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Abstract

This work aims to develop an adaptive nonlinear elimination preconditioned inexact Newton method as the
numerical solution of large sparse multi-component partial differential equation systems with highly local
nonlinearity. A nonlinear elimination algorithm used as a nonlinear preconditioner has been shown to be a
practical technique for enhancing the robustness and improving the efficiency of an inexact Newton method
for some challenging problems, such as the transonic full potential problems. The basic idea of our method
is to remove some components causing troubles in order to decrease the impact of local nonlinearity on
the global system. The two key elements of the method are the valid identification of the to-be-eliminated
components and the choice of subspace correction systems, respectively. In the method, we employ the point-
wise residual component of nonlinear systems as an indicator for selecting these to-be-eliminated components
adaptively and build a subspace nonlinear system consisting of the components corresponding to the bad
region and an auxiliary linearized subsystem to reduce the interfacial jump pollution. The numerical results
demonstrate that the new approach significantly improves performance for incompressible fluid flow and heat
transfer problems with highly local nonlinearity when compared to the classical inexact Newton method.

Keywords: Fluid flow, Heat transfer, Adaptive nonlinear elimination, Highly local nonlinearity, Inexact
Newton method

1. Introduction

A class of nonlinear preconditioned iterative algorithms, namely the additive Schwarz preconditioned
inexact Newton algorithm (ASPIN) proposed by Cai and Keyes [4], opened up a new research direction
on the development of nonlinear iterative solvers. In the past, the typical application of a preconditioner
for nonlinear problems was usually employed together with a Krylov subspace method for the numerical
solution of the Jacobian systems, e.g., the Newton-Krylov-Schwarz algorithm (NKS) [3, 21] and the Newton-
Krylov-multigrid algorithm [22, 27], or for other similar linearized systems arisen from the Picard-type
iterative method. The major role of linear preconditioners is to accelerate the convergence of an iterative
method to obtain a high-quality Newton search direction, but it usually has nothing to do with helping to
improve the robustness of an inexact Newton method if no good initial guess is available. On the other
hand, ASPIN constructs the nonlinear preconditioner based on the overlapping Schwarz framework and
applies it directly to the nonlinear system. In this case, the convergence of an inexact Newton method
is not sensitive to the selection of an initial guess, physical parameters, e.g., the Reynolds number for
the incompressible flows and the Mach number for the compressible flows, and the system parameters,
e.g., geometric configuration, mesh sizes, etc. The basic idea of ASPIN is to reformulate the original
nonlinear system as some easier-to-solve preconditioned nonlinear system implicitly and then solve the new
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system through an inexact Newton method. After more than ten years of progress, Cai and Keyes’ work
now draws much attention from the scientific community. Among them, ASPIN and its variants such as
the multiplicative Schwarz version [24, 25, 26] or the restricted additive Schwarz version [12] have been
applied successfully to incompressible high-Reynolds number flows [4, 5, 7, 17, 18], high-Rayleigh number
convection flows [26], transonic compressible flows [6, 19, 38], multiphase flows in porous media [30, 32],
unconstrained optimization problems arising in nonlinear elasticity problems [16], and image processing
[39]. However, the nonlinear additive Schwarz preconditioner in the ASPIN belongs to the class of the
left nonlinear preconditioners, which has some drawbacks. For example, the computational cost for the
numerical evaluation of the nonlinear preconditioned function can be very expensive, since it requires to
solve several subdomain nonlinear problems, although it can easily be parallelized due to the independence
of these subdomain problems. The overhead of ASPIN can be more significant compared to the NKS
algorithm, especially when the certain global Newton iteration requires to perform few backtracking steps,
a commonly-used globalization technique to assure sufficient progress of Newton iteration. Hence, ASPIN
is intended for the cases where classical Newton-type method fails to converge.

On the other hand, nonlinear preconditioning can be applied to the right of the nonlinear function.
Instead of changing the function of the system itself as a left nonlinear preconditioner does, right precondi-
tioning modifies the unknown variables of the nonlinear system. Also, right nonlinear preconditioning can
be interpreted as nonlinear coordinate transformation between the solution spaces, see Ref. [35], where Yang
et al. used a simple example to illustrate this idea. Hwang et al. [19, 20] employed a nonlinear elimination
(NE) technique [23] as a right preconditioner for the 1D and 2D transonic full potential flow problems. The
basic idea of NE is to remove these components that cause trouble for IN implicitly. An effective identifi-
cation of the to-be-eliminated variable set is the critical step for the success of the overall algorithm. One
possible strategy to determine which components to eliminate based on a priori knowledge or feedback from
the intermediate numerical solution. For example, the numerical local Mach number provides such useful
information, where the shock wave is located, which corresponds to the highly local nonlinear components
to be eliminated in the transonic flow calculations [20].

The objectives of this work are to develop a class of adaptive NE preconditioners for the multicomponent
systems with highly local nonlinearities and to study numerically the robustness and efficiency of the IN
method preconditioned by NE for some challenging flow problems, including high-Reynolds number forced
and mixed convection cavity flow problems. In general, designing effective elimination strategies for mul-
ticomponent systems is not trivial, since each variable interacts with the others. One possible elimination
strategy is based on the field variable. For example, Lanzkron et al. [23] considered the drift-diffusion
equations consisting of the Poisson equation and both the electron and hole continuity equations for the
semiconductor device simulation. Their numerical result showed that when the field variables corresponding
to the two continuity equations are selected to eliminate, the efficiency of the classical IN is significantly
improved by using together with the nonlinear elimination technique. Further successful application exam-
ples of the field variable based NEs were the thermal convective flow control problem [35] and the two-phase
porous media flow problem [37]. On the other hand, we adopt the domain decomposition elimination ap-
proach, i.e., when one variable on some particular mesh point is selected to eliminate, all other variables
corresponding to that mesh point are also eliminated. In this work, we perform some numerical experiments
to obtain some insight about how to design the elimination process and study several different elimination
strategies.

