d is the degree of the polynomial, Ahτ are the n × n coefficient matrices arising from some
discretization of PDEs, e.g., finite element with fine grid size h and λ ∈ C is an eigenvalue, and
u ∈ Cn is a corresponding eigenvector. Here, Ah(λ) is referred to as the global fine coefficient
matrix. To simplify the presentation, we consider a two-level geometric Schwarz method for the
scalar PDEs. An extension to the multi-component PDE systems is in a similar manner. We first
introduce some notations needed for defining the two-level Schwarz preconditioner, including the
coarse/fine grids, the subdomains, and the data transfer operators. See Fig. 1 for the graphical
illustration of these components. Let Ωl be the collection of grid points on the computational
domain, Ω, on each level, where l = H or l = h for the coarse grid and the fine grid, with the
element diameters, H and h, respectively. Each Ωl is further partitioned into Ns nonoverlapping
subdomains, Ωl

i, i = 1, ..., Ns. To obtain the overlapping subdomain ones, we expand each Ωl
i to

a larger Ωl,δ
i , Here, δ is an integer indicating the level of overlap. Nested grids and grid partitions

are assumed, i.e., ΩH ⊂ Ωh and ΩH
i ⊂ Ωh

i . Two classes of interpolation and restriction operators

are needed. The first one is Rl,δi ((Rl,δi )
T

) that transfers data from global spaces (each overlapping
subdomain) to each overlapping subdomain (global space) on each level. The other one is IHh
(IhH) that transfers data from the fine level (coarse level) to the coarse level (fine level). The
global coarse coefficient matrix, AH(λ), is either constructed through the Galerkin condition,
AH(λ) = IHh Ah(λ)IhH or is obtained by using the same discretization as on the fine grid but now is
on the coarse grid. Detailed discussion of these two approaches can be found Ref. [25]. Similarly, the

associated subdomain coefficient matrices on each level, Ali, is calculated by Ali = Rl,δi Al(λ)(Rl,δi )
T

,
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respectively.

Figure 1: An illustration of the coarse/fine grids, the subdomains, and the data transfer operators.

Algorithm 1 Two-level Polynomial JD algorithm

Input: Both of the fine and coarse coefficient matrices, Ahτ and AHτ for τ = 0, . . . , d, and the
number of desired eigenvalues k.

Output: the desired eigenpairs (λj , uj) for j = 1, . . . , k
1: Set the initial search space for the coarse level, V H

ini = [ûH ]. Possible choice is a constant vector
or a random vector as described in Sec. 4.3.

2: Solve AH(λH)uH = 0 on the coarse grid, by Algorithm 2, the PJD algorithm
3: Select the m eigenpairs close to the target
4: Set uhq = IhHu

H
q for q = 1, ...,m.

5: Normalize ûhq by ûhq = uhp/‖uhq‖2
6: Set the initial search space for the fine level, V h

ini = [ûh1 , ..., û
h
m].

7: Solve Ah(λ)uh = 0 on the fine grid, by Algorithm 2, the PJD algorithm.

Algorithm 1 shows the two-level polynomial JD (PJD) algorithm for solving (1). Between lines
2 and 6 in Algorithm 1, we construct m initial basis in the search space on the fine grid by solving
the same PEVP defined on the coarse grid using the PJD algorithm (See Algorithm 2). In the
outer for-loop between lines 2 and 16 in Algorithm 2, we compute the k desired eigenpairs one-by-
one using a locking technique. The inner loop while-loop between lines 4 and 12 in Algorithm 2
contains three key components:

1. an extraction of Ritz pairs from the search space by solving the projected companion eigenvalue
problems,

2. a correction vector found by solving the correction equation, and

3. an expansion of the search space by embedding the correction vector into the space.

