
Parallel Two-level Domain Decomposition Based
Jacobi-Davidson Algorithms for Pyramidal Quantum

Dot Simulation

Tao Zhaoa, Feng-Nan Hwangb, Xiao-Chuan Caic,∗

aShenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen
518055, China

bDepartment of Mathematics, National Central University, Jhongli 320, Taiwan
cDepartment of Computer Science, University of Colorado Boulder, CO 80309, USA

Abstract

We consider a quintic polynomial eigenvalue problem arising from the finite
volume discretization of a quantum dot simulation problem. The problem is
solved by the Jacobi-Davidson (JD) algorithm. Our focus is on how to achieve
the quadratic convergence of JD in a way that is not only efficient but also
scalable when the number of processor cores is large. For this purpose, we de-
velop a projected two-level Schwarz preconditioned JD algorithm that exploits
multilevel domain decomposition techniques. The pyramidal quantum dot cal-
culation is carefully studied to illustrate the efficiency of the proposed method.
Numerical experiments confirm that the proposed method has a good scalability
for problems with hundreds of millions of unknowns on a parallel computer with
more than 10,000 processor cores.

Keywords: Polynomial eigenvalue problem, two-level Schwarz preconditioner,
Jacobi-Davidson algorithm, parallel performance, quantum dot simulation

1. Introduction

Polynomial eigenvalue problems are of great interests because there are many
important applications in science and engineering, such as the stability analy-
sis in fluid mechanics, the vibration problem in solid mechanics, the quantum
dot problem in nanotechnology; see [1–7] and references therein. The JD algo-
rithm, originally proposed by Sleijpen and Van der Vorst for solving algebraic
linear eigenvalue problems [8, 9], has been shown to be effective for polynomial
eigenvalue problems [1, 2, 10, 11], especially for the case when several interior
eigenvalues are of interests. The JD algorithm belongs to a class of subspace it-
erative methods, which consists of two key steps: first increase the search space

∗Corresponding author
Email address: cai@cs.colorado.edu (Xiao-Chuan Cai)

Preprint submitted to Elsevier March 19, 2016

by adding a new basis vector and then extract the approximate eigenpair from
the search space through a Rayleigh-Ritz procedure. To obtain a new basis
vector for the search space, at each JD iteration, one needs to solve inexactly
a large sparse linear system of equations, which is referred to as the correction
equation, by a preconditioned Krylov subspace type method, such as GMRES
or CG methods [12].

The numerical experiences suggest that the robustness and the efficiency of
the JD algorithm depend on the following three factors: (1) the initial search
space, (2) the Ritz pair selection strategy, and (3) the solution quality of the
correction equation. Similar to Newton-type methods for solving nonlinear sys-
tems, the JD algorithm is a locally convergent iterative method, i.e., if the initial
guess is not close enough to the exact solution, the convergence often exhibits
some stagnation behavior, or even worse, is not achieved. One important feature
of the JD algorithm is that at each JD iteration, only mild solution accuracy
of the correction equation is required. Several recent publications were related
to the correction equation solvers. Feng [6] applied a multilevel JD method
for the generalized eigenvalue problem with application in the finite element
analysis of structural dynamic problems. A multigrid-type preconditioner was
used in conjugation with FGMRES as the correction equation solver. The in-
complete Cholesky factorization without fill-ins was employed as the pre- and
post-smoothers and the coarse grid problem was solved by a direct method.
Arbenz et al. [5] proposed a hybrid preconditioner combining a hierarchical ba-
sis preconditioner and an algebraic multigrid preconditioner for the correction
equation in the JD algorithm for solving symmetric generalized Maxwell eigen-
value problem; they reported good parallel scalability using up to 16 processors.