The remainder of the paper is structured as follows. In Section 2, we give a general description of the
right nonlinear elimination preconditioned inexact Newton algorithm for PDE problems with highly local
nonlinearity. In Section 3, we introduce the governing equations for fluid flows and heat transfer, which
are our target applications, together with their discretizations. In Section 4, we introduce the nonlinear
elimination preconditioner for the multicomponent PDEs. In Section 5, we present some numerical results
for two benchmark problems, including lid-driven cavity flow problem and forced convective heat transfer
problem. We conclude this paper in Section 6.
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2. A framework of right NE preconditioned inexact Newton algorithm

We consider an inexact Newton method with backtracking technique (INB) [11, 13] in conjunction with
a right nonlinear elimination preconditioner for finding a root of the large, sparse, nonlinear system of
equations,

F (x) = 0, (1)

where F : Rn → Rn is a given nonlinear vector-valued function arising from some discretization of PDE
given by F = (F1, F2, · · · , Fn)T with Fi = Fi(x1, x2, · · · , xn)T , and x = (x1, x2, · · · , xn)T . To begin with,
let us introduce a right nonlinear preconditioned system [35]

W (y) ≡ F (G(y)) = 0, (2)

where
x = G(y)

acts as a nonlinear preconditioner, and the Jacobian matrix of (2) takes the form

∂W

∂y
=
∂F

∂G

∂G

∂y
.

Assume that the current approximation, y(k), is available. Then, INB used for solving W (y) = 0 suggests
that the new approximation is obtained via

y(k+1) = y(k) + α∆y(k) (3)

where ∆y(k) is the solution of the following Jacobian system

∂W (y(k))

∂y
∆y(k) = −W (y(k)),

or
∂F (x(k))

∂G

∂G(y(k))

∂y
∆y = −F (G(y(k))), (4)

Let ∆x(k) = ∂G(y(k))
∂y ∆y(k) and we apply G to both sides of (3) to obtain

G(y(k+1)) = G(y(k) + α∆y)

≈ G(y(k)) + α
∂G(y(k))

∂y
∆y(k)

Here, the first-order Talyor’s expansion around y(k) is applied. Hence,

x(k+1) = x(k) + α∆x(k), (5)

where
∂F (x(k))

∂G
∆x(k) = −F (x(k)), with x(k) = G(y(k)) (6)

Note that we have two possible ways to solve (1) by using a right nonlinear preconditioned INB method.
Either in the preconditioned solution space for the y-variable is as described by Steps (4) and (3) or in
the solution space for the x-variable is as given by Steps (6) and (5). In general, these two approaches are
not mathematically equivalent, unless using the linearization of G, since the operator G and the solution
update (5) do not commute. From a practical viewpoint, the latter approach is more preferable than the first
one, because the first formulation has the following potential drawbacks. The operator G(y) is implicitly
defined so that the Jacobian of G(y) is hard to obtain. Morever, designing an efficient preconditioner for
the Jacobian system in the composite form in (4) is quite challenging. Hence, in this paper, we adopt the
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second approach and confine our discussion to a right preconditioner G(y) based on the nonlinear elimination
algorithm. We first describe INB for (1) in conjunction with nonlinear elimination preconditioning for scalar
PDE problems [20], and then generalize it to the multicomponent PDE problem in Section 4.

Let S = {1, 2, ......, n} be an index set and each index corresponds to an unknown component xi and a non-
linear residual component, Fi. Supposedly, we can classify the nonlinear residual components, F1, F2, ..., Fn,
into two groups, namely the “good components” and “bad components”, respectively. Let k be the global

Newton iteration number. Assume that S
(k)
b (“b” for bad) is a subset of S with m(k) components and S

(k)
g

(“g” for good) with (n−m(k)) components is its complement; that is

S = S
(k)
b ∪ S(k)

g and S
(k)
b ∩ S(k)

g = ∅ (7)

Usually m(k) � n. For this partition, we define two subspaces

V
(k)
b = {v|v = (v1, ..., vn)T ∈ Rn, vi = 0 if i /∈ S(k)

b }
and

V (k)
g = {v|v = (v1, ..., vn)T ∈ Rn, vi = 0 if i /∈ S(k)

g },

respectively, and the corresponding restriction operators, R
(k)
b and R

(k)
g , which map vectors from Rn to V

(k)
b

and V
(k)
g , respectively. Using the restriction operator R

(k)
b , we define a nonlinear function FSb

1
: Rn → V

(k)
b

as
F
S

(k)
b

(y) = R
(k)
b (F (y)).

For any given y ∈ Rn, T
(k)
b (y): Rn → V

(k)
b is defined as the solution of the following subspace nonlinear

system,

F
S

(k)
b

(R(k)
g y + T

(k)
b (y)) = 0. (8)

Using the subspace mapping functions, we introduce a new global nonlinear function,

x = G(k)(y) ≡ R(k)
g y + T

(k)
b (y).

Note that for a given y, the evaluation of G(k)(y) is required to solve a nonlinear system corresponding to
the subspace V b1 by using typically the classical INB algorithm. The superscript k indicates the adaptivity
of the nonlinear subspace function changes as the global Newton iterates. Now INB in conjunction with an
adaptive nonlinear elimination (ANE) preconditioning can be described as follows.

ALGORITHM 1. Inexact Newton algorithm with backtracking technique-Adaptive nonlinear
elimination preconditioning (INB-ANE).

Given an initial guess x(0) and set k = 0.

