
A Parallel Adaptive Nonlinear Elimination Preconditioned Inexact Newton
Method for Transonic Full Potential Equation

Feng-Nan Hwanga,∗, Yi-Cheng Sua, Xiao-Chuan Caib

aDepartment of Mathematics, National Central University, Jhongli 32001, Taiwan
bDepartment of Computer Science, University of Colorado, Boulder, CO 80309, USA

Abstract

We propose and study a right-preconditioned inexact Newton method for the numerical solution of large
sparse nonlinear system of equations. The target applications are nonlinear problems whose derivatives
have some local discontinuities such that the traditional inexact Newton method suffers from slow or no
convergence even with globalization techniques. The proposed adaptive nonlinear elimination preconditioned
inexact Newton method consists of three major ingredients: a subspace correction, a global update, and an
adaptive partitioning strategy. The key idea is to remove the local high nonlinearity before performing the
global Newton update. The partition used to define the subspace nonlinear problem is chosen adaptively
based on the information derived from the intermediate Newton solution. Some numerical experiments are
presented to demonstrate the robustness and efficiency of the algorithm compared to the classical inexact
Newton method. Some parallel performance results obtained on a cluster of PCs are reported.

Key words: Transonic flow, adaptive nonlinear elimination, inexact Newton, local high nonlinearity,
density upwinding finite difference, shock wave

1. Introduction

The class of inexact Newton method (IN) [8, 15] is popular for solving large sparse nonlinear system
of equations arising from discretization of partial differential equations (PDEs). IN is quite robust and
efficient for smooth nonlinear problems, but if the solution of the problem or its derivatives has certain
discontinuity, the convergence rate of IN degrades, and the method may fail to converge even used together
with globalization techniques, such as linesearch or trust region [8, 15]. Such problems appear often in
computational fluid dynamics involving, for examples, shock waves, boundary layers, and corner singularities.
To overcome the problem, we develop a nonlinear preconditioning technique in this paper.

Nonlinear preconditioning can be applied on the left or on the right of the nonlinear function. The basic
idea of left preconditioning is to change the function of the system to a more balanced system and then
solve the new system by IN. The additive Schwarz preconditioned inexact Newton algorithm (ASPIN) [3, 11]
belongs to this class. ASPIN has been applied successfully to incompressible high Reynolds number flows [3,
4, 6, 11, 12], transonic compressible flows [5, 13, 20], flows in porous media [19], unconstrained optimization
problems arising in nonlinear elasticity problems [9], and image processing [22]. On the other hand, right
preconditioning is to modify the variable of the nonlinear system. For example, Hwang et al. [13] employs a
nonlinear elimination (NE) technique [14] as a right preconditioner for a quasi one-dimensional shocked duct
flow calculation. The key idea of NE is to implicitly remove these components that cause trouble for IN. In
order to use the algorithm proposed in [13], one has to assume that the components to be eliminated are
known in advance. However, in practice it may not always be possible to determine these components. The

∗Corresponding author. Tel: +886-3-422-7151 Ext. 65110; Fax +886-3-425-7379
Email addresses: hwangf@math.ncu.edu.tw (Feng-Nan Hwang)

Preprint submitted to Computers & Fluids; Special issue: ParCFD 2013 April 11, 2014

main contribution of this paper is to propose a new algorithm, namely an adaptive nonlinear elimination
(ANE) preconditioned inexact Newton method that does not require this assumption. In the proposed
algorithm, we use the intermediate IN solution to identify these components to be eliminated before a new
global IN iteration. One potential application of the proposed algorithm is for the time-dependent PDE
problems solved by a fully implicit scheme. In this paper, we focus only on a steady-state problem, namely
the full potential equation in two different computational domain. The subspace correction phase can be
done before a global Newton iteration is performed so that the overall performance of IN-based kernel solver
is improved.

The rest of the paper is organized as follows. The next section describes the full potential equation
discretized using a finite difference method with density upwinding. Section 3 provides a detailed description
of the proposed algorithm. Section 4 presents the numerical results, including parallel performance of the
proposed algorithm. Section 5 summarizes the main contributions of this paper and points out some potential
applications of the algorithm.

2. Full potential flow equation and its discretization

We consider the full potential flow equation [10, 18], which is often used for modeling transonic flows
passing an airfoil,

∇ · (ρ(φ)∇φ) = 0, (1)

where φ is the velocity potential, (u1, u2) = ∇φ is the velocity field, and the density function ρ is given as

ρ(φ) = ρ∞

(
1 +

γ − 1

2
M2
∞(1− ‖∇φ‖

2
2

q2∞
)

)1/(γ−1)

. (2)

Here, γ = 1.4 is the specific heat for air. The constants ρ∞, M∞ and q∞ represent the density, the Mach
number, and the speed at the far field, respectively. In this work, two test cases, namely a flow passing the
NACA0012 airfoil case [2, 18], and a channel flow passing through a circular bump [7, 16].

Figure 1: The geometrical configuration for the airfoil problem (left) and the internal channel flow with a circular bump problem
(right)

The geometrical configuration for a transonic flow passing the NACA0012 airfoil is shown in the left
figure of Figure 1, where the computational domain is [0, 1]× [0, 1] and the shape of the NACA0012 model

2

is described by the function

f(x) = 0.17814(
√
x− x) + 0.10128(x(1− x))− 0.10968x2(1− x) + 0.06090x3(1− x),

for x ∈ (0, 1) and then re-scaled into [1/3, 2/3] through x = 3t − 1, for t ∈ [1/3, 2/3]. The boundary
conditions are specified as follows.

1. φ = 0 on the inflow boundary Γ6, φ = q∞ on the outflow boundary Γ4, and the freestream boundary
on Γ5, which are described by φ = φ∞ =

∫
x
q∞dx. The freestream speed q∞ is normalized to be 1.

2. A homogenous Neumann boundary condition is imposed on Γ1, and Γ3, i.e., ∂φ
∂y = 0. This condition

implies that the flow is symmetric with respect to the boundaries and no flow penetrate through the
boundaries.

3. A transpiration boundary condition is given on Γ2 by ∂φ
∂y = −q∞f ′(x).

As a second example, we consider a channel flow as shown in the right figure of Figure 1. The compu-
tational domain is defined as [−1.0, 4.0]× [0.0, 2.073]. The shape of the bump is described by the function.

f(x) = 4tx(1− x)

for 0 ≤ x ≤ 1, t = 0.042. The settings of the boundary conditions are similar to the airfoil case, except that
the freestream boundary condition on Γ5 is replaced by a homogenous Neumann boundary condition as on
Γ1 and Γ3 and φ = 0 and φ = 1 on Γ6 and Γ4, respectively.