Below, we only highlight the component related to the numerical solution of the correction equation.
The detailed discussion about other elements can be found in [12, 13].
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Algorithm 2 Parallel Preconditioned Jacobi-Davidson Algorithm for Polynomial Eigenvalue Prob-
lems
Input: Coefficient matrices Aτ for τ = 0, . . . , d, the number of desired eigenvalues k, an initial

orthonormal vector Vini residual atol
Output: the desired eigenpairs (λj , uj) for j = 1, . . . , k

1: Set V = [Vini], VF = [ ], and Λ = ∅
2: for j = 1 to k do
3: Compute Wτ = AτV and Mτ = V ∗Wτ for τ = 0, . . . , d
4: while (user-defined stopping criteria are not satisfied) do
5: Compute the eigenpairs (λ, s) of (

∑d
τ=0 λ

iMτ )s = 0
6: Select the desired eigenpair (λ, s) with ‖s‖2 = 1 and λ /∈ Λ
7: Compute u = V s, p = A′(λ)u, r = A(λ)u
8: Solve the correction equation

B−1
d

(
I − pu∗

u∗p

)
A(λ)(I − uu∗)t = −B−1

d r

approximately for t ⊥ u by a Krylov subspace method with the one-level or two-level
preconditioners as defined by Eq. (3) and Eq. (4).

9: Orthogonalize t against V , v = t/‖t‖2.
10: Compute wτ = Aτv,

Mτ =

[
Mτ V ∗wτ
v∗Wτ v∗wτ

]
for τ = 0, . . . , d.

11: Expand V = [V, v] and Wτ = [Wτ , wτ ], τ = 0, ..., d.
12: end while
13: Set λj = λ, uj = u, Λ = Λ ∪ {λj}
14: Perform locking by orthogonalizing uj against VF ; Compute uj = uj/‖uj‖2; Update VF =

[VF , uj ]
15: Choose an orthonormal matrix Vini ⊥ VF ; Set V = [VF , Vini]
16: end for
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1. Correction vector. As shown in line 7 and 8 of Algorithm 2, we compute

p = A′(λ)u,

where A′(λ) =

d∑
τ=1

τλτ−1Aτ and then solve the correction equation

(
I − pu∗

u∗p

)
A(λ)(I − uu∗)t = −r (2)

for a correction vector t in each inner while-loop and then append the normalized correction
vector to V . Here, the correction equation (2) is solved approximately by a Krylov subspace
method (e.g., GMRES) with the preconditioning operator, B−1

d , where

Bd =

(
I − pu∗

u∗p

)
B(I − uu∗) ≈

(
I − pu∗

u∗p

)
A(λ)(I − uu∗)

and B is an approximation of A(θ). In practice, there is no need to explicitly form Bd when
solving Bdz = y with z ⊥ u for a given y, as it can be done equivalently by computing

z = B−1y − ηB−1p, with η =
u∗B−1y

u∗B−1p
.

2. Two-level hybrid restricted Schwarz preconditioner, ỹ = B−1y (or p̃ = B−1p). Huang
et al. [12] employed the one-level restricted additive Schwarz (RAS f) preconditioner [6] defined
on the fine grid, which is written as

B−1
RAS f =

(
Ns∑
i=1

(Rh,0i )
T

(Ahi )
−1
Rh,δi

)
. (3)

Such preconditioner numerically exhibits good strong scalability, but it is less efficient for large-
scale problems. In this work, we consider a two-level approach based on Schwarz framework,
which approximates B−1 by,

B−1
HRAS = IhH(AH)

−1
IHh + (I − IhH(AH)−1IHh Ah)B−1

RAS f (4)

By using the multigrid terminology, this preconditioner can be viewed as a two-grid scheme,
where the one-level fine-grid additive restricted additive Schwarz preconditioner is used as
a pre-smoother (and post-smoother) to order to eliminate the high-frequency mode error.
Alternatively, a two-level cascade-type Schwarz preconditioner can be used, which has been
considered in [30]. The parallelization of a coarse grid correction, (AH)

−1
is necessary and two

strategies are employed: (a) A direct inexact approach, which approximates (AH)
−1

by
the one-level restricted additive Schwarz (RAS c) preconditioner defined on the coarse grid,

B−1
RAS c =

Ns∑
i=1

(RH,0i )
T

(BH
i )
−1
RH,δi , (5)

6



where BH
i could be an LU or an ILU(k) decomposition of AHi (= RH,δi AH(λ)(RH,δi )

T
). (b)

An iterative approach, which solves the coarse grid problem, AHzc = wc, by some parallel
iterative methods, such as parallel GMRES, with a coarse additive Schwarz preconditioner (5).
For any given coarse grid vector wc,

zc = (AH)−1wc

is understood as an approximate solution of the following preconditioned linear system of
equations

AH
[
N∑
i=1

(RH,δi )T (AHi )−1RH,δi

]
yc = wc, with zc =

[
N∑
i=1

(RHi )T (AHi )−1Rci

]
yc,

which satisfies the condition ∥∥wc −AHzc∥∥
2
≤ εC ‖wc‖2 .

or the maximum iteration number of the parallel iterative method reaches (mmax
c ).