The aim of the paper is to develop and study a two-level JD algorithm for
the large sparse polynomial PDE eigenvalue problems and its applications in
quantum dot simulations. The concept of two-level approach fits in the JD
algorithm in three aspects. The first idea is to use a coarse mesh to construct
the initial vector in the search space since for many applications, the smooth
eigenvector corresponding to the low frequency can be well represented by the
coarse mesh solution. The second idea is to use the coarse solution as a guideline
for selecting a proper Ritz-pair. For example [2], a similarity measure was
applied using the coarse eigenvalues and eigenvectors as a reference to avoid
picking un-physical spurious root introduced during the Raleigh-Ritz projection
procedure. The third idea is in the construction of the preconditioner using the
domain decomposition method for the Krylov subspace iterative-type correction
equation solver. Our proposed two-level preconditioner is based on the Schwarz
framework [13–15], which has a long successful history for linear elliptic PDEs.
We also compare numerically the proposed approach with a one-level method,
and a popular two-level orthogonal Arnoldi (TOAR) method using PETSc [16]
and SLEPc [17]. Our approach outperforms both of them in terms of the total
compute time, and the strong scalability on a machine with a large number of
processor cores.

The rest of the paper is organized as follows. Section 2 briefly introduces the
pyramidal quantum dot problem. In Section 3, we propose a projected two-level

2

domain decomposition based Jacobi-Davidson algorithm. Numerical results of
the proposed algorithm and comparison with other methods are reported in
Section 4. Some final remarks are given in Section 5.

2. Pyramidal quantum dot problem

We consider polynomial eigenvalue problems arising from quantum dot (QD)
simulations. An example of QD is a pyramid dot embedded in a cuboid as
shown in Figure 1. Due to the confinement effect, the pyramidal quantum dot
has discrete energy states. This type of quantum dot can be produced by a
few manufacturing procedures and has many applications, such as lasers and
single-electron devices [18].

Figure 1: Structure of a pyramidal quantum dot embedded in a cuboid.

The central task is to compute some energy states and their corresponding
wave functions, by solving an eigenvalue problem [1, 3, 4, 18–22]. The quantum
states of a pyramidal quantum dot with a single electron can be described by
the time-independent 3D Schrödinger equation

−∇ ·
(

~2

2m(r, λ)
∇u
)

+ V (r)u = λu, (1)

on the domain Ω, where λ is called an energy state or eigenvalue, and u is
the corresponding wave function or eigenvector. In (1), ~ is the reduced Plank
constant, r is the space variable, m(r, λ) is the effective electron mass, and V (r)
is the confinement potential. Taking the effect of the spin-orbit splitting into
account, the effective mass model

m(r, λ) =

{
m1(λ) in the pyramid
m2(λ) in the cuboid

, V (r) =

{
V1 in the pyramid
V2 in the cuboid

can be derived from the eight-band k · p analysis and the effective mass theory
[3, 22]. More precisely,

1

mi(λ)
=
P 2
i

~2

(
2

λ+ `i − Vi
+

1

λ+ `i − Vi + δi

)
, i = 1, 2, (2)

3

where Pi, `i and δi are the momentum, main energy gap and spin-orbit splitting
corresponding to the pyramid and the cuboid, respectively.

Since the pyramidal QD is a heterostructure, the Ben Daniel-Duke condition
[1, 3] is imposed on the interface of the two materials:(

1

m(r, λ)

∂u

∂n

)∣∣∣∣
∂D−

=

(
1

m(r, λ)

∂u

∂n

)∣∣∣∣
∂D+

(3)

where D denotes the domain of the pyramid dot and n is the unit outward
normal for each surface of ∂D. Since the corresponding wave functions decay
exponentially outside the pyramid dot, the homogeneous Dirichlet boundary
condition

u = 0 (4)

is imposed on the boundary of the cuboid ∂Ω.
A cell-centered second-order finite volume method [3] on an uniform mesh

in Cartesian coordinates is applied to discretize the Schrödinger equation with
non-parabolic effective mass model. With this finite volume method, the inter-
face condition (3) is applied implicitly. The resulting system is a polynomial
eigenvalue problem

(λ5A5 + λ4A4 + λ3A3 + λ2A2 + λA1 +A0)x = 0, (5)

where λ ∈ C, x ∈ CN , Ai ∈ RN×N , and N is the total number of unknowns.
The matrices A5 and A4 are diagonal, and all other matrices are nonsymmetric.