While (‖F (x(k))‖ > εr‖F (x(0))‖) and (‖F (x(k))‖ > εa) do

Set y(k) = x(k)

(Application of ANE phase):
If (‖F (x(k))‖ > εswitch) then

• Compute x(k) = G(y(k)) by solving (8) with INB.

else

• Set x(k) = y(k)

end if

(Global update phase):

• Inexactly solve the Jacobian system

J(x(k))∆x(k) = −F (x(k)). (9)

by some Krylov subspace method [29], e.g. GMRES or BiCGstab in conjunction with a
preconditioner.
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• Update x(k+1) = x(k) + λ(k)∆x(k), where λ(k) ∈ (0, 1] is determined to satisfy

‖F (x(k) + λ(k)∆x(k))‖ 6 (1− αλ(k))‖F (x(k))‖. (10)

• Set k = k + 1.

End While

Remark 1. To employ the ANE algorithm as a nonlinear preconditioner, the user needs to provide a routine
on his or her own to determine the partition of S in (7). An effective identification of the bad component to
be eliminated contributes a critical success factor to the ANE preconditioned iterative method. However,
designing such good strategy is often problem-dependent, and so far, no available theoretical analysis can be
used for the design guideline. Generally speaking, the partition can be determined in two different ways, that
is, in either static or dynamic fashion. For the former class, the partitioning is obtained beforehand based
on the pre-knowledge of the problem to solve. such as when the nonlinearity of one field variable is stronger
than the others in the multi-component PDE system. The index set corresponding to such field variable
can be classified as bad components. One the other hand, the partition can be adaptive dynamically during
the Newton iterations, see [20] for a successful example using the global intermediate solution to update the
partition.

Remark 2. The parameter εswitch determines the activation of ANE phase. When the residual norm,
‖F (x)‖, is less than the pre-selected value of εswitch, which implies that the intermediate numerical solution
is close to the desired one, the nonlinear elimination step may be turned off. Then, the INB-ANE algorithm
is reduced to be as the classical INB algorithm. In this situation, the local quadratic convergence property
of the Newton method can often be retained and the overhead of the entire algorithm is reduced because
ANE phase is kept to be minimal.

Remark 3. For left nonlinear preconditioned Newton-type algorithms, such as ASPIN, linear precondition-
ing in conjunction with Krylov subspace methods for the global Jacobian system is built-in by design [4]. The
nonlinear additive Schwarz preconditioner automatically produces a better conditioned Jacobian than the
one for the original nonlinear system. On the other hand, right nonlinear preconditioner provides flexibility
for choosing the linear Jacobian solvers. A linear preconditioner designed for the Jacobian system of the
original nonlinear problem can be applied. Commonly used preconditioners include the domain decomposi-
tion [31, 33], multigrid [29, 34], and block-type preconditioners [2]. On the other hand, the Jacobian system
for the nonlinear subspace system may also need to be preconditioned, although in general, the subspace
Jacobian system is better conditioned than the global Jacobian system.

3. Highly local nonlinear fluid flows and convective heat transfer problems

Let Ω be a bounded computational domain in R2. We consider the incompressible fluid flow and con-
vective heat transfer problems, which are modeled by the Navier-Stokes equations in the velocity-vorticity
form [14] and the energy equation as follows.

−∆u− ∂ω

∂y
= 0 in Ω,

−∆v +
∂ω

∂x
= 0 in Ω,

− 1

Re
∆ω + u

∂ω

∂x
+ v

∂ω

∂y
− Gr

Re2
∂T

∂x
= 0 in Ω,

− 1

RePr
∆T + u

∂T

∂x
+ v

∂T

∂y
= 0 in Ω,

(11)
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where (u, v) is the velocity field in the x- and y-directions, respectively,

ω = −∂u
∂y

+
∂v

∂x
(12)

is the component of the vorticity normal to the xy-plane (representing the in-plane rotation of an infinitesimal
fluid element), and T is the temperature. Three non-dimensional parameters in the system include the
Reynolds number (Re), the Grashof number (Gr), and the Prandtl number (Pr). In fluid mechanics, the
Reynolds number quantifies the relative importance of two sources of forces, the inertial force and the
viscous force provided that the given flow conditions. Similarly, the Grashof number provides a piece of
information how an effect of the buoyancy force acting on a fluid element is more important compared to
that of the viscous force. Some proper boundary conditions for each variable are needed to close the system.
In this paper, we confine our discussion on the fluid flows within a square cavity, Ω defined in the domain,
(0, 1) × (0, 1) with the boundary Γ, where Γ1,Γ2,Γ3 and Γ4 are the disjoint portions of the boundary Γ of
the domain Ω, C1 ∪ C2 ∪ C3 ∪ C4 are its corners, as shown in Fig. 1.

s s

ss

C1 : (0,0) C2 : (1,0)

C3 : (1,1)C4 : (0,1)

Γ1

Γ2

Γ3

Γ4 Ω

Figure 1: The computational domain Ω = (0, 1) × (0, 1).

Two kinds of convective mechanisms for heat transfers are considered: forced convection and mixed con-
vection cases. The first test case is the lid-driven cavity problem [14, 15]. The flow is assumed to be isother-
mal, hence the last term in the third equation of (11) involved the Grashof number Gr = gβ(TH − TC)/L3ν
vanishes and the energy equation does not need to be solved together with the Navier-Stokes equations.
Here, g is the gravity, TH and TC are the temperatures at the hot and cold walls, L are the length of the
cavity, and ν is the viscosity, respectively. The boundary condition settings for the lid-driven cavity problem
are given by 

u = 1 on Γ3 ∪ C3 ∪ C4,
u = 0 on Γ/(Γ3 ∪ C3 ∪ C4),
v = 0 on Γ,

ω +
∂u

∂y
− ∂v

∂x
= 0 on Γ.

