
A Parallel Polynomial Jacobi-Davidson Approach for
Dissipative Acoustic Eigenvalue Problems

Tsung-Ming Huanga, Feng-Nan Hwangb,∗, Sheng-Hong Laib, Weichung Wangc, Zih-Hao
Weib

aDepartment of Mathematics, National Taiwan Normal University, Taipei 106, Taiwan
bDepartment of Mathematics, National Central University, Jhongli 320, Taiwan
cDepartment of Mathematics, National Taiwan University, Taipei 106, Taiwan

Abstract

We consider a rational algebraic large sparse eigenvalue problem arising in the discretiza-
tion of the finite element method for the dissipative acoustic model in the pressure formu-
lation. The presence of nonlinearity due to the frequency-dependent impedance poses a
challenge in developing an efficient numerical algorithm for solving such eigenvalue prob-
lems. In this article, we reformulate the rational eigenvalue problem as a cubic eigenvalue
problem and then solve the resulting cubic eigenvalue problem by a parallel restricted
additive Schwarz Preconditioned Jacobi-Davidson algorithm (ASPJD). To validate the
ASPJD-based eigensolver, we numerically demonstrate the optimal convergence rate of
our discretization scheme and show that ASPJD converges successfully to all target eigen-
values. The extraneous root introduced by the problem reformulation does not cause any
observed side effect that produces an undesirable oscillatory convergence behavior. By
performing intensive numerical experiments, we identify an efficient correction-equation
solver, an effective algorithmic parameter setting, and an optimal mesh partitioning.
Furthermore, the numerical results suggest that the ASPJD-based eigensolver with an
optimal mesh partitioning results in superlinear scalability on a distributed and parallel
computing cluster scaling up to 192 processors.

Key words: Acoustic wave equation, cubic eigenvalue problems, Jacobi-Davidson
methods, domain decomposition, additive Schwarz preconditioner, parallel computing.

1. Introduction

Acoustics has been widely studied due to a broad range of scientific and engineering
applications [14, 15, 18]. One typical example is to achieve optimal designs that reduce
noise and vibration in a car, a commercial airplane, or a building. In the computa-
tions regarding acoustics, efficient and accurate numerical solutions of large and sparse

∗Corresponding author. Tel: +886-3-422-7151 Ext. 65110; Fax +886-3-425-7379
Email addresses: min@math.ntnu.edu.tw (Tsung-Ming Huang), hwangf@math.ncu.edu.tw

(Feng-Nan Hwang), ironbox360@gmail.com (Sheng-Hong Lai), wwang@math.ntu.edu.tw (Weichung
Wang), socrates.wei@gmail.com (Zih-Hao Wei)

Preprint submitted to Computers & Fluids November 21, 2010

nonlinear algebraic eigenvalue problems (EVP) are often required. In this article, we
particularly focus on a rational acoustic EVP with an absorbing wall in the pressure
formulation, which was introduced by Bermúdez et al. [2, 3]. The reasons to consider
this particular pressure formulation are twofold. First, due to the nonlinearity arising
from the frequency-dependent impedance, developing numerical algorithms to solve this
nonlinear EVP effectively and efficiently remains a computational challenge. Second,
once the primitive variable pressure is determined, other additionally introduced vari-
ables, e.g., fluid displacement or potential in the pressure-fluid displacement formulation
and pressure-potential formulation [2, 3, 4, 17], can be recovered through postprocessing.

One way to solve the target acoustic EVP is to reformulate the original rational
EVP in the pressure formulation as a cubic polynomial EVP and then employ a poly-
nomial Jacobi-Davidson (JD) approach to solve the resulting eigenproblem. The JD
algorithm [23] was originally proposed by Sleijpen and Van der Vorst for linear EVPs.
Various generalizations of the linear JD have continued to gain their popularity for solv-
ing polynomial EVPs with diverse applications. Examples include generalized EVP in
the stability analysis of magnetohydrodynamics [20], cubic EVP in the study of insta-
bility in the plasma edge of a magnetic fusion device [7], and cubic or quintic EVP in
the estimation of discrete energy states and wave functions of a semiconductor quantum
dot with non-parabolic band structure [12, 13]. The popularity of the JD algorithm is
mainly due to its promising numerical advantages. For example, without recasting the
polynomial EVPs as enlarged linearized EVPs, one only needs to deal with a problem the
same size as the original one. JD can target the interior spectrum directly without using
computationally expensive shift-and-invert techniques. Moreover, the JD algorithm is
parallelizable and thus suitable for large-scale eigenvalue computations.

Recently, Hwang et al. proposed the additive Schwarz preconditioned Jacobi-Davidson
algorithm (ASPJD), which exports the idea from the parallel Schwarz-Krylov solver
for the correction equation to enhance the overall parallel scalability of the JD algo-
rithms [11, 26]. The Schwarz methods [24] are well understood and have been been
widely used for solving a variety of linear systems arising from the discretization of
partial differential equations (PDEs). They have further been extended to nonlinear sys-
tems as a linear preconditioner for the Jacobian system in the Newton-Krylov-Schwarz
algorithm and as a nonlinear preconditioner in the additive Schwarz preconditioned inex-
act Newton algorithm [10]. However, only comparatively few publications are available
on addressing eigenvalue problems using Schwarz methods. Among those few, Schwarz
methods have been employed as a preconditioner for the Arnoldi method with the spec-
tral transformation [21] or for the locally optimal block preconditioned conjugate gradient
method [16].