3. Jacobi-Davidson algorithm with a projected two-level Schwarz pre-
conditioner for the correction equation

We begin with some notations. For given Ai ∈ CN×N , i = 0, 1, · · · ,m, such
that their null spaces only have a trivial intersection, we define

Aφ =

m∑
i=0

φiAi

as a matrix polynomial of φ ∈ C. If there exist λ ∈ C and nonzero x ∈ CN such
that

Aλx = 0, (6)

then λ is called an eigenvalue of Aφ and x is the right eigenvector of Aφ asso-
ciated with the eigenvalue λ. In general, (6) is referred to as the polynomial
eigenvalue problem of degree m.

The Jacobi-Davidson algorithm is a powerful approach for solving the poly-
nomial eigenvalue problem (6). The details of the JD algorithm is summarized in
Algorithm 1. Since the correction equation is the most expensive part of com-
putation, the parallel performance of the JD algorithm is determined mostly
by how the correction equation is solved. We introduce a projected two-level
Schwarz preconditioner that improves greatly the convergence of the correction
equation solver and is scalable.

4

Algorithm 1 JD for polynomial eigenvalue problems

Input: Ai (i = 0, · · · ,m), the maximum number of iterations k, the nonzero
stopping criteria ξ.

1: Choose an initial guess eigenpair (θ, v) with ‖v‖2 = 1. Let V = [v].
For n = 0, · · · , k

2: Compute Wi = AiV and Mi = V HWi for i = 0, · · · ,m.
3: Solve the projected polynomial eigenvalue problem

(∑m
i=0 φ

iMi

)
s = 0,

then obtain the desired eigenpair (φ, s) such that ‖s‖2 = 1.
4: Compute the Ritz vector u = V s, and the residual vector r = Aφu.
5: If the stopping criteria is satisfied, i.e., ‖r‖2 ≤ ξ, then stop.
6: Compute p = A′φu =

(∑m
i=1 iφ

i−1Ai
)
u.

7: Solve approximately the correction equation(
I − puH

uHp

)
Aφ(I − uuH)z = −r, z ⊥ u.

8: Orthogonalize z against V , set v = z/‖z‖2, then expand V ← [V, v].
End for

In Algorithm 1, Step 3 implies a Galerkin condition that r is orthogonal to
the subspace span{V }. At each JD iteration, the projected polynomial eigen-
problem is solved by the QZ method with linearization, see [1, 17] for details.
Then φ is chosen to be the desired eigenvalue that is closest to the initial guess
eigenvalue θ, that is, |φ − θ| is minimum among all the eigenvalues of the pro-
jected polynomial eigenproblem. If the accuracy of (φ, u) is satisfied, we use
(φ, u) as an approximate eigenpair, otherwise, the correction equation needs to
be formed and solved. Once the correction z is obtained, the subspace span{V }
is expanded by adding z after orthonormalization. This procedure goes back and
forth until either the approximate eigenpair with sufficient accuracy is found,
or the number of JD iterations exceeds the maximum number.

Assume that M̃−1 is a right preconditioner applied to the correction equation
in Step 7 of Algorithm 1, that is, we solve(

I − puH

uHp

)
Aφ(I − uuH)M̃−1t = −r (7)

by a Krylov subspace method where t = M̃z, z ⊥ u. As suggested in [8, 9], we
consider M̃ of the form

M̃ =

(
I − puH

uHp

)
M(I − uuH) (8)

whereM is a nonsingular matrix as an approximation of Aφ. Since M̃ in (8) is

singular, M̃−1 should be a pseudo-inverse of M̃ . It has been shown that M̃−1M̃
is the orthogonal projection onto the range of M̃H [23] that is the orthogonal
complement of span{u} because of the right projection. It follows from z ⊥ u

5

that M̃−1M̃z = z. Thus the equation (7) is equivalent to the correction equation
in Step 7. As we shall see, we do not need to form M̃−1 explicitly.

In the Krylov subspace solver, for a given vector y,(
I − puH

uHp

)
Aφ(I − uuH)M̃−1y (9)

is orthogonal to u due to the left projection. Note that r is orthogonal to
u as well because of the Galerkin condition in Step 3. Therefore, the initial
residual vector of the Krylov subspace solver is orthogonal to u. As a result,
the Krylov subspace is in the orthogonal complement of span{u}. Because of
this, we choose an initial solution of the equation (7) such that it is orthogonal
to u. To compute the matrix-vector product in (9) at each iteration of the
Krylov subspace solver, x = (I − uuH)M̃−1y is carried out first. Since M̃M̃−1

is the orthogonal projection onto the range of M̃ [23] that is also the orthogonal
complement of span{u}, we have

M̃x = M̃M̃−1y − M̃u
(
uHM̃−1y

)
= y.

