
Parallel Newton-Krylov-Schwarz Algorithms for the

Three-dimensional Poisson-Boltzmann Equation in Numerical

Simulation of Colloidal Particle Interactions

Feng-Nan Hwanga, Shang-Rong Caia, Yun-Long Shaob, Jong-Shinn Wuc,∗

aDepartment of Mathematics, National Central University, Jhongli 32001, Taiwan
bResearch and Technology Promotion Center, Mingshin University of Science and Technology,

Hsinchu 30401, Taiwan
cDepartment of Mechanical Engineering, National Chiao-Tung University,

Hsinchu 30050, Taiwan

Abstract

We investigate fully parallel Newton-Krylov-Schwarz (NKS) algorithms for solv-
ing the large sparse nonlinear systems of equations arising from the finite ele-
ment discretization of the three-dimensional Poisson-Boltzmann equation (PBE),
which is often used to describe the colloidal phenomena of an electric double layer
around charged objects in colloidal and interfacial science. The NKS algorithm
employs an inexact Newton method with backtracking (INB) as the nonlinear
solver in conjunction with a Krylov subspace method as the linear solver for the
corresponding Jacobian system. An overlapping Schwarz method as a precondi-
tioner to accelerate the convergence of the linear solver. Two test cases including
two isolated charged particles and two colloidal particles in a cylindrical pore
are used as benchmark problems to validate the correctness of our parallel NKS-
based PBE solver. In addition, a truly three-dimensional case, which models
the interaction between two charged spherical particles within a rough charged
micro-capillary, is simulated to demonstrate the applicability of our PBE solver
to handle a problem with complex geometry. Finally, based on the result ob-
tained from a PC cluster of parallel machines, we show numerically that NKS is
quite suitable for the numerical simulation of interaction between colloidal par-
ticles, since NKS is robust in the sense that INB is able to converge within a
small number of iterations regardless of the geometry, the mesh size, the number
of processors. With help of an additive preconditioned Krylov subspace method
NKS achieves parallel efficiency of 71% or better on up to a hundred processors
for a 3D problem with 5 million unknowns.

Key words: Poisson-Boltzmann equation, overlapping Schwarz preconditioning,
inexact Newton, finite element, parallel processing, colloidal particles

Preprint submitted to Computer Physics Communications May 7, 2010

1. Introduction

Various numerical simulations of physical phenomena, such as like-charge
colloidal particle interaction [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], electrokinetic
flows [12, 13], semiconductor device simulation [14, 15, 16], and biomolecule mod-
eling [17, 18, 19, 20, 21] require fast, reliable, and accurate numerical solutions
of the Poisson-Boltzmann equation (PBE), which belongs to a class of semilinear
elliptic partial differential equations. Since in general finding analytical solutions
to PBE with a complicated geometry or general boundary conditions in many
applications is not possible, the only remedy is to solve the problem numeri-
cally. A general numerical procedure is to replace a continuous PBE with an
algebraic nonlinear system of equations by some numerical scheme, such as finite
differences [3, 22], finite elements [1, 6, 7, 19, 20], or finite volumes [14, 21]. See
Ref. [23] for a comprehensive survey of recent developments on numerical meth-
ods, including some novel approaches, for PBE with an emphasis on biophysics
applications.

Numerical difficulties arise in solving PBE due to the presence of electric
double layers (EDL) around the charged objects [12] and the effect of strong non-
linearity of the exponentially nonlinear term, e.g., the right-hand side of Eq. (1).
In this situation, the solution changes dramatically near the boundary imposed
by Dirichlet conditions, which is most interesting to engineers and scientists. To
resolve the details in the EDL region, parallel processing is necessary for accurate
discretization of the PBE using local mesh refinements with a large number of
the mesh points, especially in the three-dimensional cases. A great amount of re-
search work in the past was devoted to developing adaptive finite element solvers
for the axisymmetric or three-dimensional PBE, which have been implemented
by Bowen and Sharif [1], Cortis and Friensner [19, 20], Dyshlovenko [6, 7], Holst
and coworkers [21], and Wu and coworkers [24] both in serial and in parallel using
different adaptive meshing algorithms.

On the other hand, although in general a nonlinear solver is the kernel of a
scientific software package and plays an important role in the whole process of
numerical simulations, to the best of our knowledge, very few studies available in
the literature focus on the development of parallel nonlinear iterative algorithms
for solving PBE and the investigation of their parallel performances on a PC
cluster. Some of these studies include: (a) Sirotkin and Tarvainen [16] proposed
two families of parallel domain decomposition algorithms for a general singularly
perturbed semilinear elliptic problem. One is a red-black block type alternating

∗Corresponding author. Tel: +886-3-573-1693; Fax: +886-3-572-0634
Email addresses: hwangf@math.ncu.edu.tw (Feng-Nan Hwang),

942201002@cc.ncu.edu.tw (Shang-Rong Cai), ylshao@must.edu.tw (Yun-Long Shao),
chongsin@faculty.nctu.edu.tw (Jong-Shinn Wu)

2

Schwarz method and the other one is a two-level Schwarz iterative method, where
an overlapping additive Schwarz iterative method and an alternating Schwarz
method on the overlapping region are used at the first level and the second
level, respectively. An inexact Newton method in conjunction with an incomplete
Cholesky preconditioned conjugate gradient method is employed as a subdomain
solver. (b) Li [14] employed a parallel monotone iterative method for solving the
semi-linear elliptic PDE with applications in semiconductor device simulation and
his parallel code achieved about 80% on up to 16 processors for the problem with
about 500 thousand unknowns. In fact, this method can be viewed as a special
case of an inexact Newton method, where the Jacobian systems are solved by a
point-wise Jacobi method with one inner iteration. The advantage of this method
that it is able to monotonically converge to a desired solution with a larger radius
of convergence starting from an arbitrary initial guess and it is easily parallelized.
However, the method possesses only a linear rate of convergence, in particular
the number of monotone iterations typically required for convergence is large.
(c) Baker et al. [17] showed 80% parallel efficiency of their adaptive Poisson-
Boltzmann solver (APBS) for the biomolecule calculation on up to 32 processors.
The APBS is publicly available and employs an inexact Newton method as a
nonlinear solver and an algebraic multigrid method as a Jacobian solver. Later,
in [18] they reported results on large scale calculations for the linearized PBE
using 686 processors.