Note that for any given wc, the computation of zc can be carried out in parallel using all Ns

processors. AH is not exactly a matrix, but a preconditioned iterative solver.

3. Cubic acoustic eigenvalue problem
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Figure 2: The benchmark problem that models fluid in a cavity with an absorbing wall.

As shown in Fig. 2, consider the acoustics in a cavity, defined on Ω = [0, a]× [0, b] in R2 with
a > 0 and b > 0. We apply the two-level PJD algorithm to the dissipative acoustic EVP [17] given
by

λ2

c2
p = ∆p in Ω ⊂ R2, (6)

with the absorbing (homogeneous Neumann) boundary condition on the top wall and the reflecting
(Robin) boundary conditions on the rest of walls,

∂p

∂n
=
−ρλ2

α+ λβ
p on ΓA and (7)

∂p

∂n
= 0 on ΓR, (8)
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respectively. Here, (λ, p) forms the complex eigenpair of (6). The imaginary and real parts of
λ are the angular frequency and the decay rate of sound disturbances, respectively, and p is
the pressure perturbation. Besides, ρ is the density of fluids, c is the speed of sound, α is the
elastic coefficient, β is the damping coefficient due to viscous effect, and n is an outward normal
vector. Note that the acoustic EVP is derived from the acoustic wave equation [16] under the
time-harmonic assumption, which is a simplified mathematical model of inviscid, compressible,
and barotropic fluids with small perturbations. A bilinear Galerkin finite element discretization
on a given quadrilateral mesh T h = {K} leads to a rational EVP due to the frequency-dependent
impedance (8). By multiplying the common denominators, the model cubic polynomial EVP then
derived from the rational EVP is as follows: Find some complex eigenpair(s) (λ, u) to satisfy

A(λ)u = (λ3A3 + λ2A2 + λA1 +A0)u = 0, (9)

where A0 = αK, A1 = βK, A2 = αM + C, and A3 = βM . Here, the coefficient matrices

M =
1

c2

∫
Ω

ΦΦT dx, C = ρ

∫
ΓA

ΦΦT dx, and K =

∫
Ω
∇Φ · ∇ΦT dx

stand for mass, damping, and stiffness, respectively. In general, M and K are both real symmetric
positive definite matrices, and C is a real positive semidefinite matrix containing diagonal blocks.
Here, Φ = [φ1, φ2, ..., φn]T is a vector of global bilinear shape functions, where n is the number
of total interior nodes, including all boundary nodes on ΓA and ΓR. Due to rationalization, the
cubic eigenvalue problem (9) has extraneous roots with algebraic multiplicity n all located at
λ = −α/β. In the case where no Dirichlet-type boundary is presented, a zero eigenvalue exists
for Eq. (9). These two unphysical eigenvalues are considered to be potential troublemakers in
numerical computations that either cause the convergence failure of an iterative method or slow
down its convergence. Some oscillatory convergence behaviors are often observed. Note that
Re(λ) < 0 for all eigenvalues, where λ 6= 0, which is consistent with the theoretical prediction or
physical observation that the acoustic vibrations are damped due to the effect of the viscoelastic
materials. We show this fact below.

Proposition 3.1. Let (λ, u) be an eigenpair of the cubic acoustic eigenvalue problem, (λ3A3 +
λ2A2 + λA1 + A0)u = 0, where A0 = αK, A1 = βK, A2 = αM + C, and A3 = βM . Assume that
M is symmetric positive definite, C and K are symmetric positive semi-definite. Then real part of
all nonzero eigenvalues are negative.