The second test case is the mixed convection cavity problem [9], in which the forced and natural convections
both present simultaneously. In the case, we solve both of the fluid flow and energy equations (11), with
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the following boundary conditions,

u = 1 on Γ3 ∪ C3 ∪ C4,
u = 0 on Γ/(Γ3 ∪ C3 ∪ C4),
v = 0 on Γ,

ω +
∂u

∂y
− ∂v

∂x
= 0 on Γ,

∂T

∂y
= 0 on Γ/(Γ2 ∪ Γ4),

T = 1 on Γ2,
T = 0 on Γ4.

Different from the lid-driven cavity problem, where the flows are mainly driven by the moving lid on the
top wall, in the mixed convective cavity problem, the fluid flows are also driven by the buoyancy force due
to temperature difference between the walls (The hot wall on the right (T = 1) and the cold wall on the left
(T = 0)).

A standard central second-order finite difference scheme (both for the Laplacian operators and the first
order partial derivatives) is used to discretize (11) in the domain Ω, together with the so-called efficient second
order approximation for the vorticity equation (12) on the boundaries [28, 36] and other proper boundary
conditions for each test case. Let Ω be covered with n × n mesh cells. Then each point pi,j = (xi, yj) is
centered at the position xi = i× h and yj = j × h with i, j = 1, . . . , n, and h = 1/(n− 1). In the study, we
use the fully coupled ordering to build up the large sparse nonlinear algebraic system of equations (1), by
which we mean that all four variables defined at the same mesh point pi,j are always together throughout
the calculations. At each mesh point, we arrange the unknowns in the order of uij , vij , ωij , and Tij , and
then all mesh points numbered in the natural ordering. That is, the unknowns are ordered as

x = (u11, v11, ω11, T11, u21, v21, ω21, T21, · · · , unn, vnn, ωnm, Tnn)T (13)

and the corresponding functions are in the order of

F (x) = (F
(u)
11 , F

(v)
11 , F

(ω)
11 , F

(T )
11 , F

(u)
21 , F

(v)
21 , F

(ω)
21 , F

(T )
21 , · · · , F (u)

nn , F
(v)
nn , F

(ω)
nn , F

(T )
nn )T . (14)

We would like to point out that the computational fluid dynamics literature often suggests that an
upwinding technique should be employed for the gradient operator in the convective-dominated convection-
diffusion type of equation to prevent the numerical solution from unphysical oscillations. To the best of the
authors’ knowledge, no similar result is available in the literature by using such simple numerical scheme
as used here. Hence, we performed carefully the mesh independent test to validate our computer flow code.
Since we focus on the development of the robust and efficient solution algorithm itself not on that of the
numerical scheme, indeed, a more sophisticated numerical scheme can be used. Fig. 3 illustrates a set of
the plots for the lid-driven cavity problem with Re = 103, 5 × 103, and 104, including the streamlines, the
vorticity contours, and the vertical velocity profiles along the section y = 0.5 with a series of uniformly
refined meshes ranging from 128× 128 to 512× 512. We find that the computed velocity profiles are stable
and converge as the mesh is refined and they are consistent with published benchmark solutions in, e.g.,
[14, 15]. Moreover, our streamline patterns in Fig. 3 match well when compared with the streamlines in the
earlier study [17] by using the Navier-Stokes equations in the velocity-pressure formulation.

For the mixed convection problem, we fix both of the Prandtl number Pr = 1 and the Richardson
number Ri = Gr/Re2 = 0.2, then varies different values of the Reynolds number from 500 to 1500. Fig. 3
shows a series of solution plots, including the streamlines, the temperature contours as well as the vertical
velocity profile along x = 0.5 with different meshes from 128× 128 to 512× 512. From the right panel of the
figure, we can see that the mesh independent velocity profile results are observed. Moreover, for the case
of Re = 500, a total of three eddies are found from the streamline plots, where two eddies near the bottom
are generated due to the temperature difference on the walls and the major eddy is mainly driven by the
moving top wall. For the case of higher Re, these two eddies merge into a single vertex; Furthermore, the
new major vertex becomes larger and moves closer to the top wall.

7



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

−2

0

2

4

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

 

 

Mesh=128

Mesh=256

Mesh=512

Ghia et al.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

−2

0

2

4

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

 

 

Mesh=128

Mesh=256

Mesh=512

Ghia et al.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

−2

0

2

4

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

 

 

Mesh=128

Mesh=256

Mesh=512

Ghia et al.

Figure 2: The lid-driven cavity problem. The streamlines (left column), the vorticity contours (middle column), and the u-
component velocity profile curves on the along x = 0.5 for different mesh sizes (right column). Re = 103 (first row) Re = 5×103

(second row) and Re = 104 (third row). The published results of Ghia et al. [15] are compared with the computed solutions.
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Figure 3: The mixed convection problem. The streamlines (first column), the temperature contours, (middle column), and the
u-component velocity profiles on the along x = 0.5 for different mesh sizes (right column). Re = 500 (first row), Re = 1000
(second row), and Re = 1500 (third row).
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Note that for both systems of large, sparse, nonlinear equations, the value of Re controls the degree of
local nonlinearity. As Re increases, the classical INB algorithm is more difficult to converge to the desired
solution. In Section 5, we will present detailed study for the robustness of INB with/without employing
ANE preconditioner.

4. The ANE preconditioner for multi-component systems

For the sake of simplicity, we take the lid-driven cavity problem, a three-components system, as an
example to illustrate how to construct the ANE preconditioner for the coupled system of PDEs. It can be
extended to other nonlinear systems in a similar manner. We first introduce some notations. Let Ωh be
the collection of all mesh points in the computational domain and assume that each mesh point has 3-field
variables. We partition Ωh into two subsets such that Ωh = Ωhg ∪ Ωhb , which are referred as “good” region

and “bad” region, respectively. See Fig. 4 for an example of partitions of Ωh with good and bad regions.
Next, we define the subspace corresponding to the bad region, Vb ⊂ RN as

Figure 4: Partitions for the local iteration with good and bad components on a 9× 9 mesh. The colored red subdomain means
the collection of bad components in Ωh

b and the uncolored subdomain means the collection of good components in Ωh
g .