A well-known interesting open problem till now in colloidal science is to pro-
vide a theoretical explanation for the experimentally-observed attraction between
two charged particles at a long range distance under a flat plane [25]. Some at-
tempts using numerical approaches have been tried in the past, e.g., [2]. However,
it has been proved (for instance, see [8, 9, 10]) that the results [2] for the attraction
of the like-charged identical particles in a confined cylindrical pore are erroneous.
No such attraction is possible within the PBE theory. Later the absence of the
attraction in this system was demonstrated numerically in [3, 7]. Since our focus
is on parallel algorithm developments, we restrict our discussion on the cases in
which the PBE theory is valid.

The aim of our research is to develop some parallel domain decomposition
based algorithm for solving large sparse nonlinear systems of equations arising
from the finite element discretization of the three-dimensional PBE, which is used
for modeling colloidal phenomena and investigate its parallel performance on a
parallel PC cluster. As an application in colloidal science, colloidal dispersion
requires knowledge of the electrostatic potential distribution, which can then be
used to calculate other physical quantities, such as particle-particle interaction
force. Features of particle interaction are of great importance for the stability
and properties of colloidal dispersions.

Our proposed parallel algorithm is based on a Newton-Krylov-Schwarz (NKS)

3

algorithm [26, 27], which is a general framework for solving large nonlinear sys-
tems of equations arising from the discretization of PDEs in computational science
and engineering. As its name suggests, the algorithm consists of three important
components. The inexact Newton method with backtracking (INB) [28, 29] is
used as a nonlinear solver. In each Newton step, an overlapping Schwarz-type
preconditioner is employed to accelerate the convergence rate of Krylov subspace
methods, which are used for solving linear Jacobian systems. The Schwarz-type
preconditioner is ideal for parallel computing, since all subdomain problems are
independent of each other and can be solved in parallel.

The remainder of this paper is organized as follows. A standard Galerkin
finite element discretization of the PBE used for modeling the colloidal parti-
cle interaction is given first, followed by a detailed description of the parallel
NKS algorithm for solving the resulting nonlinear algebraic system of equations.
Then, the results of parallel code validation with previous published numerical
solutions are presented and a realistic three-dimensional problem that involves
two like-charge particles in a rough micro-capillary is simulated to demonstrate
its applicability for complex geometry. Next the parallel performance of this
PBE solver is discussed. Finally, the paper is summarized with some important
conclusions and future directions of the research are given.

2. A model problem and its finite element formulation

Under the assumption that the charge density obeys an equilibrium Boltz-
mann distribution [12], the distribution of electrostatic potential around charged
colloidal particles in a symmetric electrolyte (z:z) solution can be found by solv-
ing the three-dimensional PBE in the dimensionless form:






∂2ψ
∂x1

2 + ∂2ψ
∂x2

2 + ∂2ψ
∂x3

2 = sinh(ψ) in Ω ⊂ R3,

ψ = gD on ΓD,

∂ψ

∂n
= 0 on ΓN ,

(1)

where x1 = x1/κ
−1, x2 = x2/κ

−1, x3 = x3/κ
−1, and ψ =

zeψ

kbT
. Here, κ2 =

2n0z
2e2

εε0kbT
, where z is the valence of the ions, n0 is the average number concen-

tration, T is the absolute temperature, ε the permittivity ratio, and ε0 is the
vacuum permittivity. Note that κ is the so-called Debye-Huckel parameter and
its inverse represents the characteristic length of the electrical double layer. Two
types of boundary conditions are imposed: a Dirichlet-type boundary condition
on ΓD and a Neumann-type boundary condition which is assumed be zero on

4

ΓN . To simplify the notation, we drop the bars for all variables throughout the
paper.

To discretize the PBE (1), we use the standard Galerkin finite element method
[30] on a given unstructured tetrahedral mesh, T h = {K} with an element di-
ameter h. Let Ψh ⊂ H1(Ω) be a linear or quadratic finite element space for
ψ:

Ψh = {ψ ∈ (C0(Ω) ∩H1(Ω) : ψ|K ∈ Pm(K), K ∈ T h },

where C0(Ω) is the space consisting of all continuous functions defined on Ω,
H1(Ω) is a Sobolev space defined by

H1(Ω) = {ψ :

∫

Ω
(|∇ψ|2 + ψ2) dx <∞},

and Pm(K) is the space of all polynomial functions of degree m defined on an
element K. Here m = 1 or 2. We define the weighting and trial function spaces
Ψh