Proof. Consider two cubic functions, F1(λ) and F2(λ), defined as

F1(λ) ≡ (u∗A3u)λ3 + (u∗A2u)λ2 + (u∗A1u)λ+ (u∗A0u) = 0. (10)

and

F2(λ̃) ≡ (α+ βλ̃)

[
(u∗Mu)λ̃2 + (

1

β
u∗Cu)λ̃+ (u∗Ku− α

β2
(u∗Cu))

]
(11)

= F1(λ̃)− α2

β2
u∗Cu = 0
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Next we rewrite the quadratic term in Eq. (11) as aλ2 + bλ+ c = 0, where a, b, and c are given

a = u∗Mu,

b =
1

β
u∗Cu,

c = u∗Ku− α

β2
u∗Cu,

Here, a > 0 and b ≥ 0, since M is symmetric positive definite, C is positive semi-definite, and
β > 0. Since λ = −α/β is the common root of F1(λ) and F2(λ̃) and by comparing the coefficients,
the sum of all roots for these two cubic functions are identical, we have

Re(λ) = Re(λ̃) = − b

2a
≤ 0.

Next, we claim that there is no purely imaginary root. Assume that q is a root of the cubic
polynomial Eq. (10), where q ∈ R and q 6= 0. Hence, we have{

αu∗Mu− q2u∗Cu+ αu∗Ku = 0 (real part)
−q3βu∗Mu+ qβu∗Ku = 0 (imaginary part)

This implies u∗Cu = 0, but it is only true when λ = −α/β, which contracts the assumption that
λ is purely imaginary. Hence, we conclude that the real parts of nonzero eigenvalues are negative,
i.e., Re(λ) < 0.

4. Numerical results and discussions

4.1. Numerical experiment setup

Table 1 lists all physical parameters, such as the fluid density, and the elastic and damp-
ing parameters used for the numerical experiment in the following subsections. A sequence of
uniformly-refined regular bilinear finite element meshes is employed. We implemented the two-
level PJD eigensolver built on top of the Portable, Extensible Toolkit for Scientific Computation
(PETSc) [2] and the Scalable Library for Eigenvalue Problem Computation (SLEPs) [9].

Parameter Symbol Value Unit Parameter Symbol Values Unit

domain width a 1.00 m domain height b 0.75 m
fluid density ρ 1.00 kg/m3 sound speed c 340.00 m/s

elasticity α 50000.00 N/m3 damping β 200.00 Ns/m3

Table 1: Physical parameters used for the numerical experiments.

We claim the convergence of the PJD eigensolver if ‖rf‖2 < atolf or ‖rf‖2 < rtolf‖r0‖2 where
rtolf and atolf are set to be 10−10 and 10−8, respectively. The PJD eigensolver restarts every
30 steps and retains five original best vectors with the smallest magnitudes in the search space
during the restarting procedure. For the acoustic problem in industrial and scientific applications,
the eigenvalues of interest are often interior ones, which correspond to low-frequency modes within

the range of 0 < Im(λ)
2π < 600Hz. Hence, the target eigenvalue for the PJD eigensolver was set to

be the range. All computations were performed in complex arithmetic double precision and were
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run on a cluster of computers. We report various numerical results and discuss our findings in the
following subsections.

4.2. Convergence behavior of computed eigenpairs

The closed solutions for this particular problem (6) along with the boundary conditions (8) can
be derived from the technique of separation variables [5] in which (ηm, λ) satisfy

η2
m =

λ2

c2
+
m2π2

a2
and ηm tanh ηmb =

−ρλ2

α+ λβ

for a particular m ∈ N. We obtain (ηm, λ) numerically by Newton’s method and refer to them as
the semi-analytical solutions and the corresponding eigenvectors are

p(x, y) = cos(
mπx

a
) cosh(ηmy)

The implementation of Galerkin finite element methods for the test problem has been carefully
validated, and the detailed grid-independent test results can be found in [12]. Also the numerical
evidence in [12] shows that the convergence behavior for the eigenvalues of the cubic acoustic
problem closely follows the theoretical prediction for the elliptic eigenvalue problems [26], i.e.,

λi ≤ λhi ≤ λi + c1h
2λ2

i , (12)

where λi is the i-th exact eigenvalue and λhi is the i-th computed eigenvalue. Some consequences
of the theory and the numerical results are summarized below.