Since x is orthogonal to u, it can be computed in the following way

x =M−1y − uHM−1y
uHM−1p

M−1p, (10)

for details, see [24, 25] and references therein. Thus, for solving each correc-
tion equation, we need to compute s = M−1y at each iteration of the Krylov
subspace solver. Obviously, M̃−1 is a good preconditioner when M−1 approx-
imates A−1φ well. Therefore, we apply the two-level technique to M−1 instead

of M̃−1. As a result, we avoid the projections on the coarse level. Once t in (7)
is computed, z can be obtained as x in (10) because of z ⊥ u.

Before introducing the two-level Schwarz preconditioner, we first introduce
the one-level preconditioner that is applied on the fine level. We partition the
fine mesh Ωf into non-overlapping subdomains ωi, i = 1, · · · , np, then gener-
ate the overlapping subdomain ωδi by including δ layers of mesh cells in the
neighboring subdomains of ωi, i.e., ωi ⊂ ωδi in Ωf . Here, np is the number of
subdomains that is equal to the number of processor cores. This means each
processor core is assigned one subdomain. Let R0

i be the restriction operator
to the non-overlapping subdomain ωi and Rδi be the restriction operator to
the overlapping subdomain ωδi , respectively. The matrix on each overlapping
subdomain ωδi is defined as

Ji = RδiAφ(Rδi)
T .

Then the one-level RAS preconditioner [26–29] on the fine level reads as

M−1f =

np∑
i=1

(R0
i)
TJ−1i Rδi . (11)

6

We mention that for the pyramidal quantum dot simulation, the subdomain
matrix Ji can also be obtained using the following method. The Schrödinger
equation (1) is discretized on ωδi with a homogenous Dirichlet boundary condi-
tion on ∂ωδi . If ωδi has a part of the pyramidal dot, then the interface condition
(3) should be imposed. We then obtain a polynomial eigenvalue problem(

m∑
i=0

λ̂iÂi

)
x̂ = 0

on each ωδi . With the Ritz value φ computed on Ωf at the current JD iteration,
Ji is then computed as

Ji =

m∑
i=0

φiÂi.

In practice, J−1i is not formed explicitly, instead its multiplication with a vec-
tor is obtained approximately by solving a subdomain linear system with ILU
factorization.

Next, we consider preconditioning on the coarse level. Let Ifc be an inter-
polation from Ωc to Ωf , Rcf be a restriction from Ωf to Ωc and M−1c be the
preconditioner on Ωc. To obtain Mc, we discretize the Schrödinger equation
(1) with the boundary condition (4) and the interface condition (3) on Ωc by
the finite volume method described in Section 2 and then obtain a coarse mesh
polynomial eigenvalue problem(

m∑
i=0

λ̃iÃi

)
x̃ = 0.

The matrix Ãi (i = 0, · · · ,m) is much smaller than Ai in (5), but they have
similar sparsity structure. Using the Ritz value φ computed on Ωf at the current
JD iteration, we define Mc as

Mc =

m∑
i=0

φiÃi. (12)

Since the exact computation of M−1c (Rcfy) is not required by the two-level

Schwarz preconditioner, there is no need to form M−1c ; see [14, 15, 30]. To com-
pute w = M−1c (Rcfy) with a low accuracy, we solve a linear system Mcw = Rcfy
approximately using a Krylov subspace method with the one-level RAS pre-
conditioner defined on the coarse mesh Ωc using the same number of processor
cores as on the fine mesh. The way to build the one-level preconditioner on Ωc
is the same as that on Ωf .

Now we are ready to define the two-level preconditioner. Let M−1 be a
two-level multiplicative type Schwarz preconditioner [14, 15, 28] that requires a
fine mesh Ωf and a coarse mesh Ωc. Its multiplication with a vector y can be
carried out in two steps:

s ← IfcM
−1
c Rcfy,

s ← s+M−1f (y −Aφs).