0 and Ψh
g as

Ψh
0 = {ψ ∈ Ψh : ψ = 0 on ΓD} and Ψh

g = {ψ ∈ Ψh : ψ = gD on ΓD},

respectively, and then the Galerkin finite element formulation for PBE (1) can
be written as: Find ψh = ϕ+ g ∈ Ψh

g such that

a(ψh, ϕ) + (fρ(ψ
h), ϕ) = 0 ∀ϕ ∈ Ψh

0 , (2)

with

a(ψ,ϕ) =

∫

Ω
∇ψ · ∇ϕdx

and

(fρ(ψ), ϕ) =

∫

Ω
sinh(ψ)ϕdx

Let {Nl}
Nen
l=1 be a set of global shape functions for Ψh

0 , where Nen is the total

number of nodes, excluding the Dirichlet boundary nodes. Similarly, {Ng
m}

Ng

en

m=1 is
a set of shape functions associated with the Dirichlet boundary nodes. Then, the
approximate ψh can be written in term of the global shape functions and nodal
values given by

ψh =
Nen∑

l=1

βlNl +
Ng

en∑

m=1

gmN
g
m,

where gm is the nodal interpolate of g at xm ∈ ΓD, and ϕh is selected to beNi, i =
1, ..., Nen. Substituting these two functions into the finite element formulation (2)
yields a large sparse nonlinear algebraic system of equations, F : RNen → RNen

such that
F (x) = 0, (3)

5

where F = (F1, F2, ..., FNen
)T and x = (β1, β2, ..., βNen

)T with

Fi(x) =
Nen∑

l=1

βla(Nl, Ni) + (fρ(
Nen∑

l=1

βlNl +
Ng

en∑

m=1

gmN
g
m), Ni) +

Ng

en∑

m=1

gma(N
g
m, Ni),

for i = 1, 2, ..., Nen.

3. A Newton-Krylov-Schwarz algorithm

3.1. A description of the algorithm

We employ a NKS algorithm for solving large nonlinear systems of equations
(3). To be more specific, we describe NKS as follows. Let x(0) be a given initial
guess and assume x(k) is the current approximation of x∗. Then a new approxi-
mation x(k+1) can be computed via the following steps:

Step 1: Find a Newton direction s(k) by solving approximately the follow-
ing preconditioned Jacobian system using a Krylov subspace method, such
as GMRES [31],

JkM
−1
k y = −F (x(k)), with s(k) = M−1

k y, (4)

where Jk is the Jacobian of F evaluated at x(k) and M−1
k is called a right

preconditioner. We will discuss the construction ofM−1
k based on a Schwarz

framework further in the later subsection.

Step 2: Obtain the new approximation x(k+1) = x(k) + λ(k)s(k), where
λ(k) ∈ (0, 1] is a step length of the Newton direction.

In NKS, the accuracy of the solution to the Jacobian systems is controlled by
the parameter, ηk to force the condition

‖F (x(k)) + Jks
(k)‖2 ≤ ηk‖F (x(k))‖2

to be satisfied. ηk is often referred to as the forcing term. If the chosen forcing
term is small enough, the algorithm reduces to the exact Newton algorithm. The
step length, λ(k) ⊂ (0, 1], is selected so that

f(x(k) + λ(k)s(k)) ≤ f(x(k)) + αλ(k)∇f(x(k))T s(k), (5)

where the merit function f : RNen → R is defined as ‖F (x)‖2
2/2, and the pa-

rameter α is used to ensure that the reduction of f is sufficient. Here, typically
α = 10−4. When the condition (5) does not hold for the case of λ(k) = 1, a cubic
linearsearch technique [28] is employed to determine the step length λ(k).

6

3.2. Calculation of Jacobian matrices

The Jacobian matrices are the key components in NKS. We can write the
Jacobian matrices in the form of

Jk = JL + JNk ,

where JL and JNk are the linear part and nonlinear part of the Jacobian, re-
spectively. The matrix JL can be explicitly written as JL = (JLij) with elements

JLij = a(Nj , Ni). Since JL is unchanged during Newton iteration, it can be
formed once and then reused throughout the computation. On the other hand,
the element of the matrix JNk can be computed through

(JNij)k = (f ′ρ(
Nen∑

l=1

β
(k)
l Nl +

Ng

en∑

m=1

gmN
g
m)Nj , Ni),

where f ′ρ(x) = cosh(x) ≥ 0 for x ≥ 0. Note that the resulting Jacobian systems
are symmetric and positive definite since it is easily seen that (Jij)k = (Jij)k and

for ϕh =
Nen∑

i=1

βiNi ∈ Ψh
0 and ψh =

Nen∑

l=1

β
(k)
l Nl +

Ng

en∑

m=1

gmN
g
m at the kth Newton

iteration, we have

Nen∑

i=1

Nen∑

j=1

βi(Jij)kβj = a(
Nen∑

j=1

βjNj,
Nen∑

i=1

βiNi)

+ (f ′ρ(
Nen∑

l=1

β
(k)
l Nl +

Ng

en∑

m=1

gmN
g
m)

Nen∑

j=1

βjNj,
Nen∑

i=1

βiNi)

= a(ϕh, ϕh) + (f ′ρ(ψ
h)ϕh, ϕh) ≥ 0

The equality holds only if ϕh = 0.

3.3. A parallel one-level overlapping Schwarz preconditioner

In this section we introduce a parallel additive Schwarz preconditioner for the
Jacobian systems. Our preconditioner is an extension of the overlapping Schwarz
preconditioner for the linear elliptic PDEs [32, 33, 34]. Let {Ωh

i , i = 1,, np} be
a non-overlapping subdomain partition with boundary ∂Ωh

i and assume the union
of these non-overlapping subdomains covers the entire domain Ω and its mesh
T h. Here, np is the number of processors in the parallel computer. To obtain
overlapping subdomains, we expand each subdomain Ωh

i to a larger subdomain

Ωh,δ
i with the boundary ∂Ωh,δ

i . Here δ is an integer indicating the size of overlap.