1. The optimal 2nd order rate of convergence is achieved.

2. For fixed i, the sequence of the absolute value of the eigenvalues |λhi | is bounded from below,
and |λi| is a lower bound. The absolute value of the eigenvalue |λhi | decreases and approaches

to the exact eigenvalue |λi| when the grid is refined. i.e. |λi| ≤ . . . ≤ |λ
h
4
i | ≤ |λ

h
2
i | ≤ |λhi |.

3. The computed eigenvalues corresponding to the low-frequency modes are more accurate than
those corresponding to the high-frequency modes.

Target 32×24 64×48 128×96 256×192 512×384 1024×768 Rate

1281i 2.0270E-02 1.0059E-02 5.0094E-03 2.4996E-03 1.2485E-03 6.2391E-04 1.006
2250i 2.4396E-02 1.2063E-02 5.9965E-03 2.9893E-03 1.4924E-03 7.4562E-04 1.009
3023i 2.5901E-02 1.2776E-02 6.1356E-03 3.1616E-03 1.6165E-03 7.8839E-04 1.009

Table 2: The convergence analysis for eigenfunctions in magnitude with respect to different grid sizes.

On the other hand, Table 2 presents the L2-norm errors for the complex eigenfunctions in mag-
nitude for different grid sizes and its convergence rate. Three target eigenvalues are 1281i, 2250i,
and 3023i corresponding to low, medium, and high frequencies, respectively. The eigenfunction in
magnitude converges linearly, and its convergence rate does not depend on the frequency, which
is slightly better than the predicted error estimate for the numerical eigenfunction of the acoustic
eigenvalue problem in the displacement-pressure formulation [5]:

‖|p| − |ph|‖0 ≤ Chr,
10



where r is a real number of between 0 and 1.

4.3. A comparison of initial search space constructions

We investigate the choices of an initial basis in the search space affects on the overall perfor-
mance of the PJD algorithm. For the purpose of the comparison, addition to the proposed two-grid
approach , where an interpolated coarse solution is used as an initial vector on the fine grid, we also
consider a random initial vector, using what is referred to as the random vector approach . In
this case, the initial search space is set to be Vini = [g]n×1, where g = normalize(v+ normalize(s)).
Here, the normalized constant, v = ( 1

n ,
1
n , ...,

1
n), with a small random perturbation s, whose values

drawn from the standard uniform distribution on the open interval (0, 1). Note that a constant
vector is one of the simplest choices, but such naive initial vector is not applicable for our acoustic
eigenvalue problem when one of the eigenvalues is zero. Using such naive initial vector will make
JD to converge to the trivial solution since the constant eigenvector is the one corresponding to
zero eigenvalue. Hence, we perturb the constant vector by adding a random vector to assure such
new perturbed vector, which is linearly independent to a constant vector.

Random vector approach Two-grid approach

Target: 1281i

grid JDIts (Avg.Corr.Its) time JDIts (Avg.Corr.Its.) time

128×96 10(25.0) 0.27 3(25.0) 0.09
256×192 13(25.0) 2.16 5(25.0) 0.80
512×384 18(25.0) 10.69 8(25.0) 5.22
1024×768 28(25.0) 112.40 14(25.0) 40.29

Target: 3023i

grid JDIts (Avg.Corr.Its) time JDIts(Avg.Corr.Its) time

128×96 17(25.0) 0.49 8(25.0) 0.21
256×192 20(25.0) 3.11 15(25.0) 2.68
512×384 25(25.0) 17.49 21(25.0) 17.51
1024×768 130(25.0) 399.10 21(25.0) 69.81

Table 3: Effect of the selection of an initial search space on the convergence of PJD algorithm with respect to the
grid size. 1281i and 3023i are set to be the targets.

Table 3 shows a comparison of the iteration number and the computing time of the two-grid
and the random vector approaches for different sizes of the fine grids. The computational cost for
constructing the coarse coefficient matrices and finding the coarse eigenvector are excluded. Two
target eigenvalues are 1280i (lower frequency mode) and 3023i (higher frequency mode). Here,
the correction equation is solved by the 25-step fine restricted additive Schwarz preconditioned
GMRES using 12 processors. A fixed 32× 24 coarse grid is used for the two-grid PJD algorithm.

As expected, the two-grid approach takes lesser iterations for convergence as well as its corre-
sponding computing times, than the random vector approach. On the other hand, for the two-grid
approach, the number of PJD iterations still grows as the ratio of the fine to the coarse grids
increases. This result suggests that only employing good initial search space is not sufficient; more
efficient correction equation solvers may be needed.