Vb = {x|x = (x11, · · · , xij , · · · , xnn)T ∈ RN , xij = 0, if pij 6∈ Ωhg}, (15)

where xij = (uij , vij , ωij)
T

. Similarly, we define the subspace corresponding to the good region.

Vg = {x|x = (x11, · · · , xij , · · · , xnn)T ∈ RN , xij = 0, if pij 6∈ Ωhb }, (16)

In addition, the subspace Vg is further decomposed into V wg and V w
c

g . For each subspace, we define the
associated restriction and interpolation operators, that transfer the data on the whole domain to a subspace
vice versa, including Rb, (Ib), R

ω
g , (Iωg ), for the bad region and the vorticity components defined in the good

region, respectively. For any given y ∈ RN , we define M b(y) : RN → Vb and M b
ω(y) : RN → V ωg as the

solution of the following coupled nonlinear and linearized subspace systems,{
FVb

(y + IbM
b(y)) = 0

LV ω
g

(y + IωgM
g
ω(y)) = 0,

(17)
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where FVb
(y) = RbF (y) and LV ω

g
(y) is the linearization of Rωg F (y) by assuming that u and v are known. In

particular, for the lid-driven cavity problem, the coupled nonlinear system can be written explicitly as

−∆hui,j − δ0yωi,j = 0 in Ωhb
−∆hvi,j + δ0xωi,j = 0 in Ωhb

− 1

Re
∆hωi,j + ui,jδ

0
xωi,j + vi,jδ

0
yωi,j = 0 in Ωhb ,

− 1

Re
∆hωi,j + u∗i,jδ

0
xωi,j + v∗i,jδ

0
yωi,j = 0 in Ωhg

ui,j = u∗i,j on ¯∂Ωhb
vi,j = v∗i,j on ¯∂Ωhb

where ∆h ≡ δ2x + δ2y is the standard five-point central difference operator defined on the point pi,j and δ0∗ is

the 2nd order central difference operator for the first partial derivatives in the x- or y-direction. Here Ω̄hb is
obtained by expanding one layer of the mesh points from Ωhb and u∗i,j and v∗i,j are the intermediate solution
obtained from the previous Newton iteration. Using the subspace mapping function, we can introduce a
new global function

x = G(y) ≡ Rωg y + IbM
b(y) + IωgM

g
ω(y). (18)

Hence, y is assumed to be a given known solution and the application of ANE for the multicomponent PDEs
is done via the following two steps.

ALGORITHM 2 (Application of ANE x = G(y)).

(Determination of a partition of Ωh).
Partition Ωh = Ωhg ∪ Ωhb based on the following rule,{

pij ∈ Ωhb , if any |F (∗)
ij (xk)| > ρ

n
‖F (xk)‖, ∗ = u, v, or ω,

pij ∈ Ωhg , otherwise.

Update the mesh transfer operators, Rb, Ib, R
ω
g , and Iωg .

(Subspace correction)
Solve the coupled subspace problems,{

FVb
(y + IbM

g(y)) = 0
FV ω

g
(y + IωgM

g(y)) = 0

for M b(y) and Mg
ω(x) by the inexact Newton method.

Compute x = G(y) = Rωg y + IbM
b(y) + IωgM

g(y).

The elimination strategy proposed here is motivated by the observations from the intermediate classical
Newton solution and associate point-wise residual plots as shown in Figures 5 and 6.

• Highly local nonlinearity property. Based on the knowledge of the incompressible fluid flow
problem, we know that the resulting nonlinear problem becomes harder to solve when the strong
singularity or boundary layer presents for the high Reynolds number cases. Moreover, from Fig. 5, we
observe that the dominant part of the point-wise residual is the vorticity component ω of the global
function at the upper right corner, and the orders of magnitude for the u- and v-components of the
residual functions are 10−7. In our approach, the criteria for determining the bad components to
be eliminated is based on so-called hybrid physical-algebraic approach as follows: Let ‖F (x)‖ be the
nonlinear residual norm of the function vector and the absolute value of the component-wise residuals

|F (∗)
ij (x)| for the cases of ∗ = u, v, or ω. A mesh point is classified as the point in the bad region if

|F (∗)
ij (x)| > ρ

nx
‖F (x)‖ (19)

where ρ > 0 is a pre-chosen constant and n is the number of mesh points in the x-or y-direction.
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• Interfacial jump pollution reduction by including linearization of the vorticity equation
defined in the good region. Recall that, in [7], Cai and Li used a simple 1D nonlinear two-
point boundary value problem to illustrate one potential computational problem of NE in practical
applications: The intermediate numerical solution on or near the interface points between the good
and bad regions may not be smooth. As a consequence, even tiny non-smoothness of some components
can produce some large jumps in the residual function corresponding to those interface points because
of some involved discrete derivative operators, such as gradient, divergence, etc. This phenomenon is
also observed in our fluid flow problem, as shown in the left panel of Fig. 6. They also suggested that
one should have some mechanism to reduce or remove such jumps to make the NE algorithm to be
useful. Unfortunately, the global update phase in INB-ANE originally proposed in [20] cannot do such
a good job for multicomponent problems as it did for scalar ones because each component interplays
each other. The right panel of Fig.6 shows that these newly introduced jumps for the ω-component
can not be smoothed out after the global update. It turns out that the interfacial jump pollution
might cause a wrong judgment for choosing bad components properly, especially when the residual
based criteria is employed. Those meshes corresponding to these new jumps are classified as the bad
components mainly due to interfacial jump pollution. When the local nonlinear elimination phase
cannot effectively remove highly local nonlinearity, the failure of global Newton iteration will happen.
In the numerical result section, we will show that the inclusion of the auxiliary linearized ω subsystem
in (17) is necessary for the convergence of the INB-ANE method.
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Figure 5: Lid-driven cavity problem. The left panel corresponds to the solution plot of the ω-component, and the right panel
corresponds to the residual surface plot of the ω-component obtained after the first Newton’s iteration. The calculation is
carried out for Re = 103 on a 128 × 128 mesh. Note that the orders of magnitude for the residual function norm of u- and v-
components are less than 10−7 after the first global Newton iteration.