To discretize (1) by a finite difference method with density upwinding [10], we begin by introducing a set
of mesh points, (xi, yj), 0 ≤ i ≤ nx and 0 ≤ j ≤ ny with the mesh size hx = lx/nx and hy = ly/ny, where lx
and ly are the lengths of the computational domain in the x- and y-directions, respectively. Let Φ = [φi,j]

T

be the numerical approximations at mesh points (including the Dirichlet and Neumann boundary points) in
the natural ordering. We denote xi+1/2 and yi+1/2, as the midpoints of subintervals [xi, xi+1] and [yj , yj+1],
respectively. We discretize the full potential equation (1) at the interior point (xi, yj) using a second-order
centered finite difference method, i.e.,

FI(Φ) ≡ hy
[
ρi+ 1

2 ,j
(u1)i+ 1

2 ,j
− ρi− 1

2 ,j
(u1)i− 1

2 ,j

]
+ hx

[
ρi,j+ 1

2
(u2)i,j+ 1

2
− ρi,j− 1

2
(u2)i,j− 1

2

]
= 0,

where the velocity components u1 and u2 at (xi+1/2, yj) and (xi, yj+1/2), respectively, are approximated as

(u1)i+1/2,j ≈ (φi+1,j − φi,j)/hx (3)

(u2)i,j+1/2 ≈ (φi,j+1 − φi,j)/hy (4)

and (u1)i−1/2,j and (u2)i,j−1/2 are approximated similarly. For purely subsonic flows, using (2) for calculating

the flow density at (xi±1/2, yj) and (xi, yj±1/2), i.e., ρi±1/2,j = ρ(‖q‖i±1/2,j) and ρi,j±1/2 = ρ(‖q‖i,j±1/2),

is sufficient. Here, qi+1/2,j =
√

(u1)
2
i+1/2,j + (u2)

2
i+1/2,j and qi,j+1/2 =

√
(u1)

2
i,j+1/2 + (u2)

2
i,j+1/2 with

(u1)i+1/2,j and (u2)i,j+1/2 defined as (3) and (4), and

(u2)i+1/2,j ≈ (φi+1,j+1 + φi,j+1 − φi+1,j − φi,j)/(2hy)

(u1)i,j+1/2 ≈ (φi+1,j+1 + φi+1,j − φi,j+1 − φi,j)/(2hx).

However, for transonic flows, this formulation needs to be modified in order to capture the shock. By
applying a first-order density upwinding scheme as suggested by Young et al. [2, 21], a modified flow density
value at the points (xi+1/2, yj) and (xi, yj+1/2) are expressed as

ρi+1/2,j =

{
ρi+1/2,j − µ̃i,j(ρi+1/2,j − ρi−1/2,j) if (u1)i+1/2,j > 0,
ρi+1/2,j + µ̃i+1,j(ρi+1/2,j − ρi+3/2,j) if (u1)i+1/2,j < 0,

and

ρi,j+1/2 =

{
ρi,j+1/2 − µ̃i,j(ρi,j+1/2 − ρi,j−1/2) if (u2)i,j+1/2 > 0,
ρi,j+1/2 + µ̃i,j+1(ρi,j+1/2 − ρi,j+3/2) if (u2)i,j+1/2 < 0,

3

where the first-order switching parameter µ̃i,j is defined as µ̃i,j = max{µs,t}, for s = i−1, i, i+1 (i = 1, ...,m)

and t = j − 1, j, j + 1 (j = 1, ..., n) with the zeroth-order switching parameter µs,t = max{0, 1− M̂2
c /M

2
s,t}.

Here M̂c is called a pre-selected cutoff Mach number and Ms,t is the numerical local Mach number at (xs, yt)
given by

Ms,t ≈M∞(qs,t/ρ
1

γ−1

s,t) (5)

with qs,t = (qs+1/2,t + qs−1/2,t + qs,t+1/2 + qs,t−1/2)/4 and ρs,t = ρ(qs,t). To close the system, we impose the
boundary condition at the leftmost and rightmost mesh points, for j = 0, ..., (ny − 1)

FL(Φ) ≡ φ0,j = 0

and

FR(Φ) ≡ φnx,j − 1.0 = 0.

For the topmost mesh points, we have, for i = 1,, (nx − 1)

FT (Φ) ≡ φi,ny − ihx = 0, (The airfoil case)

or
FT (Φ) ≡ φi,ny − φi,ny−1 = 0, (The channel flows case).

For the bottommost mesh points, when 1/3 ≤ ihx ≤ 2/3 for the NACA0012 case (or 0 ≤ ihx ≤ 1 for the
channel flow case), we have

FB(Φ) ≡ φi,1 − φi,−1 − 2hyq∞f
′(jhx) = 0

else
FB(Φ) ≡ φi,1 − φi,0 = 0,

for i = 1,, (nx − 1). Here, a horizontal layer of ghost points (j = −1) is included to avoid unphysical
solution. In summary, the discretized transonic full potential flow problem is written as a large sparse
nonlinear system of algebraic equations,

F (x) = 0, (6)

where x = [φi,j]
T

is a solution vector containing the numerical approximations at the mesh points in the
natural ordering. Here F = (F1, . . . , Fn)T and Fi = Fi(x1, . . . , xn).

3. Inexact Newton and nonlinear preconditioning

We briefly review the classical inexact Newton method with backtracking (INB) [8, 15] which will be
used as the basis of the proposed algorithm.

Algorithm 1. [Inexact Newton with Backtracking (INB)]

Given an initial guess x(0)

Evaluate F (x(0)) and ‖F (x(0))‖
Set k = 0

While ‖F (x(k))‖ > εglobal nonlinear atol do

Compute the Jacobian matrix F ′(x(k))

Inexactly solve the Jacobian system F ′(x(k))s(k) = −F (x(k))

Update x(k+1) = x(k) + λ(k)s(k), where λ(k) ∈ (0, 1] is determined to satisfy

‖F (x(k) + λ(k)s(k))‖ ≤ (1− αλ(k))‖F (x(k))‖
Set k = k + 1

End While

4

In INB, we first find the search direction by solving inexactly the Jacobian system, then compute the
next approximate solution along this search direction. How far we should go from the current approximation
is determined by the damping scalar, λ(k). εglobal nonlinear atol is the absolute tolerance and α is employed
to assure that the reduction of ‖F (x)‖2 is sufficient. Observed from many numerical experiments, the size
of λ(k) could be very small due to the existence of some bad components in the function F (x). These bad
components are often associated with certain interesting physics of the solution, e.g., the shock wave located
in a small region for the transonic full potential flow problem. On the other hand, in our proposed algorithm,
NE is a subproblem solver inside a global INB that is designed to smooth out these “bad components” so
that the total number of global INB is reduced. It is important to note that by nonlinear elimination we
change the sequence x(0), x(1), ..., but we do not change the final solution obtained by INB.