We look into more details of the two-level approach for setting the initial search space. Table
4 shows the convergence history of the Ritz value, the JD residual, and the number of iterations
for solving the correction equation. We first solve the 32 × 24 coarse grid problem by the PJD
algorithm using 12 processors. From the top part of the table, we find that at the beginning, the
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level=H, coarse grid: 32×24

i JD iter Ritz-value residual KSP iter

0 -4.4613e+02+2.2480e+03i 2.18E+04 25
1 -3.0114e+02+2.1833e+03i 1.63E+03 25
2 -3.6043e+02+1.9630e+03i 3.09E+04 25
3 -9.7772e+01+1.4879e+03i 9.93E+03 22
4 -8.9670e+01+1.2873e+03i 7.55E+02 22
5 -8.9954e+01+1.2817e+03i 1.72E+00 22
6 -8.9952e+01+1.28175e+03i 2.42E-05

level=h, fine grid: 256×192

i JD iter Ritz-value residual KSP iter

0 -8.9952e+01+1.2817e+03i 1.12E+02 25
1 -8.9952e+01+1.2813e+03i 1.18E-02 25
2 -8.9953e+01+1.2813e+03i 4.17E-04 25
3 -8.9953e+01+1.2813e+03i 3.74E-04 25
4 -8.9953e+01+1.2813e+03i 4.30E-05 25
5 -8.9953e+01+1.28135e+03i 4.45E-06

Table 4: Two-grid PJD monitor for the cubic acoustic eigenvalue problem.

convergence of the Ritz-value on the coarse grid exhibits the oscillatory behavior, mainly because
the random constant initial search space is used. Later, once the PJD algorithm locates the right
Ritz value (for example, at 4th JD iteration in this particular case), the Ritz value converges
quadratically. Then we interpolate the converged coarse eigenvector to fine grid and use it as the
basis for the fine grid initial search space. As a result, the Ritz value converges very fast, taking
only 3 iterations to achieve 5- to 6- digit accuracy. The rest of the PJD iterations mainly correct
the error of the eigenvector.

Furthermore, the initial JD residual on the fine grid is not small compared to that of the last
JD iterations on the coarse grid (102 compared to 10−5). This seems to be counterintuitive: A
smooth eigenvector on the fine grid should be well represented by the data on the coarse grid.
For example, let us consider a special case with only the Neumann boundary condition imposed.
In this case, without the damping effect, the cubic acoustic eigenvalue problem is reduced to the
generalized eigenvalue problem by setting ω = λ2, and all eigenvalues are purely real and negative.
Table 5 shows the convergence history of the Ritz values on the coarse and fine grids, respectively.
Different from the cubic eigenvalue problem, in this case, the interpolated coarse eigenvector (See
Fig. 3) is a good initial guess for the fine grid so that the initial residual starts at 10−4, which
means that both of the eigenvalue and eigenvector have already been corrected by coarse grid.
Therefore, PJD converges quite fast on the fine grid.

But for the cubic acoustic eigenvalue problem, we have a different story. Fig. 4 includes nine
eigenvector plots for the coarse grid eigenvectors (first row), the interpolated coarse grid eigenvector
(second row), and the fine grid eigenvector (third row) in the magnitude (first column), their real
part (second column), and their imaginary part (third column). Observing from these plots, we
find that three vectors have the same magnitude, but due to complex-arithmetic, the interpolated
eigenvector and the fine grid eigenvector are quite different, if we look at them in real part and
imaginary part individually. That explains why the initial JD residual is not small, and the coarse
eigenvalue is quite close to the fine eigenvalue.
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level= H, coarse grid: 32×24.