7

It can also be written as a one-step formula

s← (M−1f −M−1f AφI
f
cM

−1
c Rcf + IfcM

−1
c Rcf)y,

that is,
M−1 = M−1f −M−1f AφI

f
cM

−1
c Rcf + IfcM

−1
c Rcf .

If φ in (12) is very close to the exact eigenvalue on Ωf , then Aφ is ill-
conditioned, moreover, ILU or LU factorization ofAφ will encounter the stability
issue since some diagonal elements are close to zero. Fortunately, in this case,
the Ritz vector associated with φ is a good approximate eigenvector. In fact,
this Ritz vector is used to prevent the operator in the correction equation from
being singular; see [25, 31]. If φ is also a good approximation on Ωc, then
Mc in (12) is ill-conditioned. In this case, the one-level RAS preconditioner
on Ωc may not be efficient for solving the coarse linear system. An interesting
observation is that a good approximate eigenvector on Ωc corresponding to φ
can be easily obtained by restricting the Ritz vector corresponding to φ from
Ωf to Ωc. Then we can use the obtained vector on Ωc to build a coarse grid
correction preconditioner in an algebraic way so as to remove or shift the small
eigenvalue of Mc; for details, see [30, 32] and references therein. Therefore, the
stability problem can be avoided with respect to M−1c . Numerical results in
Section 4 show that the one-level RAS preconditioner is sufficient for the linear
system on Ωc.

In terms of the number iterations, the two-level Schwarz preconditioner be-
comes more efficient if the overlapping size δ increases, or the coarse mesh Ωc
is refined. On the other hand, a large overlap will require more communication
time, and a finer coarse mesh will also increase the compute time. Note that we
have two goals in mind that are (1) near quadratic convergence in terms of the
JD iterations; and (2) near linear speedup in terms of the total compute time.
To realize both goals simultaneously, we need to carefully select the sizes of the
coarse meshes, as well as the stopping conditions and the overlapping size.

4. Numerical results

In this section, we use Algorithm 1 with the projected two-level Schwarz
preconditioner to compute 6 smallest positive eigenvalues and the corresponding
eigenvectors of the pyramidal quantum dot problem as shown in Figure 1. The
software is implemented using PETSc [16] consisting of a variety of libraries for
the scalable solution of partial differential equations. The projected polynomial
eigenproblem is solved by a QZ method implemented in SLEPc [17] which is
a scalable library for the solution of various types of eigenvalue problems. All
numerical tests are run on an IBM iDataPlex cluster, which consists of 72,576
Intel Sandy Bridge processors interconnected by an Infiniband network with
144.6 TB of memory.

8

4.1. Test case setup

The size of the cuboid is 24.8nm×24.8nm×18.6nm. The width of the pyra-
mid base is 12.4nm and the height of the pyramid is 6.2nm. The physical
parameters of the non-parabolic effective mass model (2) are described in Table
1. The mesh in the discretization has L, M , N mesh cells in each of x, y, z

Table 1: Physical parameters in the effective mass model.

Pi `i δi Vi

i = 1 (pyramid) 0.8503 0.42 0.48 0.00
i = 2 (cuboid) 0.8878 1.52 0.34 0.77

directions, thus ∆x = 24.8/L, ∆y = 24.8/M , and ∆z = 18.6/N . For simplicity,
we set ∆x = ∆y = ∆z that leads to 4L = 4M = 3N . Due to the Dirichlet
boundary condition (4), the total number of unknowns of the polynomial eigen-
value problem (5) is (L− 1)× (M − 1)× (N − 1). We consider two fine meshes.
The first fine mesh is 320×320×240 with 24,320,879 unknowns, and the second
is 600×600×450 with 161,101,649 unknowns. In the rest of the paper, we refer
to the meshes as Mesh1 and Mesh2, respectively.