To define a nonlinear elimination based preconditioner, we introduce some notations. Let S = {1, 2,, n}
be an index set and each index corresponds to an unknown component xi and a nonlinear residual com-
ponent, Fi. We classify the nonlinear residual components, F1, F2, ..., Fn, into two groups for the “good

components” and “bad components”. Let k be the global Newton iteration number. Assume that S
(k)
b (“b”

for bad) is a subset of S with m(k) components and S
(k)
g (“g” for good) with (n −m(k)) components is its

complement; that is

S = S
(k)
b ∪ S(k)

g . (7)

Usually m(k) � n. For this partition, we define two subspaces

V
(k)
b = {v|v = (v1, ..., vn)T ∈ Rn, vi = 0 if i /∈ S(k)

b }

and
V (k)
g = {v|v = (v1, ..., vn)T ∈ Rn, vi = 0 if i /∈ S(k)

g },

respectively, and the corresponding restriction operators, R
(k)
b and R

(k)
g , which map vectors from Rn to V

(k)
b

and V
(k)
g , respectively. Using the restriction operator R

(k)
b , we define a nonlinear function FSb1 : Rn → V

(k)
b

as
F
S

(k)
b

(x) = R
(k)
b (F (x)).

For any given x ∈ Rn, T
(k)
b (x): Rn → V

(k)
b is defined as the solution of the following subspace nonlinear

system,

F
S

(k)
b

(R(k)
g x+ T

(k)
b (x)) = 0. (8)

Using the subspace mapping functions, we introduce a new global nonlinear function,

y = G(k)(x) ≡ R(k)
g x+ T

(k)
b (x).

Note that for a given x, the evaluation of G(k)(x) is not straightforward, a nonlinear system corresponding
to the subspace V b1 has to be solved using typically the classical INB algorithm. The adaptivity is reflected
in the fact that this nonlinear function changes with k. Now INB in conjunction with ANE can be described
as follows.

Algorithm 2. [INB-ANE]

Given an initial guess x(0).

Initialize the partition: S
(0)
b = ∅ and S(0)

g = S, k = 0

Evaluate F (x(0)) and ‖F (x(0))‖
While (‖F (x(k))‖ > εglobal nonlinear atol) do

Subspace correction:

Given x(k), solve the subspace problem F
S

(k)
b

(R
(k)
g x(k) + T

(k)
b) = 0 for T

(k)
b .

5

Compute z = G(k)(x(k)) = R
(k)
g x(k) + T

(k)
b .

Global update:

Compute J(z)

Approximately solve J(z)s(k) = −F (z)

Update x(k+1) = z + λ(k)s(k), where λ(k) is determined to satisfy

‖F (z + λ(k)s(k)))‖ ≤ (1− αλ(k))‖F (z)‖
Determine a new partition: S = S

(k)
b ∪ S(k)

g .

Set k = k + 1

End While

Remarks:

1. The basic idea of INB-ANE is to approximately eliminate the local high nonlinearities before applying
a global Newton iteration. Skipping the subspace correction phase, INB-ANE is reduced to the classical
INB.

2. When the “bad” subspace S
(k)
b is empty, it does not mean all the equations are good. It may indicate

that all the equations are bad; bad in a global way.

3. A physics-based strategy can be used to determine the subset of indices containing all the bad com-

ponents, S
(k)
b . For the applications considered in the paper, the bad components correspond to the

transonic flow region. In our implementation, we calculate the local Mach number Ms,t using (5)
for each Newton iteration. The bad components are therefore defined by the local Mach number, if
Mc < Ms,t, whereas the good components correspond to the subsonic flow region, i.e., Ms,t < Mc.
Here, Mc is a pre-selected cuf-off Mach number for ANE. The effect of different values of Mc on the
overall performance of INB-ANE will be investigated in Section 4.2.

4. The partition for the nonlinear elimination changes with k. As shown in Section 4.2 the bad components
might not be clearly identified at the beginning, since the early approximate solution is far from the
final solution. But as Newton progresses toward the final solution, the solution provides more accurate
information for the partition.

An important feature of the right-nonlinear preconditioner is that there are some flexibilities to select
the global Jacobian solver and it is easier to develop preconditioning strategies for the linear part of the
algorithm to enhance the overall scalability of the algorithm. To define the parallel restricted Schwarz
preconditioner for the global Jacobian system, we introduce another non-overlapping partition of the index
set S defined as in Section 3.2, i.e.,

S = ∪Nsi=1Si, Si ∩ Sj = ∅ if i 6= j, and Si ⊂ S,

where ni is the dimension of Si and
∑Ns
i=1 ni = n. Here Ns is the number of processors of the parallel

computer. Note that this partition is needed for the Schwarz preconditioning, and it is not related to the
“good/bad” partition, which is for the purpose of removing the local high nonlinearity. To obtain overlapping
subdomains, we expand each Si to a larger Sδi , Here δ is an integer indicating the level of overlap. The
meaning of δ is explained as follows. Sδi contains the mesh points in S, whose distance to Si is less than or
equal to δ and the all points in Si. When δ = 0, we have S0

i = Si. Using the overlapping partition of S, we
introduce some subspaces of Rn and the corresponding restriction and extension operators. For each Sδi , we
define V δi ⊂ Rn as

V δi = {v|v = (v1, v2, ..., vn)T ∈ Rn, vk = 0 if k /∈ Sδi }
and a n × n restriction matrix and also an extension matrix, Rδi , whose diagonal element, (Rδi)kk = 1
if k ∈ Sδi ; otherwise, (Rδi)kk = 0. Using the restriction and extension matrices, we define the one-level
restricted additive Schwarz preconditioner as

M−1RAS1 =

Ns∑
i=1

R0
i J
−1
i Rδi , (9)