Remark 4. The dimension of the nonlinear subspace system depends not only on the degree of the highly
local nonlinearity but also the prescribed parameter ρ. The smaller the value of ρ is, the more the mesh
points are classified as the bad points. In this case, the nonlinear subspace system may include too many
unnecessary mesh points and the subsystem will become another highly local nonlinear system, which is
difficult to be solved with INB.

Remark 5. After performing some slowness analysis, we understand that for the mixed convection problem,
as Re, the dominate parts of the point-wise residual is the one corresponding to the subsystems for the
vorticity and the temperature variables. Hence, we define the subspace system for this problem explicitly
as follows.
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Figure 6: The lid-driven cavity problem. The plot of the residual surface for the u and ω-components obtained after the first
subspace correction phase without the linearization part of (17). The left panel corresponds to the residual surface before the
global update, and the right panel corresponds to the residual surface after the global update. Note that the distribution of
the residual function for the v-component is similar to that for the u-component.



−∆hui,j − δ0yωi,j = 0 in Ωhb
−∆hvi,j + δ0xωi,j = 0 in Ωhb

− 1

Re
∆hωi,j + ui,jδ

0
xωi,j + vi,jδ

0
yωi,j = 0 in Ωhb ,

− 1

RePr
∆hT + ui,jδ

0
xT + vi,jδ

0
yT = 0 in Ωhb ,

− 1

Re
∆hωi,j + u∗i,jδ

0
xωi,j + v∗i,jδ

0
yωi,j −

Gr

Re2
δ0xT = 0 in Ωhg

− 1

RePr
∆hT + u∗i,jδ

0
xT + v∗i,jδ

0
yT = 0 in Ωhg

ui,j = u∗i,j in ∂Ω̄hb
vi,j = v∗i,j in ∂Ω̄hb

5. Numerical results and discussions

In the section, we present some numerical results for two benchmark problems as described in Section
3, namely the lid-driven cavity problem and the mixed convection problem. The INB-ANE algorithm is
implemented on top of the Portable, Extensible Toolkits for Scientific computation (PETSc, [1]) library. We
carry out numerical experiments on a Dell supercomputer located at the University of Colorado Boulder,
USA. In all the experiments, all Jacobian matrices are constructed approximately using a multi-colored
finite difference method [10]. In INB-ANE, the nonlinear subspace problem (18) is solved by NKS until the
stopping condition ‖G(x(k))‖ ≤ 10−10 is satisfied. For the global problem, we continue the iteration until
the convergence criterion given by

‖F (x(k))‖ ≤ max{10−10, 10−6‖F (x(0))‖}.

The step length λ(k) in (10) is determined by a cubic line search technique [11, 13] with α = 10−4. In the
INB-ANE and INB methods, a zero initial guess is used for the first Newton iteration for all test cases. Also,
we use the restarted GMRES [29] method accelerated by an overlapping Schwarz preconditioning technique
for solving the Jacobian problem inexactly (9),

‖F (x(k)) + J (k)(M (k))−1M (k)∆s(k)‖ ≤ max{ηr‖F (x(k))‖, ηa},
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where J (k) = F ′(x(k)) is the Jacobian matrix evaluated at x(k). The accuracy of the solution of GMRES
is determined by a relative tolerance ηr ∈ [0, 1) and an absolute tolerance ηa ∈ [0, 1). ηr = 10−6 and
ηa = 10−10 are selected. To define the Schwarz preconditioner (M (k))−1, we first begin by partitioning Ω

Figure 7: Partitions for the global iteration on a 9 × 9 mesh and 3 × 3 subdomains. The dashed lines indicate that the unit
square domain is partitioned into 9 × 9 meshes, and the red lines indicate that the unit square domain is partitioned into into
3 × 3 non overlapping subdomains.

into non-overlapping subdomains Ωl, l = 1, . . . , Np. Note that this partition is totally independent of the
partition used for defining the subspace correction G(y) in the Section 4. Then we expand each Ωl to obtain
Ωδl , i.e., Ωl ⊂ Ωδl ⊂ Ω. The overlap δ > 0 is defined as the distance between ∂Ωδl and ∂Ωl, in the interior of
Ω. Let Rδl and R0

l be the restriction operator from Ω to its overlapping and non-overlapping subdomains,
respectively. See Fig. 7 for an example of 3×3 overlapping partitions. Then the restricted additive Schwarz
preconditioner [8, 31, 33] is defined as

(M (k))
−1

=
Np∑
l=1

(R0
i )
T (J

(k)
l )

−1
Rδl

with J
(k)
l = Rδl J

(k) (Rδl )
T and Np is the number of subdomains, which is the same as the number of

processors.
Throughout this section, in the tables, “Newton” denotes the number of inexact Newton iterations,

“GMRES” denotes the average number of GMRES iterations per Newton iteration, and “Time” denotes
the total computing time in seconds.