For solving the Schrödinger equation on the fine mesh Ωf , we stop the JD it-
eration when the absolute residual norm is below 10−10. The correction equation
is solved by the flexible GMRES (FGMRES) without restarting [12] precondi-
tioned by either one-level or two-level preconditioners. The maximum number
of iterations of FGMRES on Ωf is 400. The relative tolerance εn of FGMRES
on Ωf is 10−4. In the two-level Schwarz preconditioner, the linear system on the
coarse mesh Ωc is solved by FGMRES with a coarse mesh RAS preconditioner.
FGMRES on Ωc is stopped when the relative residual norm is below 10−1. At
each iteration of FGMRES on Ωf , the solution obtained on Ωc is interpolated
to Ωf by a trilinear interpolation. Since Ωc is generated independent of Ωf ,
Ωc is not necessarily a subset of Ωf . The restriction from Ωf to Ωc is defined
as follows. For each mesh point in Ωc, we find an element of Ωf that contains
the point, then the value at the coarse mesh point is obtained by a trilinear
interpolation using the values at the vertices of the fine mesh element. For the
RAS preconditioners on both Ωc and Ωf , ILU(0) is applied to solve the linear
system on each subdomain, with overlap 1. In Section 4.4, we also use an adap-
tive relative tolerance εn for FGMRES on Ωf and different overlap size δ to
investigate the JD convergence.

4.2. Initial guess calculation

Let Ω0 be a coarse mesh covering Ω, and we discretize (1)-(4) on the coarse
mesh using the same discretization as described in Section 2. Since the coarse
mesh Ω0 for the initial guess calculation is quite small, we solve the correspond-
ing polynomial eigenvalue problems redundantly on all processor cores for the
6 smallest positive eigenvalues and eigenvectors using JD with the locking tech-
nique [1, 3] in which the one-vector is used as the initial guess. The JD iteration
is stopped when the absolute residual norm is below 10−8. Once the 6 eigenpairs

9

on Ω0 are obtained, the eigenvalues are used as the targets for the fine mesh
problem, and the eigenvectors are interpolated to the fine mesh by a trilinear
interpolation.

For both fine meshes, we use the same coarse mesh 12×12×9 with 968 un-
knowns. The coarse mesh for the two-level preconditioner has to be sufficiently
fine for the coarse preconditioner to be effective, but our numerical experiments
show that the coarse mesh for generating the initial guess doesn’t need to be as
fine for the pyramidal quantum dot problem.

4.3. Parallel performance studies

We emphasize that the calculations for different energy states are carried out
separately after the initial guess is computed. Therefore we can choose different
coarse meshes for each eigenpair to balance the computation on the fine and
coarse meshes so that better parallel performance can be achieved. Table 2
reports the computed eigenvalues and the coarse meshes used in the two-level
Schwarz preconditioner for each eigenvalue for Mesh1. Since the imaginary
parts of the computed eigenvalues are less than 10−13, only the real parts are
reported. Table 3 contains results obtained by the one-level preconditioner and
the two-level preconditioner for Mesh1.

Table 2: On Mesh1, the computed eigenvalue ei and the coarse mesh Ωc in the two-level
preconditioner for each eigenvalue.

ei Ωc

0 0.4162409037031 44 × 44 × 33
1 0.5990985865304 56 × 56 × 42
2 0.5990985865304 48 × 48 × 36
3 0.7179653490658 112 × 112 × 84
4 0.7295464275825 52 × 52 × 39
5 0.7925271797673 104 × 104 × 78

As shown in Table 3, JD with the one-level and two-level preconditioners
has almost the same number of iterations when the relative residual norm of
the solution of the correction equation drops below εn, but in terms of the
compute time and the average number of FGMRES iterations, the two-level
preconditioner offers a great improvement.

We also use the two-level orthogonal Arnoldi (TOAR) method to solve the
polynomial eigenvalue problem. TOAR applies an implicit linearization pro-
cess and is the default eigensolver in SLEPc for polynomial eigenvalue problems
with arbitrary degree [17, Chapter 5]. We restart the Arnoldi process every
100 iterations. The tolerance of TOAR is 10−10. The linear systems in the
spectral transformation is solved by the full GMRES with the one-level precon-
ditioner. The maximum number of iterations of GMRES is 400. It is suggested
in [17, p. 46] that the appropriate tolerance of the linear solver in the spectral
transformation is usually slightly more stringent than the tolerance of the eigen-
value calculation. So the relative tolerance of GMRES is chosen to be 10−11.

10

Table 3: On Mesh1, comparison of the results obtained by the one-level and two-level pre-
conditioners. ei is the ith computed eigenvalue, np is the number of processor cores, JD is
the number of JD iterations, FGMRES is the average number of FGMRES iterations for the
solution of the correction equations, and Time is the total compute time in seconds.