6

where Ji is the subdomain Jacobian matrix evaluated at x(k), Ji = RδiJ(x(k))Rδi . To enhance the scalability
of the algorithm, a coarse space is necessary. Let Sc be an index set corresponding to the coarse mesh points
and V c be the coarse subspace of V . Similar for the subdomains, we introduce another pair of restriction and
extension operator to map the data between the spaces of coarse mesh and fine mesh, V c and V , denoted
by IHh and IhH , respectively. Here, the multiplication of the symmetrized multiplicative two-level restricted
Schwarz preconditioner with a given vector r is carried out in the following steps:

1. u(1) ←
Ns∑
i=1

R0
i J
−1
i Rδi r

2. r(0) ← IHh (r − Ju(1))
3. u(0) ← J−1c r(0)

4. u(1) ← u(1) + IhHu
(0)

5. u(1) +

Ns∑
i=1

R0
i J
−1
i Rδi (r − Ju(1))

Here, Jc is the coarse Jacobian matrix obtained by the Galerkin formulation, i.e. Jc = IHh JI
h
H . The above

procedure can be understood as a two-grid correction scheme, where the one-level restricted additive Schwarz
preconditioner is used as the pre- and post-smoothers.

4. Numerical results and discussion

In this section, we present some numerical results for solving the transonic full potential flow problem (1)
using the classical inexact Newton method and the new algorithm proposed in the previous section. The
stopping condition

‖F (x(k))‖ ≤ 10−8,

and a zero initial guess are used for both methods and for all test cases. For the INB-ANE algorithm, the
subspace nonlinear problem,

G(z) ≡ F
S

(k)
b

(R(k)
g x+ z) = 0.

is inexactly solved by INB until the stopping condition,

‖G(z(l)))‖ ≤ max{εlocal nonlinear rtol‖G(z(0))‖, 10−10},

is satisfied. A left-preconditioned restarted GMRES [17] is used for solving the global Jacobian system with
zero initial guess and the restarting number is set to be 200. The stopping condition for GMRES is

‖M−1k (F (x(k)) + J(x(k)))s(k)‖ ≤ max{η‖F (x(k))‖, 10−10}.

Here η = 10−6 and M−1k is the one-level or symmetrized multiplicative two-level restricted Schwarz precon-
ditioner. In the tests, we partition the computational domain in the regular checkerboard fashion. Each
subdomain problem is assigned to a compute core and is solved by the sparse direct LU decomposition. The
global Newton step is updated by

x(k+1) = x(k) + λ(k)s(k).

The step length, λ(k) ∈ [λmin, λmax] ⊂ (0, 1], is selected so that

‖F (x(k) + λ(k)s(k))‖ ≤ (1− αλ(k))‖F (x(k))‖,

where the two parameters λmin and λmax act as safeguards, which are required for strong global convergence
and the parameter α is used to assure that the reduction of ‖F‖ is sufficient. Here, a cubic linesearch
technique [8] is employed to determine the step length λ(k), with α = 10−4, λmin = 1/10 and λmax = 1/2. We
use the Portable, Extensible Toolkits for Scientific computation (PETSc) [1] for the parallel implementation.
The numerical results are obtained on a cluster of computers.

7

4.1. Validation of algorithm and software

In the case of linear preconditioning, it is obvious that the preconditioned system and the original system
have the same solution, but in the case of nonlinear preconditioning, the situation is not obvious, especially
for the full potential equation whose uniqueness theory has not been established in the transonic regime. To
validate the proposed approach, we first perform a few experiments for different values of M∞ = 0.1, 0.3, 0.5,
and 0.8 for the airfoil case. The mesh size changes from h = 1/64 to h = 1/1024. The nonlinear systems
are solved in parallel with the number of processors (np), np = 16. Figure 2 shows the computed potential
curves along the vertical midline x = 0.5 and it is clear that the computed solutions converge as the mesh is
refined. Figure 3 shows a comparison of the potential contours, the Mach number contours and the pressure
coefficients along the airfoil obtained from the numerical solutions by INB (left) and INB-ANE (right), where
the pressure coefficient, Cp, is calculated using

Cp =
2

γM2
∞

([
1 +

γ − 1

2
M2
∞(1− q2)

]γ/(γ−1)
− 1

)
.

We see that these two set of results are almost indistinguishable. This provides a numerical evidence that
the numerical solution is not altered with the proposed nonlinear preconditioner. In addition, Figures 4 and
5 provide a comparison of the Mach number contour and the pressure coefficient distribution for the channel
flow case along the circular bump wall with four different values of M∞, i.e., 0.8, 0.835, 0.8435, and 0.85.
For the M∞ = 0.8 case, almost all region is subsonic. As the value of M∞ increases to near the critical
value, e.g., M∞ = 0.835, a shock appears near the circular bump.

0 0.2 0.4 0.6 0.8 1
0.5

0.501

0.502

0.503

0.504

0.505

0.506

0.507

0.508

0.509

0.51

x

y

Mach=0.1

M0.1 h=1/64

M0.1 h=1/128

M0.1 h=1/256

M0.1 h=1/512

M0.1 h=1/024

0 0.2 0.4 0.6 0.8 1
0.5

0.501

0.502

0.503

0.504

0.505

0.506

0.507

0.508

0.509

0.51

x

y

Mach=0.3

M0.3 h=1/64

M0.3 h=1/128

M0.3 h=1/256

M0.3 h=1/512

M0.3 h=1/024

0 0.2 0.4 0.6 0.8 1
0.5

0.501

0.502

0.503

0.504

0.505

0.506

0.507

0.508

0.509

0.51

x

y

Mach=0.5

M0.5 h=1/64

M0.5 h=1/128

M0.5 h=1/256

M0.5 h=1/512

M0.5 h=1/024

0 0.2 0.4 0.6 0.8 1
0.5

0.502

0.504

0.506

0.508

0.51

0.512

0.514

0.516

0.518

0.52

x

y

Mach=0.8

M0.8 h=1/64

M0.8 h=1/128

M0.8 h=1/256

M0.8 h=1/512

Figure 2: The airfoil case. Computed potential curves along the vertical midline at x = 0.5 for different values of M∞ = 0.1
(top-left), 0.3 (top-right) 0.5 (bottom-left), and 0.8 (bottom-right) and different mesh sizes.

8

x

y

φ

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

y

φ

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

y

Mach number

0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Mach number

0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.35 0.4 0.45 0.5 0.55 0.6 0.65
−1

−0.5

0

0.5

1

1.5

x

y

Pressure coefficient

0.35 0.4 0.45 0.5 0.55 0.6 0.65
−1

−0.5

0

0.5

1

1.5

x

y

Pressure coefficient

Figure 3: The airfoil case. A comparison of potential contours (1st row), the Mach number contours (2nd row), and the pressure
coefficients (3rd row) obtained by the numerical solution using INB (left column) and INB-ANE (right column). M∞ = 0.8
and h = 1/512.