In this article, we investigate the applicability of ASPJD for solving the acoustic cu-
bic EVP and conduct intensive numerical experiments to study how ASPJD can perform
efficiently on parallel computers. It is worth mentioning that (i) the extraneous roots
introduced by the reformulation (9) do not lead to oscillatory convergence behavior in
ASPJD and (ii) superlinear speedups can be achieved by an optimal mesh partition-
ing. All these numerical findings suggest that the combination of polynomial eigenvalue
problem reformulation and the ASPJD eigensolver forms a promising parallel method
for solving the target acoustic eigenvalue problem.

The rest of this paper is organized as follows. Section 2 introduces the acoustic
mathematical model, its finite element discretization, and the corresponding cubic EVP.

2

Section 3 briefly describes the ASPJD. Section 4 examines the parallel performance of
the proposed algorithms. Section 5 concludes the paper.

2. Acoustic polynomial eigenvalue problem

Under the time-harmonic assumption, an acoustic EVP is derived from the acoustic
wave equation [14, 15], which is a simplified mathematical model of inviscid, compress-
ible, and barotropic fluids with small perturbation. As the model equation is in the
pressure formulation, a finite element discretization leads to a rational EVP due to the
frequency-dependent impedance. This rational EVP is then converted to the model cubic
polynomial EVP by multiplying the common denominators, as shown in the following
subsections.

2.1. Dissipative acoustic eigenvalue problem

We consider the following dissipative acoustic EVP [15]:

λ2

c2
p = ∆p, (1)

which is defined on a computational domain Ω ⊂ R2 and equipped with three types of
boundary conditions:

p = 0 on ΓO, (2)

∂p

∂n
= 0 on ΓR, and (3)

∂p

∂n
= − λρ

Z(λ)
p on ΓA. (4)

Here, (λ, p) forms the complex eigenpair of (1). The imaginary part and the real part of
λ represent the angular frequency and the decay rate of sound disturbances, respectively,
and p is the pressure perturbation. Other notations include: ρ is the density of fluids, c
is the speed of sound, Z(λ) is the frequency-dependent acoustic impedance, and n is an
outward normal vector. Further, the boundaries Γ = ΓO ∪ΓR ∪ΓA and ΓO, ΓR, and ΓA

stand for the open, reflecting, and absorbing boundary conditions, respectively.

2.2. Finite element discretizations

To discretize (1), we employ the standard Galerkin finite element method on a given
quadrilateral mesh T h = {K} with a mesh diameter h. Let Ph be a continuous bilinear
finite element space for p. We define

Ph = {p ∈ H1(Ω) ∩ C0(Ω) : p|K ∈ P1(K),K ∈ T h},

where H1(Ω) is a Hilbert space, C0(Ω) is the set of all continuous functions defined on
Ω, and P1(K) is the set of all bilinear functions defined on the element K. Note that

Ph
0 = {p ∈ Ph| p = 0 on ΓO}

3

is used for both the trial and test spaces. Next, we want to find an eigenpair (λh, ph),
where λh ∈ C and ph ∈ Ph

0 such that

λ2
h

c2

∫
Ω

phq dx+
λhρ

Z

∫
ΓA

phq ds+

∫
Ω

∇ph · ∇q dx = 0 ∀ q ∈ Ph. (5)

Let Φ = [ϕ1, ϕ2, ..., ϕn]
T be a vector of global bilinear shape functions, where n is the

number of total interior nodes, including all boundary nodes on ΓA and ΓR. Then the
numerical approximation of the eigenfunction ph can be expressed as a linear combination
of the shape functions

ph =
n∑

i=1

uiϕi. (6)

where u := [u1, u2, ..., un]
T represents the nodal values of ph, which is to be determined.

Choosing q = ϕi (for i = 1, ..., n) and substituting (6) into the Galerkin finite element
formulation (5), we obtain a PDE-based nonlinear EVP

R(λ)u = (λ2M +
λ

Z
C +K)u = 0.

Here, the coefficient matrices

M =
1

c2

∫
Ω

ΦΦT dx, C = ρ

∫
ΓA

ΦΦT dx, and K =

∫
Ω

∇Φ · ∇ΦT dx

stand for mass, damping, and stiffness, respectively. In general, M and K are both
real symmetric positive definite matrices, and C is a real semi-positive definite matrix
containing diagonal blocks. Note that we drop the subscript h of λ throughout the paper
to simplify the notation.

2.3. Algebraic eigenvalue problem

Using different mathematical impedance models, we can derive different rational EVP
accordingly. In this article, we particularly consider the Kelvin-Voigt model [19]. The
impedance Z(λ) for the aborting material can be written as

Z(λ) =
α

λ
+ β,

where α is the elastic coefficient, and β is the damping coefficient due to viscous effect.
Because

1

Z(λ)
=

1
α
λ + β

=
λ

α+ λβ
,

we can rewrite the absorbing boundary condition (4) as

∂p

∂n
=

−ρλ2

α+ λβ
p on ΓA (7)

4

and obtain a nonlinear algebraic large-scale EVP in the rational form

R(λ)u = (λ2M +
λ2

α+ λβ
C +K)u = 0. (8)

We can further rewrite Equation (8) in a cubic polynomial matrix form by multiplying
both sides of the equation by (α + λβ)In. Here, In is an identity matrix of order n.
Therefore, we have

A(λ)u = (λ3A3 + λ2A2 + λA1 +A0)u = 0, (9)

where A0 = αK, A1 = βK, A2 = αM + C, and A3 = βM .
Some remarks:

1. By comparing Equations (8) and (9), it is obvious that the later has extraneous
roots with algebraic multiplicity n and that those roots are all equal to λ = −α/β.