i JD iter Ritz-value residual KSP iter

0 -9.4425e+04+0.0000e+00i 4.65E-02 17
1 -2.8834e-02+0.0000+00i 5.00E-06 19
2 -1.5090e+06+0.0000+00i 3.33E-02 23
3 -1.1588e+06+0.0000e+00i 5.07E-03 22
4 -1.1418e+06+0.0000e+00i 1.35E-05 22
5 -1.14184e+06+0.0000e+00i 3.17E-10

level= h, fine grid: 256×192

i JD iter Ritz-value residual KSP iter

0 -1.1418e+06+0.0000e+00i 3.90E-04 25
1 -1.1409e+06+0.0000e+00i 1.89E-09

Table 5: Two-grid PJD monitor for the generalized acoustic eigenvalue problem, which is no damping effect.
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Figure 3: Reduced acoustic generalized eigenvalue problem. The contour plot for the coarse grid eigenvector (left),
the interpolate coarse vector to the fine grid (middle), and the fine grid eigenvector (right). These three
vectors look almost identical.
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Figure 4: Cubic acoustic eigenvalue problem. The contour plots for the coarse eigenvector (first row), interpolated
vector from the coarse grid to the fine grid (second row), the fine eigenvector (third row). The magnitude
of the eigenvectors (first column), the real part of the eigenvectors (second column), and the imaginary
part of the eigenvectors (third column).

14



4.4. A comparison of the coarse solution quality for the two-level method

We next study how the coarse solution quality related to the two-level Krylov-Schwarz solver
for the correction equation impacts on the overall PJD convergence. For all test runs, a fixed
25-step GMRES method is employed for solving the correction equation. A fixed coarse grid:
32 × 24 is used. The HRAS preconditioner defined in (4) for performing the operator B−1 with
a vector. Here, the RAS c preconditioner or a coarse RAS c preconditioned GMRES is used for
the coarse grid correction. For the RAS c preconditioned GMRES method, we adopt two kinds
of stopping strategies, using the relative residual (10−2 and 10−5) or a fixed number of iterations
(5 or 10 steps). An incomplete sparse LU decomposition with three levels of fill-ins was employed
as a subdomain solver and the overlapping size was set to 1 for all Schwarz type preconditioners.
For the coarse grid eigenvalue problem, a random vector was used for the initial search basis, one
may or may not always find the eigenvalue close to the one on the fine grid. Hence, we found two
coarse eigenvalues, then chose the one closest to our target as our initial search candidate on the
fine grid. Table 6 indicates the HRAS preconditioner with RAS c is more efficient compared to
the one with RAS c preconditioned GMRES with a variant of the stopping criterion, especially
for the finest grid case with a large number of processors. The number of JD iterations is mildly
dependent on the number of processors.

Coarse part (AH)
−1

RAS c-GMRES RAS c

Fine grid relative tol. 1.00E-05 1.00E-02 — — —
np maximum ite. — — 10 5 —

256×192 JDit(Avg.KSPit) 2(8.7) 2(7.3) 7(8.0) 4(9.8) 2(25.0)
12 Time 0.32 0.25 0.69 0.48 0.43

512×384 JDit(Avg.KSPit) 2(15.7) 2(1.7) 6(11.7) 4(15.2) 2(25.0)
48 Time 0.74 0.51 1.09 1.65 0.72

1024×768 JDit(Avg.KSPit) 2(25.0) 2(17.7) 8(17.7) 4(23.2) 3(25.0)
192 Time 7.05 3.46 5.73 3.74 2.77

2048×1536 JDit(Avg.KSPit) 3(25.0) 3(24.8) 6(25.0) 5(25.0) 6(25.0)
768 Time 12.50 7.03 7.89 5.32 5.11

Table 6: Effect on the quality of coarse grid solution. The coarse problem is solved by one-level restricted additive
coarse Schwarz preconditioned GMRES with different stopping conditions and one step one-level restricted
additive coarse Schwarz Richardson iterative method. Coarse grid: 32 × 24. The degree of overlapping is
set to 1 and the subdomain problem is solved by ILU(0) for both cases.

4.5. Parallel performance analysis

In this section, we investigate the parallel performance of the proposed two-level PJD algorithms
based on the fixed-problem size scalability as the metric on a cluster of computers. A fixed 32× 24
coarse grid was used. Let the time running the parallel code on 12 cores be denoted by T12 and
the time running the same code on np processors be denoted by Tn; then the speedup is defined
by

Sp =
T12

Tnp

Note that the test problem is too large to fit into a single core, hence we used the timing results
obtained by using 12 cores as the baseline for comparison. Efficiency is then calculated using the
following formula:

Ef =
T12 × 12

Tn × np
.
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From Table 7, we found the following:

1. Both methods are quite scalable in terms of the total number of iterations (outer iterations
times inner iterations). All remain nearly constant as the number of cores increases.