We assume that neither ∂Ωh
i nor ∂Ωh,δ

i cut any elements of T h and use T h
i and

7

T h,δ
i to denote the collection of mesh points in Ωh

i and Ωh,δ
i , respectively. Now,

we define the overlapping subdomain space as

Ψh
i = {ψh ∈ Ψh ∩ (H1(Ωh,δ

i))
3

: ψh = 0 on Ωh,δ
i },

which is a subspace of Ψh, if all subdomain functions are extended to the whole
domain by zero.

Let Ri be a restriction operator, which transfers data from Ψh → Ψh
i . In

the matrix representation, Ri is an ni × n matrix with values of either 0 or 1,
where n and ni are the total numbers of interior mesh points in T h and T h,δ

i ,
respectively, and

∑N
i=1 ni ≥ n. Then, the prolongation operator RTi can be de-

fined as the transpose of Ri. It should be noted that the multiplication Ri (or
RTi) with a vector does not involve any arithmetic operation, but does involve
communication in a distributed parallel implementation. The restriction oper-
ator Ri collects the data from neighboring subdomains, while the prolongation
operator RTi sends a partial solution to neighboring subdomains. Using restric-
tion and prolongation operators, we can define the one-level overlapping additive
Schwarz-type preconditioner,

M−1
k =

np∑

i=1

RTi J
−1
i Ri, (6)

where the sub-Jacobian matrix is defined as Ji = RiJkR
T
i . For simplicity of

implementation, we assign each subdomain problem to a single processor. In
practice, one does not need to form the preconditioner M−1

k explicitly and only
the operation of the preconditioner with a vector, u = M−1

k w, is needed, if a
Krylov subspace method is employed to solve the linear system. For example,
in the distributed memory parallel implementation, each processor performs the
following steps:

• Collect the data from the subdomain and its neighboring subdomains, wi =
Riw

• Solve Jixi = wi, using an exact or an inexact sparse direct solver

• Send/receive the partial solution to/from its neighboring subdomain, x̂i =
RTi xi

• Calculate the sum via u =
∑N
i=1 x̂i

Since Jk is symmetric positive definite, the theoretical convergence results of
the additive Schwarz methods due to Dryja and Widlund [35, 36] can be applied.

8

Assume that each subdomain problem is solved exactly. Then the condition
number of M−1

k Jk satisfies

κ(M−1
k Jk) ≤

C

H2
(1 +

H

δ
),

where the constant C is independent of the parameters H, h, and δ. Here, H is
the diameter of a nonoverlapping subdomain. From the above estimate, we sum-
marize the expected convergence behavior of an additive Schwarz preconditioned
Krylov subspace method for solving Eq. (4) as follows:

1. Assuming δ is order of H, the number of iterations is independent of h,
but not H. The number of iterations increases proportional to 1/H. Fur-
thermore, if quasi-uniform partitioning is used, the number of iterations is
expected to be O(np1/3).

2. The convergence rates of Schwarz can be improved by increasing the level of
overlap.

4. Numerical results and discussions

Our parallel PBE solver is implemented by the Portable, Extensible Toolkits
for Scientific Computation (PETSc) [37] from the Argonne National Labora-
tory. The parallel PBE solver has been tested and validated on different parallel
computer systems. In addition, the CUBIT [38] from the Sandia National Lab-
oratories is employed to generate unstructured meshes for complex geometry, a
mesh partition tool, Parmetis [39] from the University of Minnesota, is served as
the purpose of parallel processing, and the scientific visualization system, Par-
aview [40] from the Kitware and the Sandia National Laboratories is used for
data analysis. All computations were carried out in double-precision. The tim-
ing results reported in seconds were obtained using the IBM cluster 1350 at the
National Center for High-performance Computing in Taiwan. The IBM cluster
1350 consists of 512 compute nodes; each node has two Intel Woodcrest 3.0GHz
Dual-Core processors with 16 GB of memory. The compute nodes are intercon-
nected by InfiniBand switches of 2 GB/s bandwidth.

We declare that the numerical solution converges when the stopping condition
for Newton

‖F (x(k))‖ ≤ max{10−10‖F (x(0))‖, 10−50}.

is satisfied. A zero initial vector is employed for all test runs. It should be
noted that from our numerical experiences, as can be found in Tables 4 to 7,
INB is quite robust and the line search technique is never needed for all test
cases, i.e. INB always took a full Newton step and exhibited the local quadratic
convergence behavior. A right additive Schwarz preconditioned GMRES [31] with
a zero initial guess is employed to solve the resulting Jacobian system with the
constant forcing term ηk = 10−4.

9

4.1. Parallel code validation

We first validate the correctness of our parallel PBE solver by considering
the two following test cases as benchmark problems. One is two isolated charged
particles (Problem 1) and the other one is two colloidal particles in a cylindrical
pore (Problem 2). In both test cases, due to symmetry of the solution with
respect to the yz-plane and the x-axis, only 1/32 of a cylindrical computational
domain (See Figure 1 for the detailed geometry configuration) is considered. For
the case of two isolated charged particles, we set the radius and length of the
cylinder, rc = 12.0 and EF = 17.25, respectively. One sphere of radius rs = 5.0
is located at (5.25, 0.0, 0.0)T . The separation distance between two spheres 2AB
is set to be 1.0. Except that the potential on the surface of the sphere is kept to be
2.0 the Neumann boundary condition, ∂ψ/∂n = 0 is imposed on all boundaries.
For the case of two colloidal particles in a cylindrical pore, the corresponding
parameters are set as follows. rs = 1.185, rc = 9.115, and EF = 17.25. 2AB
is varied from 1.0 to 8.0. Constant potentials are imposed on the surface of the
colloidal particle ψ = 3.0 and the surface of the pore ψ = 5.0. The homogenous
Neumann boundary condition is imposed on the rest of the boundaries. Typical
computed electrostatic potential distributions around the charged sphere for both
cases are shown in Figure 2.