2. In the case that ΓO = ∅, a zero eigenvalue exists for both Equations (8) and (9).

3. As suggested in [2] for the quadratic EVP arising in the pressure-displacement for-
mulation, Re(λ) < 0 for all eigenvalues where λ ̸= 0, which is consistent with the
numerical or physical observation that the acoustic vibrations are damped due to the
effect of the viscoelastic materials. We conjecture that the cubic EVP has similar
phenomena. This conjecture is numerically confirmed in Figure 2 in Section 4.

3. A parallel polynomial Jacobi-Davidson eigensolver

The JD-type algorithms belong to a class of iterative subspace methods, which con-
sists of two key steps in each iteration: (i) to enlarge a subspace or so-called search
space by adding a new basis vector and (ii) to extract an approximate eigenpair from
the search space through the Rayleigh-Ritz procedure. To obtain a new basis vector for
the search space at each outer iteration, it is necessary to solve the so-called correction
equations approximately via inner iterations. As in other inner-outer algorithms such as
the Newton-type method, the bottleneck of JD algorithms is the approximate solution
of the correction equations in the inner iterations.

In this section, we briefly describe the ASPJD algorithm, which is used to solve the
cubic EVP (9). ASPJD is a Jacobi-Davidson based algorithm that iteratively looks for
better approximate eigenpairs in a growing search space. Details of the algorithm can
be found in [11]. Here, we simply highlight how the next eigenpair (λnew, unew) can be
obtained from the current approximate eigenpair (λ, u).

Suppose (λ, u) has been extracted from the current search space V , and assume it
is not close enough to the exact eigenpair (λ∗, u∗). We can find the next approximate
eigenpair (λnew, unew) by the following two steps.

Step 1. Expand the search space V by redefining it as [V, v]. The vector v is computed
as follows. We solve the correction equation(

I − pu∗

u∗p

)
A(λ)(I − uu∗)t = −r (10)

5

approximately for t ⊥ u by a Krylov subspace method with a preconditioner B−1
d ,

where

Bd =

(
I − pu∗

u∗p

)
B(I − uu∗) ≈

(
I − pu∗

u∗p

)
A(λ)(I − uu∗), (11)

r = A(λ)u, p = A′(λ)u, and A′(θ) =
∑τ

i=1 iθ
i−1Ai. Furthermore, t is orthogonal-

ized against V , and v is defined as v = t/∥t∥2.

Step 2. Perform the Rayleigh-Ritz procedure to extract (λnew, unew) from the search
space V by solving the small projected polynomial EVP (V TA(θ)V)s = 0. Then
set λnew = θ and compute unew = V s.

In practice, one does not explicitly form Bd defined as (11) to perform the precon-
ditioning operation, z = B−1

d y with z ⊥ u for a given y. Instead, the equivalent can be
done by computing

z = B−1y − ηB−1p, with η =
u∗B−1y

u∗B−1p
.

Note that the preconditioning operation B−1p and inner product u∗B−1p need to be
computed only once to solve each correction equation, and there is no need to re-compute
them in the Krylov subspace iterations. Furthermore, in the ASPJD, the construction of
the preconditioner B−1 based on an additive Schwarz framework is described as follows.

Let {Ωh
i , i = 1,, Ns} be a non-overlapping subdomain partition with the boundary

∂Ωh
i . Assume further that the union of these non-overlapping subdomains covers the

entire domain Ω and the corresponding mesh T h. We use T h
i to denote the collection of

mesh points in Ωh
i . To obtain overlapping subdomains, we expand each subdomain Ωh

i

to a larger subdomain Ωh,δ
i with the boundary ∂Ωh,δ

i . Here, δ is an integer indicating

the level of overlap. We assume that neither ∂Ωh
i nor ∂Ωh,δ

i cut any elements of T h.

Similarly, we use T h,δ
i to denote the collection of mesh points in Ωh,δ

i . Then we define
the overlapping subdomain space as Ph

i = Ph ∩ H1
0 (Ω

h,δ) and the restriction operator
Ri, which transfers data from Ph to Ph

i . In the matrix representation, Ri is an ni × n
matrix with values of either 0 or 1, where n and ni are the total numbers of interior
mesh points in T h and T h,δ

i , respectively, and
∑Ns

i=1 ni ≥ n. Then, the interpolation

operator (Rδ
i)

T
can be defined as the transpose of Rδ

i . Using the restriction operator, we
define the one-level restricted additive Schwarz preconditioner RAS(δ) with the degree
of overlapping δ [5] as

B−1 =

Ns∑
i=1

(R0
i)

T
B−1

i Rδ
i ,

where B−1
i is the subspace inverse of Bi and Bi = Rδ

iA(λ)(Rδ
i)

T
. Note that the block

Jacobi preconditioner is considered as a special case of the RAS preconditioner by setting
the level of overlap equal to 0.