9

x

y

Mach number

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.6

0.7

0.8

0.9

1

1.1

1.2

x

y

Mach number

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.6

0.7

0.8

0.9

1

1.1

1.2

x

y

Mach number

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.6

0.7

0.8

0.9

1

1.1

1.2

x

y

Mach number

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.6

0.7

0.8

0.9

1

1.1

1.2

Figure 4: The channel flow case. The Mach number contours for M∞ = 0.8, 0.835, 0.8435, and 0.85 (from top to bottom)
obtained by the numerical solution using INB-ANE on a mesh with h = 1/160.

10

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y

Pressure coefficient

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y

Pressure coefficient

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y

Pressure coefficient

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y

Pressure coefficient

Figure 5: The channel flow case. The plots of the pressure coefficients for M∞ = 0.8 (top-left), M∞ = 0.835 (top-right),
M∞ = 0.8435 (bottom-left), and M∞ = 0.85 (bottom-right) obtained by the numerical solution using INB-ANE on a mesh
with h = 1/160.

11

4.2. A comparison of INB and INB-ANE

In Table 1, we summarize the number of Newton iterations on five different meshes, 1/64, 1/128, 1/256,
1/512, and 1/1024 with four different values of M∞ = 0.1, 0.3, 0.5, and 0.8 for the airfoil case and with four
different values of M∞ = 0.8, 0.835, 0.8435, and 0.85 for the channel flow case. As expected, INB works
quite well for the cases of subsonic flows, M∞ = 0.1, 0.3, 0.5 (the airfoil case) and M∞ = 0.8 (the channel
flow case), which are mathematically classified as nonlinear elliptic problems. On the other hand, for the
airfoil case, when a shock shows up in the solution when M∞ = 0.8, the number of INB iterations increases
quickly as we increase the resolution. When the strong discontinuity of the solution is resolved, INB often
fails to converge. Note that for the channel flow case with M∞=0.85, the transonic region covers almost
everywhere. Hence, the cost for the subspace correction phase in INB-ANE becomes too high. For this case,
the INB-RAS algorithm proposed in [6] might be more appropriate. In the following discussion, we restrict
ourselves to the cases of M∞ = 0.835 and 0.8435.

Airfoil case
Mesh sizes (h) 1/64 1/128 1/256 1/512 1/1024
M∞ = 0.1 2 4 4 4 4
M∞ = 0.3 3 4 3 4 4
M∞ = 0.5 3 4 3 4 4
M∞ = 0.8 7 10 17 31 F

Channel flow case
Mesh sizes (h) 1/40 1/80 1/160 1/320
M∞ = 0.8 6 6 5 6
M∞ = 0.835 22 37 74 F
M∞ = 0.8435 32 55 109 F
M∞ = 0.85 42 82 F F

Table 1: Number of Newton iterations when using INB for different values of M∞ and different mesh size. “F” means that
INB fails to converge.

We next focus on the cases that INB has some trouble to converge to the desired solution. Figure 6
shows the histories of the nonlinear residuals of INB and INB-ANE with different mesh sizes for both test
cases. We observe from the figures that (1) INB-ANE converges for all mesh sizes; and (2) the number of
Newton iterations is independent of the mesh sizes.

0 5 10 15 20 25 30 35
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Newton iterations

N
o
n
li
n
e
a
r

re
s
id

u
a
l

INB h=1/128

INB h=1/256

INB h=1/512

INB−ANE h=1/128

INB−ANE h=1/256

INB−ANE h=1/512

INB−ANE h=1/1024

0 20 40 60 80 100 120
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Newton iterations

N
o
n
li
n
e
a
r

re
s
id

u
a
l

INB h=1/40

INB h=1/80

INB h=1/160

INB−ANE h=1/40

INB−ANE h=1/80

INB−ANE h=1/160

Figure 6: Convergence histories of INB and INB-ANE for different mesh sizes, the airfoil case, M∞=0.8 (left) and the channel
flow case, M∞=0.8435 (right).

We further investigate how the “bad” region changes during the iterations of NB-ANE. As shown in
Figure 7 for the case of h = 1/256. the distribution of the bad components to be eliminated is marked

12

as red in the first six global Newton iterations. Note that the total number of bad components remains
unchanged since the 5th global nonlinear iteration. We observe that by comparing with the converged final
Mach number contour plots in Figure 3, INB-ANE is able to identify the transonic region correctly within
the first few iterations by computing the local Mach number obtained from intermediate Newton solutions.
Furthermore, the percentages of the number of bad components compared to the total number of unknowns
are quite low, only about 5%. Hence the overhead due to the subspace solution is relatively small. On the
other hand, Figure 8 shows the bad components at the final iterations for the channel flow case, M∞ = 0.835
and 0.8435. Obviously, the percentages of bad components are about 20% for these cases, which is larger
than the airfoil case.

0

50

100

150

200

250

0 50 100 150 200 250

n
z
 =

 7
7
7

0

50

100

150

200

250

0 50 100 150 200 250

n
z
 =

 2
5
8
4

0

50

100

150

200

250

0 50 100 150 200 250

n
z
 =

 2
8
9
2

0

50

100

150

200

250

0 50 100 150 200 250

n
z
 =

 2
9
1
0

0

50

100

150

200

250

0 50 100 150 200 250

n
z
 =

 2
9
1
0

0

50

100

150

200

250

0 50 100 150 200 250

n
z
 =

 2
9
1
0

Figure 7: The airfoil case. The evolution of the distribution of the “bad” components during the global Newton iterations.
The red area means the collection of the bad components. Mesh size, h = 1/256. “nz” is the total number of bad components.

Next we study other parameters that impact the performance of INB-ANE. These parameters include the
cutoff Mach number (Mc) (Table 2) and the subspace nonlinear stopping condition (εsubspace−nonlinear−rtol)

13

0

20

40

60

80

0 50 100 150 200

n
z
 =

 2
9
5
7

0

20

40

60

80

0 50 100 150 200

n
z
 =

 3
6
0
8

Figure 8: The channel flow case. The final distribution of the bad components. h = 1/40 with M∞ = 0.835 (left) and
M∞ = 0.8435 (right), Mc = 0.85. The red region means the collection of bad components.