Figure 1: A computational domain for both of Problem 1 and Problem 2.

We calculate numerically the electrostatic forces on the sphere and/or along
with the midplane and then compare our results with other published ones. Recall
that the total stress tensor can be written as

T = −pI + T̂,

10

Figure 2: Electrostatic potential distributions: Problem 1 (left) and Problem 2 (Right).

where p is the osmotic pressure difference between the electrolyte on the particle
surface and the bulk solution, I is an identity tensor, and Maxwell’s stress tensor
T̂ is defined as EE− 1

2 (E ·E)I with the electric field E = −∇ψ = (E1, E2, E3)
T .

Furthermore, the flow is assumed to be stationary and the effect of gravity is
neglected, so p can be expressed as 2[cosh(ψ)− 1] [12] by solving analytically the
incompressible Navier-Stokes equations. Then the electrostatic force between
between two spheres can be calculated via

Fs =

∫

S
T · n dS,

where n is a unit outward normal vector to the surface of the sphere, S. The
electrostatic force along the midplane, Fm, can be defined in a similar manner by
replacing S with the surface of a cylindrical shaped control volume. To accurately
compute the electrostatic force, PBE needs to be solved with high resolution
meshes within the EDL. For Problem 1, we employe the ability of CUBIT to
generate nonuniform unstructured meshes, which are locally refined both near
the surface of the sphere and along the midplane. At each level, we refine one
layer of the elements closest to the boundaries, where each element is divided
into four new subelements as shown in Figure 3.

Table 1 summarizes the evolution of the number of elements, the number of
nodes, and the computed electrostatic forces Fs and Fm interacting between two
spheres in the x-axis direction at different refinement levels. We should note
that even though quadratic finite elements are used for calculations only first
order accuracy for the computed electrostatic forces is expected. Hence, to fur-
ther improve the accuracy of computed electrostatic force, we apply Richardson’s
extrapolation technique [41], which is given as follows.

Rj(h
∗) = Rj−1

(
h∗

2

)
+

1

2j−1 − 1

[
Rj−1

(
h∗

2

)
−Rj−1 (h∗)

]
,

11

Figure 3: The surface mesh distributions for Problem 1: the original uniform mesh (left) and the
mesh with local mesh refinements around the surface of the sphere and along midplane (Right).

where j = 1, 2, ... and h∗ is the mesh size of an element on the sphere or along
the midplane. As shown in Table 2, the extrapolated electrostatic forces using
quadratic finite elements listed in the last column of the table agree with other
published numerical results, e.g., Fs = 48.840 and Fm = 48.835 in [7] also in [4]
Fm = 48.835, which is the best known result for this problem.

Refinement
of elements

Linear element Quadratic element

Level DOFs Fs Fm DOFs Fs Fm

0 101,992 19,792 40.225392 46.983952 147,117 42.036832 48.441344
1 120,803 24,138 44.192416 48.319296 176,736 45.221360 48.736912
2 194,739 40,773 46.308784 48.624880 291,503 46.957888 48.810864
3 489,652 106,084 47.461728 48.697264 745,320 47.878272 48.829088
4 1,670,467 365,435 48.095952 48.715328 2,554,053 48.351152 48.833600
5 6,401,288 1,400,100 48.432352 48.719872 9,783,256 48.590864 48.834720

Table 1: Computed electrostatic forces on the sphere (Fs) and along the midplane (Fm) in the
x-axis direction for Problem 1. DOFs: Total degrees of freedom.

Next we consider Problem 2. Figure 4 shows the comparison of the computed
electrostatic forces Fs in the x-axis direction at different levels of mesh refinement
and the reference solution [7] with respect to the separation distance. We perform
local mesh refinement near the surface of the sphere and found that our computed
electrostatic force gradually converges toward the reference curves as more levels
of local mesh refinements are performed. Also note that no matter how long
the separation distance is we always obtained repulsive electrostatic forces, even
though the electrostatic forces are quite small (but always are positive), e.g.,
Fm = 0.031584 and 0.026000 at the separation distances, 6.0 and 8.0, respectively.
Note that the reference solutions [7] for both problems we compared with were

12

Fs

Level h∗ R1 R2 R3 R4 R5 R6

0 0.515187 42.036832
1 0.257779 45.221360 48.405888
2 0.128913 46.957888 48.694416 48.790592
3 0.064460 47.878272 48.798656 48.833403 48.839519
4 0.032231 48.351152 48.824032 48.832491 48.832361 48.831884
5 0.016116 48.590864 48.830576 48.832757 48.832795 48.832824 48.832854

Fm

Level h∗ R1 R2 R3 R4 R5 R6

0 0.515187 48.441344
1 0.257779 48.736912 49.032480
2 0.128913 48.810864 48.884816 48.835595
3 0.064460 48.829088 48.847312 48.834811 48.834699
4 0.032231 48.833600 48.838112 48.835045 48.835078 48.835103
5 0.016116 48.834720 48.835840 48.835083 48.835088 48.835089 48.835089

Table 2: Fs and Fm calculations using Richardson’s extrapolation in the x-axis direction for
Problem 1 (quadratic element)

obtained by solving axisymmetric PBE using a sequential adaptive quadratic
finite element code.

4.2. 3D realistic applications

Next, we consider the test case of two equal potential spherical particles in
a rough charged micro-capillary (see the top of Figure 5, labeled as Problem 3),
which is taken from Ref. [5] with some small modifications. This example demon-
strates the applicability of our parallel PBE solver in predicting the electrostatic
potential distribution for a realistic colloidal particle interaction problem. No
thorough physical interpretations or physical parametric studies are explored in
the current study, although these are of course worthy for further investigation.