In the aforementioned Step 2, we compute the eigenpair of the projected EVP,
(V TA(θ)V)s = 0, by solving the corresponding linearized projected EVP,

MAz = θMBz, (12)

6

where

MA =

 0 I 0
0 0 I
M0 M1 M2

 , MB =

 I 0 0
0 I 0
0 0 −M3

 , and z =

 s
θs
θ2s

 ,

and Mi = V TAiV . Note that the dimension of V TA(θ)V is usually small, so that a
direct eigensolver such as the QZ algorithm, is suitable for this purpose.

We use the following strategy to choose the wanted eigenvalues. Let Θ be the set of the
Ritz values computed from (12), and let µ be a given target value that is supposed to be
near the desired eigenvalues. Let Λ be a certain set containing the unwanted targets. We
select one of the Ritz values, say θj , from the set Θ\Λ so that |µ−θj | = minθ∈Θ\Λ |µ−θ|.
Depending on the application, we have different choices of Λ to avoid choosing unwanted
Ritz values as the candidate approximate eigenvalues. In particular, in the model acoustic
EVP, we define Λ as the extraneous roots, the trivial solutions, or both.

Some practical techniques such as restarting and locking are also included in the AS-
PJD eigensolver. In restarting, the eigenpair search is started over, and a new orthogonal
V is chosen after a certain number of iterations. The restarting technique can keep the
projected EVP (12) to a manageable size and avoid the loss of the numerical orthogo-
nality of basis vectors in the search space. Very often, such a technique can accelerate
the convergence of the JD algorithm. In addition, the locking technique is useful when
multiple eigenvalues are of interest. By performing locking, the convergent eigenvalues
can be included in the set Λ.

4. Numerical results

�����������������������

�����������������������

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

Ω

ΓR

ΓA

p

� -a

?

6

b

Figure 1: The benchmark problem that models fluid in a cavity with an absorbing wall.

We considered a test case that is often used to study acoustics in a cavity as a
benchmark problem to validate the correctness of our parallel eigensolver and to evaluate
its parallel performance. In this problem, one wall of the cavity is coated with some sound
absorbing material. As shown in Figure 1, a rectangular computational domain is defined
on Ω = [0, a] × [0, b] with a > 0 and b > 0. A zero homogeneous Neumann condition
is imposed on all boundaries, except for the top boundary, in which the absorbing type

7

boundary condition (7) is imposed. The analytical solutions for this particular problem
can be derived from the technique of separation variables [3], in which (ηm, λ) satisfy

η2m =
λ2

c2
+

m2π2

a2
and ηm tanh ηmb =

−ρλ2

α+ λβ

for a particular m ∈ N. We obtain (ηm, λ) numerically by Newton’s method and refer
to them as the semi-analytical solutions. Figure 2 shows a typical spectrum of the
benchmark problem .

Figure 2: The distribution of the entire spectrum of the benchmark problem with h =
1/32 (left). A magnification of the selected spectrum corresponding to the
lowest positive vibration frequencies with the highlight of the most interesting
eigenvalues highlighted (right).

The setup for the numerical experiments is summarized as follows. Table 1 lists the
physical parameters used for the numerical simulation. A sequence of uniformly-refined
regular bilinear finite element meshes is employed. We took the ASPJD eigensolver im-
plemented on top of the Portable, Extensible Toolkit for Scientific Computation (PETSc)
[1] and the Scalable Library for Eigenvalue Problem Computation (SLEPs) [6] in [11] as
the parallel polynomial JD eigensolver for the target problem. Aiming at the target
acoustic problem, we conducted intensive numerical experiments to validate the ASPJD
eigensolver (Section 4.1), to compare the efficiency of three possible correction-equation
solvers (Section 4.2), to tune the algorithmic parameters (Section 4.3), and to investigate
the scalability (Section 4.4).

Parameter Symbol Value Unit Parameter Symbol Values Unit
domain width a 1.00 m domain height b 0.75 m
fluid density ρ 1.00 kg/m3 sound speed c 340.00 m/s
elasticity α 50000.00 N/m3 damping β 200.00 Ns/m3

Table 1: Physical parameters used for the numerical experiments.

8

The ASPJD eigensolver is declared to be convergent, if ∥r∥2 < atol or ∥r∥2 <
rtol∥r0∥2, where rtol and atol are set to be 10−10 and 10−8, respectively. The eigenvalue
solver restarts every 30 steps and selects 5 original best vectors with the smallest mag-
nitudes to be retained in the search space during the restarting procedure. We selected
the initial search space to be V = [g]n×1, where g = normalize(v + normalize(s)), as a
constant vector is a known trivial solution for ΓO = ∅. Here, the normalized constant,
v = (1n ,

1
n , ...,

1
n), with a small random perturbation s generated from a random variable

in (0, 1]. For the acoustics problem in industrial and scientific applications, the eigenval-
ues of interest are often interior ones, which correspond to low frequency modes within

the range of 0 < Im(λ)
2π < 600Hz. Hence, the target eigenvalue for the ASPJD eigensolver

was set to be 0 + 1900i. All computations were performed in complex arithmetic double
precision and were run on a cluster of computers with the dual Intel Woodcrest 3.0G
CPUs with dual cores communicating via Infiniband switch. Various numerical results
and our findings will be reported and discussed in the following subsections.