(Table 3).
The major role of Mc is to balance the costs of solving the global and subspace nonlinear problems.

When the value of Mc is large, the number of global Newton iterations decreases. But the dimension of
the subspace nonlinear problem increases, hence the cost for solving subspace nonlinear problems increases.
Observed from the table, we find that Mc = 0.85 is appropriate for most cases that compromises the costs
between the global and subspace solves to minimize the overall computing time.

From the numerical experiments, we find that the number of global Newton iterations is not sensitive to
the stopping condition for the subspace nonlinear problem (εsubspace−nonlinear−rtol). A very loose tolerance,
say 10−1 is sufficient. This is very different from the case of left nonlinear preconditioning, e.g. ASPIN [3, 11].
For ASPIN, the subspace nonlinear problems need to be solved accurately enough in order not to change
the solution of targeted nonlinear problems. It is worth mentioning that even performing only one Newton
iteration for the subspace nonlinear problem helps the overall convergence of the global Newton iterations
comparing to INB, sometimes it is even faster than the case with several more subspace Newton iterations.
However, some dependency on the mesh size is observed. Hence, for numerical experiments reported in the
next section, we select εsubspace−nonlinear−rtol to be 10−1 with Mc = 0.85.

4.3. Parallel performance study

An important feature of INB-ANE is that the selections of linear preconditioners for the solution of
the global/subspace Jacobian systems are more flexible than ASPIN, since we do not have to worry about
changing the solution of the original nonlinear system. Here, we consider two preconditioned GMRES for
solving the global and local Jacobian systems, i.e. one-level restricted additive Schwarz and two-level Schwarz
preconditioners. For the two-level method, a redundant sparse direct approach is used for the solution of the
coarse mesh problem, i.e., the coarse mesh problem is distributed to each processor and solved redundantly
by the LU decomposition. From Table 4 to Table 7, we summarize the performance of one- and two-level
INB-ANE as well as INB if it converges successfully (Tables 4 and 5 for the NACA0012 case; Tables 6 and
7 for the channel flow case). The tables present the total computing time, the number of global nonlinear
iterations and the number of subspace nonlinear iterations, and in the parenthesis, the average number of
iterations for solving the global and subspace Jacobian systems, respectively.

Several observations are summarized as follows.

1. As expected, both INB and INB-ANE are nonlinearly scalable but not linearly scalable without a
coarse space, in terms of the number of iterations. On the other hand, when including a coarse mesh
correction, the number of iterations for solving the Jacobian systems is almost independent of the
number of processors in the two-level INB-ANE algorithm.

14

INB INB-ANE
Mesh sizes (h) Mc = 0.8 0.85 0.9

Airfoil case, M∞ = 0.8

1/128
global 10(33.7) 5(33.6) 7(34.4) 8(34.5)
subspace — 10(22.0) 11(6.3) 13(3.0)
time (secs) 0.5 0.7 1.8 0.7

1/256
global 17(45.1) 6(46.0) 7(47.7) 8(47.0)
subspace — 20(29.3) 23(7.7) 23(4.8)
time (secs) 4.7 5.6 4.7 4.5

1/512
global 31(61.0) 6(62.2) 7(64.6) 9(64.4)
subspace — 32(38.9) 41(10.1) 49(5.6)
time (secs) 55.1 52.6 37.0 39.5

Channel flow case, M∞ = 0.835
Mesh sizes (h) Mc = 0.85 0.87 0.90

1/40 global 22(33.8) 15(34.5) 17(33.8) 21(33.8)
subspace — 28(13.5) 29(9.8) 36(5.9)
time (secs) 1.6 2.6 2.6 3.0

1/80 global 37(44.9) 15(46.5) 17(46.4) 23(45.4)
subspace — 58(17.0) 55(12.8) 60(6.4)
time (secs) 16.8 20.3 19.2 20.6

1/160 global 71(61.1) 15(63.4) 17(62.5) 24(61.0)
subspace — 107(22.4) 111(16.0) 118(7.2)
time (secs) 215.7 195.8 182.2 161.0

Channel flow case, M∞ = 0.8435
Mesh sizes (h) Mc = 0.85 0.87 0.90

1/40 global 32(34.8) 27(34.7) 30(34.8) 33(34.8)
subspace — 50(14.6) 53(12.6) 36(6.8)
time 2.6 4.6 4.8 4.0

1/80 global 56(46.0) 27(46.8) 39(46.8) 54(46.1)
subspace — 96(18.7) 85(15.7) 67(9.2)
time 25.5 37.9 37.9 36.6

1/160 global 109(62.2) 27(63.7) 64(63.8) 88(62.9)
subspace — 190(23.2) 165(20.3) 173(11.6)
time 350.7 375.4 401.6 429.7

Table 2: A comparison of the cutoff Mach number for INB-ANE for the airfoil case and the channel flow case for different mesh
sizes.

15

INB INB-ANE
Mesh sizes (h) εsubspace−nonlinear−rtol = 10−6 10−4 10−2 10−1 Only 1 ite

Airfoil case M∞ = 0.8

1/128
global 10(33.7) 6(34.3) 6(34.3) 6(34.3) 7(34.4) 7(34.6)
subspace — 43(6.0) 30(5.9) 17(5.9) 11(6.3) 6(6.2)
time (secs) 0.5 1.3 1.0 0.7 1.8 0.5

1/256
global 17(45.1) 6(47.5) 6(47.5) 6(47.5) 7(47.7) 10(64.9)
subspace — 88(7.7) 59(7.7) 32(7.7) 23(7.7) 9(7.7)
time (secs) 4.7 11.2 8.1 5.3 4.7 4.3

1/512
global 31(61.0) 6(64.0) 6(64.0) 6(64.0) 7(64.6) 18(63.1)
subspace — 194(10.0) 128(10.0) 61(10.0) 41(10.1) 17(10.0)
time (secs) 55.1 130.0 87.7 48.4 37.0 44.5

Channel flow case, M∞ = 0.835

1/40
global 22(33.8) 15(34.5) 15(34.5) 15(34.5) 15(34.5) 16(33.9)
subspace — 65(13.4) 62(13.5) 45(13.6) 28(13.5) 15(13.5)
time (secs) 1.6 4.0 3.9 3.1 2.6 1.9

1/80
global 37(44.9) 15(46.5) 15(46.5) 15(46.5) 15(46.5) 22(46.6)
subspace — 129(17.0) 125(17.0) 89(17.0) 58(17.0) 21(17.4)
time (secs) 16.8 37.2 36.2 28.6 20.3 15.2