We place the centers of these two charged particles at O1 = (1.2, 0.1, 0.0)T

and O2 = (−1.2,−0.1, 0.0)T such that the segment connecting the two points
is not parallel to the axis of the capillary. Hence, this test case truly requires
a three-dimensional PBE numerical simulation. For simplicity, instead of more
complicated Bézier curves we use a sine curve to generate a rough surface. As
shown at the bottom of Figure 5, the radius of the particles is set to a = 1.0. The
mean radius and the length of the capillary are b = 1.2 and 12.0, respectively.
The wave surface with wave length λ = 1.0 and amplitude α = 0.1 is considered.
The constant potentials on the surface of the spheres as well as the wall are
maintained to be −3.0.

13

Figure 4: A comparison of the numerical electrostatic forces on the sphere Fs in the x-axis
direction with the reference solution at the different separation distances for Problem 2.

Figure 5: A computational domain (top) and a geometry configuration (bottom) for Problem 3.

14

Similar to the previous two test cases, we solve the PBE using a sequence
of locally refined meshes near charged particles with both linear and quadratic
finite elements. The corresponding electrostatic forces in all x-, y-, and z-axis
directions at each refinement level are summarized in Table 3. For purposes of
comparison, note that if the two charged particles are located at (1.2, 0, 0)T and
(−1.2, 0, 0)T then the electrostatic force between them in the x-axis direction at
the rough wall would be about 4.701, which is close to the value as shown in
Figure 3 (b) of Ref. [5] when λ = 1.0, α = 0.1 and κh = 0.4 and is slightly larger
than that in our Problem 3. Also due to a loss of axisymmetry with respect to
the x−axis, the electrostatic forces on the surface of the particles in the y-axis
direction do not vanish anymore. They are roughly identical with opposite signs.
Figure 6 displays the distribution of electrostatic potential around the charged
particles.

Figure 6: The distribution of electrostatic potential on the xy-plane for Problem 3.

4.3. NKS algorithmic parameter and parallel performance studies

To study the parallel performance of our algorithms, we consider fixed-storage-
per-processor (weak) scaling and the fixed-problem-size (strong) scaling. For the
fixed-storage-per-processor scaling, we use Problem 1 as a test case and refine the
mesh uniformly as the number of processors (np) is increased so that a total num-
ber of roughly 250,000 elements is kept on each processor. A parallel algorithm
is considered to be scalable in this sense when it preserves a nearly constant or
at worst logarithmically growing computing time. Table 4 presents the results
for the number of Newton iterations (NNI), the average number of GMRES it-
erations (ANLI) and the corresponding total execution time with respect to the
number of processors. Here, we consider different sizes of overlap, δ = 1 or 2, for
the additive Schwarz preconditioner and a LU decomposition is employed as a
subdomain solver. On the other hand, in practice, to save the computational cost

15

Refinement
of elements DOFs

O1 = (1.2, 0.1, 0.0)
Level O2 = (−1.2,−0.1, 0.0)

x-direction y-direction z-direction

Linear element

0 288,350 55,418
3.609719 -2.265363 -0.001925

-3.595272 2.284293 0.004145

1 842,790 155,481
4.080840 -2.833951 -0.000956

-4.075498 2.836868 -0.003026

2 1,813,929 337,585
4.358576 -3.159859 -0.001297

-4.354893 3.159259 -0.000898

3 3,418,762 685,918
4.466005 -3.314075 0.001058

-4.471687 3.309478 0.000216

4 9,792,855 2,072,727
4.552583 -3.408725 0.000704

-4.556071 3.405736 0.000567

Quadratic element

0 288,350 414,302
3.891844 -2.699316 -0.002994

-3.886524 2.702384 -0.008252

1 842,790 1,183,445
4.236093 -3.076378 -0.001592

-4.233961 3.077844 -0.003745

2 1,813,929 2,554,858
4.421612 -3.280781 -0.000874

-4.420854 3.280950 -0.001465

3 3,418,762 4,998,917
4.508147 -3.382989 0.000131

-4.510742 3.381122 -0.000426

Richardson’s 4.586885 -3.483692 0.001811
Extrapolation -4.595647 3.478383 0.000505

Table 3: The numerical calculation of Fs in all x-, y-, and z-axis directions for two charged
particles with mesh refinements at each level for Problem 3.

16

and the memory use, the J−1
i in M−1

k often are replaced by an inexact solver,
such as ILU with some levels of fill-in. We tested ILU as a subdomain solver with
different levels of fill-in, k from 0 to 4 and different size of overlap, δ from 1 to 3
and the results with the best combination of k and δ in terms of computing time
with respect to np are summarized in Table 5.

NNI ANLI Total Time (sec.)

np # of elements δ = 1 δ = 2 δ = 1 δ = 2 δ = 1 δ = 2

4 1,020,790 4 4 15.25 10.50 1108.2 1378.6
8 2,023,744 4 4 19.25 15.00 1371.3 1657.7

16 4,050,077 4 4 28.00 21.25 1488.3 1862.0
32 8,084,949 4 4 36.50 26.25 1319.7 2080.1
64 15,921,533 4 4 63.50 36.00 1053.9 1845.9

128 32,064,416 4 4 83.00 53.25 1086.1 2184.7

Table 4: The number of the nonlinear iterations the average number of linear iterations and
corresponding timing results for Problem 1. Exact subdomain solve: LU with δ = 1 or 2

Iteration counts Time (sec.)

np # of elements ILU(k) δ NNI ANLI NNI ANLI

4 1,020,790 0 1 4 55.0 12.1 9.4
8 2,023,744 0 1 4 74.3 17.1 14.3

16 4,050,077 1 1 4 67.5 21.6 18.4
32 8,084,949 0 1 4 132.0 31.4 28.0
64 15,921,533 0 1 4 183.8 47.3 42.8

128 32,064,416 1 1 4 165.0 56.1 51.2

Table 5: The number of the nonlinear iterations the average number of linear iterations and
corresponding timing results for Problem 1. Inexact subdomain solve: ILU(k), k is varied from
1 to 4 and the range of δ is from 1 to 3.