4.1. Parallel eigensolver validation

To validate the parallel ASPJD eigensolver, we computed 10 eigenvalues that were
close to the target for different mesh sizes by using 48 processors. We employed a
fixed 20 Generalized Minimal Residual Method (GMRES) [22] iterations as the stopping
criterion while solving the correction equation. The GMRES solver was incorporated
with a left RAS(1) preconditioner, where the subdomain problems were solved by a direct
incomplete LU decomposition with three-level of fill-ins. Careful algorithmic parameter
tuning for achieving the optimal performance will be presented in Sections 4.3 and 4.4.

0 50 100 150
10

−10

10
−5

10
0

10
5

Iteration number

R
es

id
ua

l

restart

Figure 3: History of residuals for computing 10 eigenvalues for h = 1/256.

Figure 3 shows the history of the residuals for computing 10 eigenvalues for the case
of h = 1/256. The results show that the ASPJD eigensolver converged successfully to
all target eigenvalues. The figure also suggests that ASPJD took many more iterations
to converge to the first eigenvalue, due mainly to the randomness of the initial basis
in the search space. The residual oscillated at the beginning and then was gradually
reduced. The results indicate that the restarting technique can save memory usage
and improve the quality of the basis in the search space so that the ASPJD converges

9

rapidly after restarting. In addition, Figure 3 shows that the residuals decreased almost
in a monotone manner, except for the ones corresponding to the first eigenvalue. This
observation suggests that the extraneous roots introduced by reformulating (8) as (9) do
not cause oscillatory convergence behavior as reported in [8]. This is another justification
for the proposed numerical approach.

The accuracy results reported in Table 2 indicate that the computed eigenvalues and
semi-analytical eigenvalues matched each other quite well. All of the relative differences
were less than 10−6. Additionally, the convergence behavior of our numerical discretiza-
tion scheme shown in Tables 2 and 3 closely followed the theoretical predictions available
in the literature. An error estimate [25] for the standard elliptic EVP obtained by linear
finite elements is given as

λi ≤ λ
(h)
i ≤ λi +Ch2λ2

i ,

where C is a constant, and λi (0 < λ1 ≤ λ2 ≤ λ3 ≤ ...) and λ
(h)
i are the ith exact eigen-

value and the ith computed eigenvalues, respectively. We highlight some observations
from these two tables.

• The optimal quadratic rate of convergence for the 10 computed eigenvalues was
achieved.

• The quality of the approximate eigenvalues for the high frequency modes was de-
graded, as the error bound became wider for higher frequency modes.

• For a fixed i, the computed eigenvalue |λ(h)
i | was bounded from below by |λi| and

the sequence |λ(h)
i | was decreasing as the mesh was refined, i.e., |λi| ≤ . . . ≤ |λ(h

4)
i | ≤

|λ(h
2)

i | ≤ |λ(h)
i |.

i λ
(h)
i (by ASPJD) λi (semi-analytical) |λ(h)

i − λi|
|λ(h)

i −λi|
|λi|

k

1 -320.70879 + 267.64787i -320.70845 + 267.64791i 3.43234e-04 8.21687e-07 2.00
2 -259.20827 + 813.28676i -259.20818 + 813.28664i 1.49098e-04 1.74670e-07 2.00
3 -89.95380 + 1281.34546i -89.95380 + 1281.34506i 4.04794e-04 3.15138e-07 2.00
4 -297.21018 + 2181.14878i -297.20938 + 2181.14545i 3.42330e-03 1.55512e-06 2.00
5 -27.36523 + 2250.40916i -27.36529 + 2250.40594i 3.22123e-03 1.43130e-06 2.00
6 -236.70537 + 2409.20862i -236.70459 + 2409.20544i 3.26946e-03 1.35057e-06 2.00
7 -143.16372 + 3023.68912i -143.16330 + 3023.68443i 4.71118e-03 1.55635e-06 2.00
8 -12.69358 + 3282.07988i -12.69366 + 3282.06881i 1.10723e-02 3.37354e-06 2.00
9 -302.60555 + 3588.44995i -302.60332 + 3588.43448i 1.56315e-02 4.34068e-06 2.00
10 -275.41285 + 3737.82898i -275.41058 + 3737.81401i 1.51402e-02 4.03961e-06 2.00

Table 2: A comparison of the computed eigenvalues obtained by the ASPJD eigensolver
with the semi-analytical solutions that h = 1/1024. The convergence rate

k = log2
|λ(h=1/512)

i −λi|
|λ(h=1/1024)

i −λi|
.

4.2. A comparison of three correction-equation solvers

The numerical solution of the correction equation is a kernel of the ASPJD (and other
JD-type algorithms), as it is the most expensive step in the algorithm and solving that

10

i |λ(1
64

)

i | |λ(1
128

)

i | |λ(1
256

)

i | |λ(1
512

)

i | |λ(1
1024

)

i | |λi|

1 417.78005 417.73440 417.72299 417.72013 417.71942 417.71918
2 853.63067 853.60375 853.59702 853.59533 853.59491 853.59477
3 1284.60203 1284.52451 1284.50513 1284.50029 1284.49908 1284.49867
4 2202.17357 2201.51959 2201.35612 2201.31526 2201.30504 2201.30163
5 2251.39666 2250.77839 2250.62384 2250.58520 2250.57554 2250.57232
6 2421.63431 2421.01277 2420.85742 2420.81858 2420.80887 2420.80563
7 3028.27694 3027.37299 3027.14704 3027.09055 3027.07643 3027.07173
8 3284.92850 3282.80199 3282.27050 3282.13764 3282.10442 3282.09335
9 3605.16700 3602.16952 3601.42043 3601.23317 3601.18635 3601.17075
10 3751.81292 3748.91295 3748.18825 3748.00710 3747.96181 3747.94671