1/160
global 71(61.1) 14(63.4) 14(63.4) 14(63.4) 15(63.4) 35(62.8)
subspace — 243(22.3) 240(22.3) 172(22.3) 107(22.4) 34(22.7)
time (secs) 215.7 353.6 352.5 264.1 195.8 171.6

Channel flow case, M∞ = 0.8435

1/40
global 32(34.8) 27(34.7) 27(34.7) 26(34.7) 27(34.7) 27(34.9)
subspace — 101(14.5) 99(14.5) 70(14.6) 50(14.6) 26(14.7)
time (secs) 2.6 6.7 6.5 5.2 4.6 3.5

1/80
global 56(46.0) 26(46.8) 26(46.8) 26(46.8) 27(46.8) 35(46.8)
subspace — 217(18.2) 212(18.3) 147(18.4) 96(18.7) 34(18.7)
time (secs) 25.5 64.9 66.1 49.7 37.9 24.8

1/160
global 109(62.2) 26(63.7) 26(63.7) 26(63.7) 27(63.7) 58(61.9)
subspace — 427(22.6) 422(22.7) 298(22.8) 190(23.2) 57(24.0)
time (secs) 350.7 688.8 681.5 506.6 375.4 293.7

Table 3: The airfoil case. Mesh sizes, h = 1/128 1/256 and 1/512 with different values of M∞. A comparison of subspace
nonlinear stopping conditions for the one-level INB-ANE.

16

2. In general, for a fixed number of processors, the two-level INB-ANE is about 33% or more faster than
INB for the airfoil case, and 13% faster for the channel flow case. The only exception is the case
of channel flow, M∞ = 0.8435 with h = 1/160. Notice that for M∞ = 0.8435, the number of INB
iterations is quite sensitive to the Jacobian solution, which is the Newton search direction. The number
of Newton iterations is down to 26 from 109, when the number of processors increases from 40 to 160.
Hence, the gain by using nonlinear preconditioning is marginal.

3. If the problem size is not large enough, e.g., the case shown in Tables 4 and 6, the parallel performance
of the two-level INB-ANE with 128 processors is degraded. The benefit of using the two-level method
for problems of larger size is more obvious. The main reason is that the two-level INB-ANE method
consists of a sequential component, i.e., a redundant LU solve is employed as the coarse mesh solver, and
the cost of that is not negligible for smaller problems. A scalable parallel coarse mesh solver is needed.
In addition, the issue of load balancing is important in parallel computing, but is not addressed in
this paper. For the ease of implementation, we do not redistribute dynamically the subspace nonlinear
problems. As a result, the heavy computing is concentrated on a subset of processors. The parallel
efficiency of the algorithm is expected to be improved when the subspace nonlinear problem is evenly
redistributed to processors and then solved in parallel.

INB One-level INB-ANE Two-level INB-ANE
np its time global its subspace its time global its subspace its time
4 31(39.8) 271.9 7(40.0) 41(9.8) 119.8 7(6.0) 41(9.8) 112.9
16 31(61.0) 55.1 7(64.6) 41(10.1) 37.0 7(6.3) 41(10.1) 33.8
32 31(83.7) 34.9 7(89.3) 41(19.2) 24.2 7(6.3) 41(19.3) 22.0
64 31(90.0) 17.6 7(97.0) 41(19.5) 13.0 7(6.3) 41(19.5) 11.3
128 31(123.9) 12.1 7(132.1) 41(29.6) 8.3 7(8.0) 41(30.4) 8.3

Table 4: The airfoil case. Mesh size h = 1/512 (and H = 1/64 for the two-level method) with M∞ = 0.8. A comparison of the
parallel performance for INB, one-level INB-ANE, and two-level INB-ANE.

One-level INB-ANE Two-level INB-ANE (H = 1/128) Two-level INB-ANE (H = 1/32)
np global its subspace its time global its subspace its time global its subspace its time
4 7(53.9) 87(12.8) 1259.5 7(6.1) 86(12.8) 984.6 7(10.1) 89(12.8) 1101.9
16 7(88.0) 86(13.1) 392.4 7(6.1) 85(13.1) 358.6 7(10.7) 89(13.2) 372.3
32 7(121.9) 87(25.4) 261.2 7(6.6) 85(25.4) 255.0 7(11.1) 89(25.4) 266.4
64 7(132.1) 84(25.6) 133.8 7(6.7) 88(25.7) 118.5 7(11.4) 89(26.5) 126.4
128 7(187.1) 87(42.6) 83.0 7(8.3) 85(42.5) 77.2 7(13.1) 89(42.5) 80.8
256 7(209.4) 88(43.6) 41.2 7(8.7) 87(43.5) 42.9 7(14.7) 90(43.6) 38.8

Table 5: The airfoil case. Mesh size h = 1/1024 (H = 1/128 and H = 1/32 for the two-level method) with M∞ = 0.8. A
comparison of the parallel performance for one-level INB-ANE, and two-level INB-ANE.

INB One-level INB-ANE Two-level INB-ANE
M∞ = 0.835

np its time global its subspace its time global its subspace its time
10 71(61.1) 215.7 15(63.4) 107(22.4) 195.8 15(11.5) 118(22.3) 181.7
40 69(103.6) 79.7 15(107.7) 107(33.7) 70.7 15(12.5) 118(33.7) 61.1
160 72(165.8) 31.5 15(166.5) 107(61.4) 25.4 15(22.7) 118(61.4) 25.7

M∞ = 0.8435
10 109(62.2) 350.7 27(63.7) 190(23.2) 375.4 26(12.1) 205(23.1) 351.5
40 109(106.1) 137.3 27(108.9) 190(38.2) 129.8 26(16.4) 205(38.2) 111.9
160 26(173.5) 13.3 9(190.8) 39(70.6) 13.0 9(23.8) 41(70.9) 12.4

Table 6: The channel flow case. Mesh size h = 1/160 and H = 1/20 for the two-level method with M∞ = 0.835 and 0.8435.
A comparison of the parallel performance for INB, one-level INB-ANE, and two-level INB-ANE.