5.1. A comparison of INB and INB-ANE

We are especially interested in the cases in which INB fails to converge even when some globalization
technique is used. In the left of Fig. 8, we compare both histories of the nonlinear residual norms of INB
and INB-ANE for the lid-driven cavity problem with different Re = 103, 5 × 103, and 104 on a 512 × 512
mesh. This figure indicates that the nonlinear system becomes harder to solve when the value of the Reynolds
number increases. Also, the convergence behaviors of INB are quite similar, i.e., all nonlinear residual norms
stagnate around 10−1 without any progress. We also noticed that for this particular mesh, INB starts to
fail to converge for Re = 750, or above. On the other hand, the INB-ANE method converges nicely for a
wider range of the Reynolds numbers. Also, as shown on the right of Fig. 8, we have similar results for the
mixed convective flow problem. INB fails to converge at Re=340 or above and with help from the nonlinear
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elimination preconditioner, INB-ANE can converge in less than 18 iterations for all test cases. Note that the
INB-ANE results here are obtained after parametric tuning. The performance of the INB-ANE algorithm
depends on several parameters involved such as the switch parameter, εswitch and ρ. A detailed parametric
study of these factors is presented in the next subsection.
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Figure 8: Histories of the nonlinear residual norms: Lid-driven cavity problem (left) for different Reynolds numbers, Re =
103, 5×103, and 104. Mixed convection problem (right) for different Reynolds numbers Re = 500, 1000, and 1500. A 512×512
mesh is used. The symbol “ ? ” denotes INB-ANE and “o” denotes INB.

The main purpose of the nonlinear elimination acting as a nonlinear preconditioner is to remove the
highly local nonlinear components of the system before performing the outer nonlinear iteration. Hence, the
effective identification of the bad components to be eliminated plays an important role in the success of the
method. Figures 9 and 10 show the evolution of the distribution of the bad components for first three global
Newton iterations and the corresponding residual ω-component for both test problems. In the figures, the
bad components are labeled with the red dots in the computational domain. These two figures indicate that
all bad components are located near two top corners of the cavity, where the singularity or discontinuity of
the solution is observed, especially for the ω-component. This series of plots suggests that our mechanism
can be physically correct in identifying bad components.

5.2. Parametric study of the INB-ANE algorithm

In this subsection, we investigate how these two parameters, ρ and εswitch, affect the overall performance
of the INB-ANE algorithm. Using the lid-driven cavity problem as an example, we first study the effect of
the switch parameter εswitch on the convergence of the INB-ANE algorithm. We test the different values
of εswitch ranging from 10−6 to 10−1 and fix other parameters: ρ = 1.5, a 512 × 512 mesh, Np = 64, and
Re = 5, 000. Table 1 shows the number of Newton iterations for the global nonlinear problem and the
nonlinear subspace problems as well as the average number of GMRES iterations per Newton for different
values of εswitch. From this table, we find that the number of global Newton iterations is insensitive to
εswitch as long as the preselected εswitch is not too large, e.g., 10−1 for this case. If we turn off the ANE step
too early, the bad components in the system may not be removed thoroughly and result in the divergence
of the global iteration. On the other hand, when the mild value of εswitch, say 10−2, is set, one can save
the computational cost for solving the nonlinear subspace problems, while maintaining the fast convergence
of the global Newton method. In this case, we can save about 50% of the total time compared to the one
obtained by the INB-ANE, where the ANE step is always turned on.
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Figure 9: The lid-driven cavity problem. The evolution of distribution of the to-be-eliminated bad components (The first row)
and the residual surface of the ω-component of the residual function (The second row) during the global Newton iterations.
The problem is solved on a 128 × 128 mesh, Re = 103, εswitch = 10−2 and ρ = 3. In this case, seven iterations are need to
reach convergence, and the orders of magnitude for the u- and v-components of the residual functions are 10−7 after the first
global Newton iteration.

Table 1: The effect of switch parameter εswitch for the lid-driven cavity problem. A 512 × 512 mesh, Np = 64, Re = 5 × 103

are considered. The “ − −” means divergence of the global iteration. In the global iteration, “Newton” denotes the overall
number of inexact global Newton iterations; in the local iteration, “Newton” denotes the overall number of inexact subspace
Newton iterations; and others defined in a similar way.

εswitch Newton GMRES Time Newton GMRES Time Total time
Global iteration Local iteration

10−1 −− −− −−
10−2 9 319.2 69.2 11 120.0 36.7 105.9
10−3 10 281.8 68.6 21 115.3 52.3 120.9
10−4 11 249.7 68.0 24 112.3 70.0 138.7
10−6 11 251.2 68.6 26 109.8 78.9 147.5
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Figure 10: The mixed convection problem. The evolution of distribution of the to-be-eliminated bad components (The first
row), the residual surface of the ω-component of the residual function (The second row), and the residual surface of the T
component of the residual function (The third row) during the global Newton iterations. The problem is solved on a 128× 128
mesh, Re = 103, εswitch = 10−2 and ρ = 3. In this case, 13 iterations are need to reach convergence, and the orders of
magnitude for the u- and v-components of the residual functions are 10−7 after the first global Newton iteration.

17



Next, we study the impact of the value of ρ on the performance of INB-ANE and summarize the results
with different Re for two test cases in Table 2. Np = 64 is used on a 512×512 mesh. A fixed switch parameter
εswitch is set to 10−2. From this table, we found that the number of global Newton iterations is less sensitive
to the choice of ρ when the local nonlinearity is not strong for both cases. On the other hand, for the case
with strong local nonlinearity, we need to choose a proper ρ more carefully. The optimal values of ρ can be
found numerically. For the lid-driven cavity problem with Re = 104 and the mixed convective problem with
Re = 1500, we have ρ = 3.0 and ρ = 2.0 , respectively. Away from the optimal value, either too small or too
large, the INB-ANE method may fail to converge. For the former case, as stated in Remark 6, we include too
many unnecessary components so that subspace correction system becomes another nonlinearly unbalanced
system. One possible solution is to introduce one additional nonlinear preconditioner for the subspace
correction system. We refer to Ref. [19] for application of two-level nonlinear elimination preconditioners
to one-dimensional quasi transonic problems.