Table 3: The computed eigenvalues for different mesh sizes and the semi-analytical
solutions.

equation efficiently is often a significant factor in the overall performance. We compared
three correction equation solvers (10). Table 4 demonstrates the comparison results for a
RAS iterative method (RAS), GMRES with RAS preconditioning (GMRES+RAS) (the
one employed in ASPJD), and a fixed-step GMRES without preconditioning (GMRES-
only). For the purpose of comparison, the maximum of number of iterations for all
methods was set to be 25, the degree of RAS overlapping was set to be 1, and the
incomplete LU with 0, 1, 2, or 3 levels of fill-ins was used as a subdomain solver. The
test problem of mesh size h = 1/512 is considered and 48 processors were used.

We found that although the computational costs per outer iteration in JD iteration of
both the GMRES-only method and the RAS method for solving the correction equation
were much cheaper than the cost in GMRES with RAS, the GMRES+RAS method
always performed the best. Note that the correction-equation formulation in the form
of Equation (10) is the most efficient compared to the other two available formulations
(not shown here); see [9].

RAS GMRES+RAS GMRES-only
Subdomain solvers JD ite Time (s) JD ite Time (s) JD ite Time (s)

ILU(0) 301 25.0 52 5.6 256 18.3
ILU(1) 156 15.0 34 4.3
ILU(2) 108 12.1 30 4.3
ILU(3) 88 11.4 30 4.6
LU 68 18.9 33 9.4

Table 4: An efficiency comparison of the JD-based algorithm on three types of
correction-equation solver: a RAS iterative method, fixed 25-step RAS pre-
conditioned GMRES, and GMRES without preconditioning.

4.3. ASPJD algorithmic parameter tuning

To achieve optimal parallel performance, several algorithmic parameters involved in
the ASPJD algorithm needed to be well tuned. Here, we focus on how some factors

11

related to the Krylov-Schwarz solver for the correction equation affect the overall con-
vergence. These factors include the maximum number of GMRES iterations allowed,
denoted by GMRES(k) for k = 20, 25, 30, the degree of overlapping for restricted ad-
ditive Schwarz preconditioners, denoted by RAS(δ) for δ = 0, 1, 2, 3, and the quality
of subdomain solution, where a direct sparse LU decomposition or an incomplete sparse
LU decomposition with different levels of fill-ins ILU(l) for l = 0, 1, 2, 3 was employed.

We summarize the all possible test runs for the case of h = 1/512 with the number
of processors np = 12 and np = 48 in Tables 5 and 6, respectively. Observing the values
from these two tables, we found that in general, the number of the outer iterations in
ASPJD was typically reduced when we enhanced the solution quality of the correction
equation by increasing the levels of ILU fill-ins, the degrees of RAS overlapping, or the
number of GMRES iterations. However, in practice, ILU(0) and LU, which are either
too inaccurate or too expensive, are not recommended for use as a subdomain solver. For
the remaining cases, if mild levels of ILU fill-ins and mild degrees of RAS overlapping
were chosen, the number of outer iterations in ASPJD was nearly independent of the
number of processors.

RAS(0) RAS(1) RAS(2) RAS(3)
JD ite Time JD ite Time JD ite Time JD ite Time

GMRES(20) ILU(0) 79 40.32 69 37.93 65 35.78 64 35.71
ILU(1) 49 27.18 44 25.96 40 23.68 38 22.94
ILU(2) 40 23.96 30 19.36 30 19.53 30 19.76
ILU(3) 35 22.74 30 21.01 30 21.28 30 21.77
LU 37 47.77 33 45.13 23 31.75 31 43.76

GMRES(25) ILU(0) 55 35.92 51 35.28 48 33.74 48 33.44
ILU(1) 37 25.99 30 22.69 30 22.89 30 22.95
ILU(2) 34 26.15 30 24.40 30 24.70 30 24.86
ILU(3) 30 24.76 30 26.58 30 26.75 33 29.59
LU 35 54.56 32 52.17 31 51.31 38 53.32

GMRES(30) ILU(0) 47 37.88 43 36.78 43 37.01 42 36.45
ILU(1) 30 26.30 30 27.97 30 28.08 30 28.44
ILU(2) 30 28.30 30 30.05 30 30.39 30 30.56
ILU(3) 30 30.47 32 34.44 32 34.76 33 36.19
LU 32 58.32 31 59.16 33 63.86 20 39.07

Table 5: Parametric study for h = 1/512 and the number of processors np = 12.

4.4. Parallel scalability analysis

We investigated how mesh partitioning affects the overall parallel scalability perfor-
mance of the ASPJD algorithm on a parallel computing cluster. Mesh partitioning is
a way to map the mesh data into processors on a distributed-memory computer. The
main goal of mesh partitioning is to balance computational loading and to minimize
point-to-point processor communications. For the case of structured meshes we are cur-
rently considering, it can be done by using the DA object in PETSc internally. As shown
in Figure 4, we considered two types of mesh partitioning: partitioning in both the x−
and y-directions (Partition I) and partitioning in the x-direction only (Partition II). In
addition, we took the strong scalability, known as fixed-problem-size scalability, as a