17

One-level INB-ANE Two-level INB-ANE
M∞ = 0.835

np global its subspace its time global its subspace its time
10 15(236.7) 208(29.5) 2440.9 14(10.4) 224(29.4) 1957.3
40 15(186.8) 208(44.2) 750.3 14(13.8) 224(44.2) 666.7
160 15(341.2) 208(92.5) 305.3 14(27.4) 224(92.4) 271.7

M∞ = 0.8435
10 28(255.7) 403(30.7) 7294.7 26(11.0) 397(30.2) 4301.0
40 29(233.9) 366(50.4) 1552.6 26(16.1) 409(50.4) 1279.0
160 10(400.1) 78(107.3) 153.1 11(29.1) 84(109.5) 119.5

Table 7: The channel flow case. Mesh size h = 1/320 (H = 1/40 for the two-level method) with M∞ = 0.835 and 0.8435. A
comparison of the parallel performance for INB, one-level INB-ANE, and two-level INB-ANE.

5. Conclusions

In this work, we proposed a new algorithm, namely a parallel adaptive nonlinear elimination precondi-
tioned inexact Newton method. The key idea of the method is to remove the unbalanced nonlinearity before
performing a global Newton update. The effective identification of the bad components to be eliminated
plays an important role in the success of the algorithm. We use information obtained from an intermediate
solution of INB to select adaptively these to-be-eliminated components. For some transonic flow problems
we studied the parallel performance of the new algorithm and found that INB-ANE is nonlinearly scalable
with respect to the number of processors. Due to the flexibility for the selection of the global Jacobian
solver, near linear scalability is achieved by a two-level Schwarz preconditioned Krylov subspace method.
For the transonic full potential flow problems considered in this paper, the criteria for determining the bad
components is based on a physical approach that identifies the components corresponding the transonic flow
region. But for other applications, different criteria may be necessary.

Acknowledgements

The first two authors were supported in part by the Ministry of Science and Technology of Taiwan,
NSC-100-2115-M-008-008-MY2 and the last author was supported in part by NSF, DMS-0913089 and CCF-
1216314, and DOE under grant DE-SC0001994.

References

[1] S. Balay, K. Buschelman, W.D. Gropp, D. Kaushik, M.G. Knepley, L. Curfman McInnes, B.F. Smith, and H. Zhang.
PETSc Webpage, 2013. http://www.mcs.anl.gov/petsc.

[2] X.-C. Cai, W.D. Gropp, D.E. Keyes, R.G. Melvin, and D.P. Young. Parallel Newton-Krylov-Schwarz algorithms for the
transonic full potential equation. SIAM J. Sci. Comput., 19:246–265, 1998.

[3] X.-C. Cai and D.E. Keyes. Nonlinearly preconditioned inexact Newton algorithms. SIAM J. Sci. Comput., 24:183–200,
2002.

[4] X.-C. Cai, D.E. Keyes, and L. Marcinkowski. Nonlinear additive Schwarz preconditioners and applications in computational
fluid dynamics. Int. J. Numer. Meth. Fluids, 40:1463–1470, 2002.

[5] X.-C. Cai, D.E. Keyes, and D.P. Young. A nonlinear additive Schwarz preconditioned inexact Newton method for shocked
duct flow. In Domain Decomposition Methods in Science and Engineering. CIMNE, 2002.

[6] X.-C. Cai and X. Li. Inexact Newton methods with restricted additive Schwarz based nonlinear elimination for problems
with high local nonlinearity. SIAM J. Sci. Comput., 33:746–762, 2011.

[7] H. Deconinck and C. Hirsch. A multigrid method for the transonic full potential equation discretized with finite elements
on an arbitrary body fitted mesh. J. Comput. Phys., 48:344–365, 1982.

[8] J.E. Dennis and R.B. Schnabel. Numerical Methods for Unconstrained Optimization and Nonlinear Equations. SIAM,
Philadelphia, 1996.

[9] C. Groß and R. Krause. On the globalization of ASPIN employing trust-region control strategies–convergence analysis
and numerical examples. preprint, 2011.

[10] C. Hirsch. Numerical Computation of Internal and External Flows, Vol. 2. Wiley, 1990.
[11] F.-N. Hwang and X.-C. Cai. A parallel nonlinear additive Schwarz preconditioned inexact Newton algorithm for incom-

pressible Navier-Stokes equations. J. Comput. Phys., 204:666–691, 2005.

18

[12] F.-N. Hwang and X.-C. Cai. A class of parallel two-level nonlinear Schwarz preconditioned inexact Newton algorithms.
Comput. Meth. Appl. Mech. Eng., 196:1603–1611, 2007.

[13] F-.N. Hwang, H.-L. Lin, and X.-C. Cai. Two-level nonlinear elimination-based preconditioners for inexact Newton methods
with application in shoched duct flow calculation. Electron. Trans. Numer. Anal., 37:239–251, 2010.

[14] P.J. Lanzkron, D.J. Rose, and J.T. Wilkes. An analysis of approximate nonlinear elimination. SIAM, J. Sci. Comput.,
17:538–559, 1996.

[15] J. Nocedal and S.J. Wright. Numerical Optimization. Springer Verlag, New York, 1999.
[16] A. Rizzi and H. Viviand, editors. Numerical Methods for the Computation of Inviscid Transonic Flows with Shock Waves:

A GAMM Workshop. Vieweg, Brunswick, 1981.
[17] Y. Saad and M.H. Schultz. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems.

SIAM J. Sci. Stat. Comput., 7:856–869, 1986.
[18] S. Shitrit, D. Sidilkover, and A. Gelfgat. An algebraic multigrid solver for transonic flow problems. J. Comput. Phys.,

230:1707–1729, 2011.
[19] J.O. Skogestad, E. Keilegavlen, and J.M. Nordbotten. Domain decomposition strategies for nonlinear flow problems in

porous media. J. Comput. Phys., 234:439–451, 2013.
[20] D.P. Young, W.P. Huffman, R.G. Melvin, C.L. Hilmes, and F. T. Johnson. Nonlinear elimination in aerodynamic analysis

and design optimization. In L.T. Biegler, O. Ghattas, Heinkenschloss M., and B. van Bloemen Waanders, editors, Large-
Scale PDE-Constrained Optimization, Lect. Notes in Comp. Sci., pages 17–44. Springer-Verlag, 2003.

[21] D.P. Young, R.G. Melvin, M.B. Bieterman, F.T. Johnson, S.S. Samant, and J.E. Bussoletti. A locally refined rectangular
grid finite element method: application to computational fluid dynamics and computational physics. J. Comput. Phys.,
92:1–66, 1991.

[22] M. Ziani. Accélération de la convergence des méthodes de type Newton pour la résolution des systèmes non-linéaires.
PhD thesis, Université de Rennes 1, 2009.

19