5.3. Comparison to the field variable elimination strategy
For the purpose of comparison to our proposed algorithm, we considered another elimination strategy

based on the field variable, for the case of the lid-driven cavity problem; that is, all the vorticity variables
are eliminated. The subspace correction system is explicitly defined as follows:

− 1

Re
∆hωi,j + u∗i,jδ

0
xωi,j + v∗i,jδ

0
yωi,j = 0 in Ωh, (20)

where u∗i,j and v∗i,j are known. Note that Subproblem (20) is linear, and this system can be viewed as the
Oseen-type linearization of (14). As a result, this type of the nonlinear preconditioner is reduced as the linear
one. Then INB-ANE-field can be understood as the right linear subspace preconditioned Newton algorithm.
Table 3 shows the results obtained with the field variable elimination strategy, labeled as INB-ANE-field and
our proposed method for the lid-driven cavity problem with Re = 5, 000 and 10, 000. For the case of a mild
value of Reynolds or on the coarser mesh, the linear field variable elimination can improve the convergence
of INB slightly, but it still fails for the case of the higher Reynolds number on finer mesh when the local
nonlinearity becomes stronger. On the other hand, INB-ANE outperforms INB-ANE-field in terms of the
robustness and efficiency. INB-ANE can not only converge nicely for a larger range of the Reynolds number
but can also reduce the number of Newton iterations and the computing time significantly.

6. Concluding remarks

In this paper, we developed a nonlinear elimination preconditioned inexact Newton method for the
multi-component PDE systems with highly local nonlinearity. The two key elements of the method are
the valid identification of the to-be-eliminated components and the choice of subspace correction systems.
In the method, we used the point-wise residual component of nonlinear systems as an indicator for select-
ing these to-be-eliminated components adaptively and built a subspace nonlinear system consisting of the
components corresponding to the bad region and an auxiliary linearized subsystem to reduce the interfacial
jump pollution. As numerical examples, we studied the performance of the new algorithm for solving the
incompressible fluid flow and convective heat transfer problems at high Reynolds numbers. Our numerical
results showed that we could restore the fast convergence of the Newton method by removing the strong
localized nonlinearities with ANE. As a result, the global iteration counts depend on the Reynolds number
mildly. Some possible future research works include an extension of the methods to some more general
and more complicated problems, such as the system arising from an unstructured finite element method or
multi-physics problems.
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Table 2: The different choices of ρ. The lid-driven cavity problem and the mixed convection problem for different Reynolds
numbers. Np = 64 for the cases of a 512× 512 mesh. The switch parameter εswitch = 10−2. In the global iteration, “Newton”
denotes the overall number of inexact global Newton iterations; in the local iteration, “Newton” denotes the overall number of
inexact subspace Newton iterations; and others defined in a similar way.

Lid-driven cavity problem
Re ρ Newton GMRES Time Newton GMRES Time Total time

Global iteration Local iteration
103 0.1 8 155.1 30.2 8 70.6 14.9 45.1

0.5 8 154.5 29.8 7 66.1 11.9 41.7
1.0 7 157.0 26.2 6 75.0 10.6 36.8
1.5 7 157.5 27.1 6 73.8 12.5 39.6
2.0 7 158.4 28.2 6 72.3 11.5 39.7

5× 103 1.0 9 310.0 68.0 12 114.0 33.7 101.7
1.5 9 319.2 69.2 11 120.0 36.7 105.9
2.0 9 307.7 67.5 12 116.9 33.1 100.6
2.5 9 315.1 68.6 12 105.2 32.9 101.5
3.0 9 307.3 67.2 13 104.4 29.9 97.1

104 2.5 −− −−
2.6 20 291.4 170.7 73 147.2 282.4 453.1
3.0 15 272.2 118.2 36 149.5 138.0 256.2
3.4 20 343.5 203.1 48 145.0 195.9 399.0
3.5 −− −−

Mixed convection problem
500 0.1 14 167.5 91.5 35 106.0 139.1 230.6

0.5 14 157.5 84.6 26 104.3 103.4 188.0
1.0 13 171.1 81.4 22 104.8 86.3 167.7
1.5 13 170.3 81.0 22 102.5 82.9 163.9
2.0 13 171.4 83.4 22 100.2 79.6 163.0
2.5 13 172.6 86.8 21 101.0 78.5 165.3

1000 0.1 13 193.0 94.5 28 112.3 112.6 207.1
0.5 15 182.8 107.3 34 109.2 132.2 239.5
1.5 18 196.2 142.3 39 105.6 172.2 314.5
2.0 17 201.0 125.2 32 106.9 124.1 249.3
2.5 17 204.1 134.6 32 106.0 123.0 257.6

1500 0.1 −− −−
0.5 33 268.6 332.7 97 156.0 550.9 873.6
1.5 21 251.9 198.8 43 164.6 263.6 462.4
2.0 18 252.1 170.1 35 130.9 169.0 339.1
2.5 24 252.0 228.2 55 122.2 249.1 477.3

Table 3: A comparison of two possible elimination strategies for the lid-driven cavity problem. Np = 64 for the cases of a
512 × 512 mesh and Np = 256 for the cases of a 1024 × 1024 mesh. The “−−” means divergence of the global iteration. In
this table, “Newton” denotes the overall number of inexact global Newton iterations in global iteration, and others defined in
a similar way.

Mesh Re Newton GMRES Time Newton GMRES Time
INB-ANE-field INB-ANE

512× 512 5× 103 12 244.4 80.9 9 307.3 67.2
104 30 352.6 305.5 15 272.2 118.2

1024× 1024 5× 103 12 849.5 367.4 10 809.6 286.9
104 −− 17 1143.7 721.0
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