12

RAS(0) RAS(1) RAS(2) RAS(3)
JD ite Time JD ite Time JD ite Time JD ite Time

GMRES(20) ILU(0) 83 6.45 70 6.17 66 6.05 65 6.21
ILU(1) 53 4.58 45 4.49 39 4.18 38 4.10
ILU(2) 46 4.40 34 3.86 30 3.61 30 3.76
ILU(3) 42 4.49 30 3.84 30 3.91 33 4.47
LU 35 7.90 32 7.79 33 8.54 34 9.11

GMRES(25) ILU(0) 53 4.58 52 5.64 50 5.58 49 5.70
ILU(1) 43 4.41 34 4.34 30 3.85 30 3.99
ILU(2) 34 4.07 30 4.32 33 4.68 30 4.57
ILU(3) 31 4.11 30 4.64 32 5.16 30 5.10
LU 33 8.54 33 9.39 33 9.90 31 9.82

GMRES(30) ILU(0) 51 5.65 45 5.80 45 5.93 42 5.73
ILU(1) 34 4.31 30 4.54 30 4.64 30 4.81
ILU(2) 31 4.45 30 4.89 30 5.19 29 5.27
ILU(3) 32 5.07 31 5.75 30 5.99 33 6.54
LU 34 10.30 32 10.85 31 11.37 31 11.63

Table 6: Parametric study for h = 1/512 and the number of processors np = 48.

measurement for evaluating the parallel performance of our ASPJD eigensolver. To con-
duct the numerical experiments, we employed GMRES(30) preconditioned by RAS(1),
where each subdomain problem is solved by ILU(3), as the correction equation solver.

Partition I Partition II

Figure 4: Two types of mesh partitioning: 4× 3 (left) and 1× 12 (right)

Table 7 shows the performance summary for computing both the first wanted eigen-
value and the ten wanted eigenvalues of the problem with about 800, 000 unknowns. This
table suggests the following findings. (i) The influence of mesh partitioning on the scala-
bility of the algorithm increases with the number of processors. (ii) The number of outer
iterations in ASPJD remains almost constant for Partition I, but increases significantly
for Partition II. (iii) ASPJD based on Partition I achieves, remarkably, a superlinear (or
an excellent parallel efficiency) on up to 192 processors. Note that Partition I keeps the
number of interfacial nodes as small as possible so that the communications between
processors can be minimized. Also, that partition allows the solution data to be propa-
gated in two directions (instead of in only one direction for Partition II) simultaneously,
so that data exchange can be completed rapidly.

13

Partition Results for the first eigenvalue Results for the ten eigenvalues
Type nx × ny np JD ite Time (s) Sp Ef (%) JD ite Time (s) Sp Ef (%)

4× 3 12 30 157.7 1.0 100.0 233 1031.1 1.0 100.0
I 8× 6 48 30 33.2 4.8 118.8 266 224.2 4.1 102.9

16× 12 192 38 7.8 20.2 126.5 263 47.8 21.0 131.0

1× 12 12 43 158.7 1.0 100.0 188 1019.3 1.0 100.0
II 1× 48 48 54 51.4 3.6 89.9 244 276.1 3.7 92.3

1× 192 192 96 25.5 6.9 43.1 493 129.4 7.8 49.0

Table 7: Parallel scalability for computing the first eigenvalue and the first ten de-
sired eigenvalues using different mesh partitioning schemes for the case of
h = 1/1024. The mesh partitioning scheme is classified by nx and ny, which
are the number of process partitions in the x- and y-direction, respectively.
The total number of processors is np = nxny. Sp and Ef stands for speedup
and parallel efficiency, respectively.

5. Conclusions

This work is the first attempt, to the best of the authors’ knowledge, to solve the
acoustic EVP in the pressure formulation by reformulating it as a cubic polynomial eigen-
value problem. The resulting problem has been successfully and efficiently solved by the
ASPJD algorithm. The optimal convergence rate of linear finite element discretizations
for the computed eigenvalues was numerically observed and its convergence behavior is
similar to that predicted theoretically for the standard elliptic EVP [25]. The conver-
gence analysis of finite elements for the nonlinear acoustic problem, of course, is worth
further investigation. We have also identified the most efficient correction equation solver,
i.e., GMRES with restricted additive Schwarz preconditioning, among the other options.
Algorithmic parameter-tuning studies have led to the suggested parameter choices that
are able to achieve an excellent strong scalability on a cluster of parallel computers,
scaling up to 192 processors. We should emphasize that the proposed polynomial JD
approach is quite general; hence, it has potential applications for acoustic EVPs in dif-
ferent formulations. For example, in the pressure-displacement formulation of an acoustic
wave [2, 3], a quadratic EVP needs to be solved. As the problem size would be triple
for two-dimensional cases and four times for three-dimensional cases compared to the
pressure formulation, and the size of the resulting quadratic EVP is even larger, classical
linearization methods are not suitable for large-scale eigen-computation, as these meth-
ods usually introduce numerical difficulties in efficiency and robustness. On the other
hand, based on our numerical experiments, the ASPJD-based polynomial eigensolver is
shown to be a promising alternative for solving such EVPs efficiently, and it is interesting
to explore its possible applicability to more complex acoustic-structure EVPs [18].

Acknowledgements

The authors are grateful to the anonymous reviewers for their valuable comments,
to So-Hsiang Chou for helpful discussions, and to the Computer and Information Net-
working Center, National Taiwan University for providing high-performance computing

14

resource. This work is partially supported by the National Science Council, the Taida
Institute of Mathematical Sciences, and the National Center for Theoretical Sciences in
Taiwan.