2. About the timing results, without taking the cost of the solution of the coarse eigenvalue
problem into account, the two-level PJD method is about eight times or above faster than
the one-level PJD method. The only exception is the problem with dimension 1024 × 768,
which is solved by 768 cores. This problem is too small to be solved by a large number of
cores. Notice that the PJD on the coarse grid is not quite scalable and even slower using
more processors. One resolution is to solve the coarse problem redundantly using a subset of
processors.

3. The two-level PJD algorithm achieved 43.8% parallel efficiency up to np = 768, slightly worse
than the one-level algorithm. The breakdown analysis of each key component in the two-
level PJD algorithm (Table 8) is useful for further improving the parallel performance of the
two-level PJD algorithm.

Two-level PJD One-level PJD
np 1st coarse 2nd coarse JD.Its Time (s) Sp Ef (%) JD.Its Time (s) Sp Ef(%)

Fine grid: 1024× 768

12 0.28 0.04 3 31.8 30 267.8
48 0.35 0.04 3 6.2 5.2 129.1% 30 52.4 5.1 127.9%
192 0.35 0.08 3 1.1 30.0 187.4% 30 12.8 21.0 131.3%
768 0.48 0.30 3 2.2 14.5 22.7% 41 7.0 38.0 59.4%

Fine grid: 2048× 1536

12 1.22 0.08 4 141.1 63 1991.0
48 0.13 0.04 5 40.8 3.5 86.5% 66 455.9 4.4 109.2%
192 0.33 0.08 6 10.9 12.9 80.7% 70 118.5 16.8 105.0%
768 0.37 0.26 6 5.0 28.1 43.8% 79 40.9 48.7 76.0%

Table 7: Fixed problem size scalability analysis: one-level PJD and two-level PJD cases. The timing results for
finding the first and second coarse eigenvector are also included.

Component np=12 np=48 np=192 np=768
Form Mi 5.02 1.71 0.32 0.12

GEVP solve 0.03 0.05 0.03 0.03
CorrEq solve 131.39 37.19 10.18 4.76

Compute u, p, r 1.92 0.72 0.19 0.06
Orthogonalization 1.24 0.65 0.09 0.03

Form A(λ) 1.48 0.37 0.12 0.03
Totle time 141.1 40.8 10.9 5.0

Table 8: Timing breakdown of each key component in the two-level PJD algorithm with the coarse grid 32×24.
The components include (a) Form Mi : Mi calculation; (b) GEVP solve: general eigenvalue problem solve;
(c) CorrEq solve: correction equation solve; (d) Compute u, p, r : the vectors u,p,and r calculation; (e)
Orthogonalization; (f) Form A(λ): A(λ) calculation.

5. Conclusions

In this work, we developed a two-level Schwarz based polynomial Jacobi-Davidson algorithm for
PDE polynomial eigenvalue problems and used a cubic acoustic eigenvalue problem as a numerical
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example to investigate its performances regarding efficiency and parallel scalability on a cluster of
computers. The proposed two-level PJD algorithm consisted of two important ingredients, includ-
ing the use of the coarse information for constructing a better initial basis for the search space and
a low-cost two-level restricted additive Schwarz preconditioner in conjunction with GMRES for the
correction equation. After some careful, intense numerical experiments, we identify the optimal or
nearly optimal parameters involved in the Krylov-Schwarz method for solving the correction equa-
tion. As a result, we achieve an excellent fixed-problem-size-scalability, up to 756 processors. In
general, the two-level PJD method is ten times faster than the one-level PJD method proposed by
[12].Finally, we close the paper by pointing out a few related project along this research direction.
(a) It is interesting to compare the two-grid PJD algorithm with some other popular alternative
approaches for solving cubic eigenvalue problems, e.g., Shift-and-invert linearization approach with
the Krylov-Schur method. (b) Current studies only considered a quite simple model, where the
motion of the structure was ignored, but the effect of the structure acting on the fluids was taken
into accounts by considering the Robin-type boundary condition. To model more realistic situa-
tion, we need to consider a complicated acoustic-structural eigenvalue problem, and an efficient
preconditioner for the problem is necessary to develop.
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