Some observations are made from these two tables as follows.

1. As the theory suggests, for the case using LU as a subdomain solver, the
convergence of GMRES iterations (see ANLI columns in Table 4) improves
as the overlap is increased. However, the smaller number of GMRES itera-
tions does not imply faster convergence in terms of the running time of the
programs. Since a large portion of the running time is spent on communi-
cation for a larger size of overlap, the NKS algorithm with a minimum size
of overlap is always a winner. A similar situation occurs for the case using
ILU as the subdomain solver.

17

2. If δ/H is kept constant, for the case using LU as the subdomain solver the
number of GMRES iterations (roughly O(log2(np)) grows slightly faster than
the theoretical prediction (O(np1/3)), where a quasi-uniform partitioning
is assumed. In order to further improve the convergence rate of GMRES,
adding a coarse grid space is a known solution to remove the dependency of
H (or np).

3. An additive Schwarz preconditioned GMRES with LU as a subdomain solver
is more scalable than that with ILU; the computing time for the former case
remains almost constant, while in the latter case it grows roughly propor-
tional to log2(np). However the latter case is much faster than the former
case.

On the other hand, for the fixed-problem-size scaling case, we consider Prob-
lem 3 as a test case and increase the number of processors (np), while the
problem sizes are kept constant (the finest meshes used for both linear and
quadratic element case). Parallel efficiency for the np2 processor case is de-
fined as E = Tnp1/Tnp2 , where Tnp1 and Tnp2 are the execution times obtained
by using np1 and np2 processors, respectively. Ideally, Enp1 = 100%. In this set
of numerical experiments, the size of overlapping δ is set to be 1 and each sub-
domain problem is solved by an incomplete LU decomposition with zero level of
fill-in (ILU(0)). From Tables 6 and 7, we found that the NKS algorithm for this
problem is nonlinearly scalable; i.e. the number of nonlinear iterations (NNI) is
independent of np. On the other hand, although the average of linear iterations
(ANLI) slightly grows as np increases, the overall efficiency of our algorithms still
achieves about 57% for the linear element case and 71% for the quadratic element
case on up to 128 processors. To further analyze the performance of our parallel
PBE solver, these two tables also present the time breakdown information for
three key components of the NKS algorithm, including the timings for solving
the Jacobian systems (JSolve), evaluating the vector functions (FEval) and the
Jacobian matrices (JEval), respectively. As expected, the most computationally
expensive phase is to solve the Jacobian systems; it takes at least 57% of the
total execution time for all test runs. Also notice that for linear element cases,
JSolve and FEval do not scale well as np increases from 64 to 128. As a result,
total efficiency drops dramatically from 73% to 57%.

5. Concluding remarks

In this paper, we developed a parallel three-dimensional finite element PBE
solver based on the NKS algorithm using PETSc and investigated its performance
on a PC cluster of parallel machines. We found that the coupling of the paral-
lel PBE solver with local mesh refinement near charged particles increased the

18

np
Iteration counts Time (sec.)

E4 (%)
NNI ANLI JSolve FEval JEval Total time

4 5 21.2 57.7 4.2 18.5 80.6 100
8 5 22.4 29.7 2.1 9.3 41.1 98
16 5 26.6 17.2 1.1 4.8 23.0 88
32 5 28.6 9.9 0.6 2.9 13.5 75
64 5 27.8 4.5 0.4 1.8 6.9 73
128 5 28.4 2.5 0.4 1.5 4.4 57

Table 6: Parallel efficiency. Linear elements are used with mesh refinement level=4. The total
number of elements: 9,792,855; the total number of the degrees of freedom: 2,072,727. δ = 1 is
used with ILU(0) as a subdomain solver.

np
Iteration counts Time (sec.)

E16 (%)
NNI ANLI JSolve FEval JEval Total time

16 5 47.6 255.6 3.1 26.7 286.0 100
32 5 46.8 144.3 1.7 14.9 161.1 89
64 5 47.8 73.4 0.9 9.2 83.6 86
128 5 54.2 44.5 0.6 5.0 50.2 71

Table 7: Parallel efficiency. Quadratic elements are used with mesh refinement level=3. The
total number of elements: 3,418,762; the total number of the degrees of freedom: 4,998,917.

19

solution accuracy systematically. In addition, with the help of Richardson’s ex-
trapolation, one can more accurately compute some sensitive quantities like the
electrostatic force. Furthermore, the parallel PBE solver was applied to simulate
the force of interaction between two identical charged spheres in a rough micro-
capillary to demonstrate its capability in handling a realistic three-dimensional
problem. For this problem with size pertinent to practical 3D applications, our
study showed that the parallel efficiency of the PBE solver reached 71% or bet-
ter using 128 processors for a problem with 5 million unknowns and the per-
formance of the parallel PBE on locally refined unstructured meshes is quite
satisfactory. The parallel PBE solver that uses parallel adaptive mesh refinement
techniques [24] is under development and it is expected to serve as a more pow-
erful and efficient simulation tool for studying three-dimensional colloidal and
interfacial problems in the future.