References

[1] S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley, . C. McInnes, B. F. Smith,
and H. Zhang. PETSc webpage, 2010. http://www.mcs.anl.gov/petsc.

[2] A. Bermúdez, R. G. Durán, and J. Rodŕıguez, R. Solomin. Finite element analysis of a quadratic
eigenvalue problem arising in dissipative acoustics. SIAM J. Numer. Anal., 38:267–291, 2000.

[3] A. Bermúdez and R. Rodŕıguez. Modelling and numerical solution of elastoacoustic vibrations with
interface damping. Int. J. Numer. Meth. Engng., 46:1763–1779, 1999.

[4] A. Bermúdez and R. Rodŕıguez. Analysis of a finite element method for pressure/potential formu-
lation of elastoacoustic spectral problem. Math. Comp., 71:537–552, 2002.

[5] X.-C. Cai and M. Sarkis. A restricted additive Schwarz preconditioner for general sparse linear
systems. SIAM J. Sci. Comput, 21:792–797, 1999.

[6] V. Hernandez, J.E. Roman, A. Tomas, and V. Vidal. SLEPc webpage, 2010.
http://www.grycap.upv.es/slepc.

[7] M Hochbruck and D. Löchel. A multilevel Jacobi-Davidson method for polynomial PDE eigenvalue
problems arising in plasma physics. SIAM J. Sci. Comput., 32:3151–3169, 2010.

[8] T.-M. Huang, W.-J. Chang, Y.-L. Huang, W.-W. Lin, W.-C. Wang, and W. Wang. Preconditioning
bandgap eigenvalue problems in three dimensional photonic crystals simulations. J. Comput. Phys.,
229:8684–8703, 2010.

[9] T.-M. Huang, W. Wang, and C.-T. Lee. An efficiency study of polynomial eigenvalue problem
solvers for quantum dot simulations. Taiwanese J. Math., 14:999–1021, 2010.

[10] F.-N. Hwang and X.-C. Cai. A parallel nonlinear additive Schwarz preconditioned inexact Newton
algorithm for incompressible Navier-Stokes equations. J. Comput. Phys., 204:666–691, 2005.

[11] F.-N. Hwang, Z.-H. Wei, T.-M. Huang, and W. Wang. A parallel additive Schwarz preconditioned
Jacobi-Davidson algorithm for polynomial eigenvalue problems in quantum dot simulation. J.
Comput. Phys., 229:2932–2947, 2010.

[12] T.-M. Hwang, W.-W. Lin, J.-L. Liu, and W. Wang. Jacobi-Davidson methods for cubic eigenvalue
problems. Numer. Linear Algebra Appl., 12:605–624, 2005.

[13] T.-M. Hwang, W.-W. Lin, W.-C. Wang, and W. Wang. Numerical simulation of three dimensional
pyramid quantum dot. J. Comput. Phys., 196:208–232, 2004.

[14] F Ihlenburg. Finite Element Analysis of Acoustic Scattering. Springer, 1998.
[15] L.E. Kinsler, A.R. Frey, A.B. Coppens, and Sanders J.V. Fundamentals of Acoustics. John Wiley

& Sons, 2000.
[16] A.V. Knyazev. Toward the optimal preconditioned eigensolver: Locally optimal block precondi-

tioned conjugate gradient method. SIAM J. Sci. Comput, 23:517–541, 2001.
[17] W. Larbi, J.F. Deü, and R. Ohayon. A new finite element formulation for internal acoustic problems

with dissipative walls. Int. J. Numer. Meth. Engng., 68:381–399, 2006.
[18] S Marburg. Developments in structural-acoustic optimization for passive noise control. Arch.

Comput. Meth. Engng., 9:292–370, 2002.
[19] M.A. Meyers and K.K. Chawla. Mechanical Behavior of Materials. Cambridge Univ Press, 2009.
[20] M. Nool and A. van der Ploeg. A parallel Jacobi-Davidson-type method for solving large generalized

eigenvalue problems in magnetohydrodynamics. SIAM J. Sci. Comput., 22:95–112, 2000.
[21] R.P. Pawlowski, A.G. Salinger, J.N. Shadid, and T.J. Mountziaris. Bifurcation and stability analysis

of laminar isothermal counterflowing jets. J. Fluid Mech., 551:117–139, 2006.
[22] Y. Saad and M.H. Schultz. GMRES: a generalized minimal residual algorithm for solving nonsym-

metric linear systems. SIAM J. Sci. Comput., 7(3):856–869, 1986.
[23] G. L. G. Sleijpen and H. A. van der Vorst. A Jacobi-Davidson iteration method for linear eigenvalue

problems. SIAM J. Matrix Anal. Appl., 17(2):401–425, 1996.
[24] B.F. Smith, P.E. Bjørstad, and W. Gropp. Domain Decomposition: Parallel Multilevel Methods

for Elliptic Partial Differential Equations. Cambridge University Press, 1996.
[25] G. Strang and G.J. Fix. An Analysis of the Finite Element Method. Prentice-Hall, 1973.
[26] Z.-H. Wei, F.-N. Hwang, T.-M. Huang, and W. Wang. A parallel scalable PETSc-based Jacobi-

Davidson polynomial eigensolver with application in quantum dot simulation. Lect. Notes Comput
Sci Eng, 78:157–164, 2011.

15