Acknowledgements

The authors appreciate the anonymous referees for their constructed sugges-
tions used to improve the presentation of this manuscript. The authors would like
to acknowledge the National Center for High-Performance Computing, Taiwan
in providing resources under the national project, Taiwan Knowledge Innovation
National Grid. The first two authors were supported in part by the National
Science Council of Taiwan, 95-2115-M-008-007.

References

[1] W.R. Bowen, A.O. Sharif, J. Colloid Interface Sci. 187 (1997) 363
[2] W.R. Bowen, A.O. Sharif, Nature 393 (1998) 663
[3] W.R. Bowen, P.M. Williams, Colloids and Surfaces A: Physicochem. Eng. Aspects 204

(2002) 103
[4] S.L. Carnie, D.Y.C. Chan, J. Stankovish, J. Colloid Interface Sci. 195 (1994) 116
[5] P.K. Das, S. Bhattacharjee, J. Colloids interface Sci. (2004) 278
[6] P.E. Dyshlovenko, J. Comp. Phys. 172 (2001) 198
[7] P.E. Dyshlovenko, Comput. Phys. Comm. 147 (2002) 335
[8] J.C. Neu, Phys. Rev. Lett. 82 (1999) 1072
[9] J.E. Sader, D.Y.C. Chan, J. Colloid Interface Sci. 213 (1999) 268

[10] E. Trizac, Phys. Rev. E 62 (2000) 1465
[11] R. Tuinier, J. Colloid Interface Sci. 258 (2003) 45
[12] J.H. Masliyah, S. Bhattacharjee, Electrokinetic and Colloid Transport Phenomena (John

Wiley & Sons, New Jersey, 2006)
[13] R.-Y. Yang, L.-M. Fu, Y.-C. Lin, J. Colloid Interface Sci. 239 (2001) 98
[14] Y. Li, Comput. Phys. Comm. 153 (2003) 359
[15] V. Sirotkin, Computers Math. Applic. 40 (2000) 645
[16] V. Sirotkin, P. Tarvainen, SIAM J. Sci. Comput., 21 (2000) 1587
[17] N.A. Baker, D. Sept, M.J. Holst, J.A. McCammon, IBM J Res Devel 45 (2001) 427
[18] N.A. Baker, D. Sept, S. Joseph, M.J. Holst, J.A. McCammon, Proc. Natl. Acad. Sci. USA

98 (2001) 10037

20

[19] C.M. Cortis, R.A. Friesner, J. Comput. Chem. 18 (1997) 1570
[20] C.M. Cortis, R.A. Friesner, J. Comput. Chem. 18 (1997) 1608
[21] M.J. Holst, F. Saied, J. Comput. Chem. 16 (1995) 337.
[22] Z. Qiao, Z. Li, T. Tang, J. Comput. Math. 24 (2006) 252
[23] B. Lu, Y. Zhou, M. Holst, J.A. McCammon, Comm. Comput. Phys. 3 (2008) 973
[24] Y.-Y. Lian, K.-H. Hsu, Y.-L. Shao, Y.-M. Lee, Y.-W. Jeng, J.-S. Wu, Comput. Phys.

Comm. 175 (2006) 721
[25] A.E. Larsen, D.G. Grier, Nature 385 (1997) 230
[26] X.-C. Cai, W.D. Gropp, D.E. Keyes, R.G. Melvin, D.P. Young, SIAM J. Sci. Comput. 19

(1998) 246
[27] D.A. Knoll, D.E. Keyes, J. Comp. Phys. 193 (2004) 357
[28] J. Dennis, R. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear

Equations (SIAM, Philadelphia, 1996)
[29] J. Nocedal, S. J. Wright, Numerical Optimization (Springer-Verlag, New York, 1999)
[30] C. Johnson, Numerical Solution of Partial Differential Equations by the Finite Element

Method (Cambridge University Press, Cambriage, 1987)
[31] Y. Saad, M.H. Schultz, SIAM J. Sci. Stat. Comp. 7 (1986), 856
[32] A. Quarteroni, A. Valli, Domain Decomposition Methods for Partial Differential Equations,

(Oxford University Press, Ofxord, 1999)
[33] B. Smith, P. Bjørstad, W. Gropp, Domain Decomposition: Parallel Multilevel Methods for

Elliptic Partial Differential Equations (Cambridge University Press, Cambridge, 1996)
[34] A. Toselli, O. Widlund, Domain Decomposition Methods – Algorithms and Theory

(Springer-Verlag, Berlin, 2005)
[35] M. Dryja, O. B. Widlund, Tech. Report 339, Department of Computer Science, Courant

Institute of Mathematical Sciences, New York University, (1987).
[36] M. Dryja, O. B. Widlund, SIAM J. Sci. Comput. 15 (1994) 604
[37] S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, M. Knepley, L. C. McInnes, B. F.

Smith, H. Zhang Portable, Extensible Toolkit for Scientific Computation (PETSc) home
page, http://www.mcs.anl.gov/petsc, 2009

[38] Online CUBIT User’s Manual, http://cubit.sandia.gov/documentation.html, Sandia Na-
tional Laboratories, 2009

[39] G. Karypis, R. Aggarwal, K. Schloegel, V. Kumar, S. Shekhar, METIS home page,
http://wwwusers.cs.umn.edu/karypis/metis/

[40] ParaView homepage. http://www.paraview.org, Kitware and Sandia National Laborato-
ries, USA, 2009

[41] R.L. Burden, J.D. Faires, Numerical Analysis (Thomson Brooks/Cole, Belmont, 2005)

21