One-level Two-level
np JD FGMRES Time JD FGMRES Time

128 4 102.75 109.34 4 21.50 23.06
256 4 102.75 51.44 4 22.00 10.39

e0 512 4 102.75 24.94 4 21.75 5.75
1024 4 103.75 11.96 4 22.25 2.86
2048 4 104.00 7.29 4 22.50 1.59

128 4 138.75 162.98 4 20.00 20.90
256 4 138.75 80.58 4 20.75 9.82

e1 512 4 137.75 38.93 4 20.75 6.22
1024 4 134.75 17.46 4 21.25 2.88
2048 4 135.75 10.26 4 21.75 1.77

128 4 133.00 158.06 4 30.50 32.26
256 4 133.50 75.98 4 29.75 13.54

e2 512 4 131.25 36.61 4 27.75 6.73
1024 4 140.75 18.44 4 32.25 5.03
2048 4 141.50 10.86 4 30.25 2.75

128 7 355.29 976.40 7 9.43 39.20
256 7 356.29 461.61 7 9.57 18.78

e3 512 7 337.29 249.40 7 9.43 9.89
1024 7 353.29 151.58 7 9.57 5.27
2048 7 354.29 80.45 7 9.29 3.35

128 4 230.00 276.27 4 41.00 49.29
256 4 230.50 149.24 4 42.50 21.02

e4 512 4 202.00 72.78 4 41.75 11.25
1024 4 223.00 38.97 5 42.40 6.35
2048 5 260.80 33.02 4 42.50 3.92

128 5 304.20 593.02 5 12.80 36.31
256 5 312.80 319.10 5 17.00 21.20

e5 512 5 272.00 159.19 5 13.00 7.74
1024 5 308.20 81.95 5 8.80 3.24
2048 5 309.60 43.38 5 9.00 2.69

11

The 6 smallest positive eigenvalues are obtained without restart. The compu-
tation is carried out with real arithmetic. Table 4 reports the total compute
time of TOAR in seconds. Compared with Tables 3, we can see that TOAR is
much slower than JD with the one-level and two-level preconditioners. Because
the Arnoldi method converges slowly and the linear systems of the spectral
transformation need to be solved very accurately, TOAR spends more compute
time than JD. It should be noted that for the nonsymmetric eigenproblem, Al-
gorithm 1 requires complex arithmetic since the eigenvector may be complex,
while Arnoldi-type method works with real arithmetic.

Table 4: On Mesh1, the total compute time of the TOAR method in seconds.

np 128 256 512 1024 2048

Time 4223.48 2239.12 1177.46 742.80 504.83

Figures 2 and 3 plot the speedup curves of JD with the one-level and two-level
preconditioners and TOAR for Mesh1. Since JD takes one more iteration (see
Table 3) when e4 is computed on 2048 processor cores, the speedup of JD with
one-level preconditioner encounters a big drop. As we see, for other eigenpairs,
JD with both one-level and two-level preconditioners are more scalable than
TOAR.

 1

 4

 7

 10

 13

 16

 128 512 896 1280 1664 2048

S
p
e
e
d
u
p

Number of processor cores

 Ideal

 e0

 e1

 e2

 e3

 e4

 e5

 TOAR

Figure 2: Speedup for Mesh1 with one-level
preconditioner.

 1

 4

 7

 10

 13

 16

 128 512 896 1280 1664 2048

S
p
e
e
d
u
p

Number of processor cores

 Ideal

 e0

 e1

 e2

 e3

 e4

 e5

 TOAR

Figure 3: Speedup for Mesh1 with two-level
Schwarz preconditioner.

Table 5 reports the computed eigenvalues and the coarse meshes used in the
two-level Schwarz preconditioner for each eigenvalue for Mesh2. As before, we
only report the real part of the computed eigenvalue since the imaginary parts
are less than 10−13. Table 6 shows the numerical performance of JD with the
one-level and two-level preconditioners for Mesh2 in terms of the number of JD
iterations, the average number of FGMRES for solving the correction equations
and the compute time. It is clear that the two-level preconditioner is much
better than the one-level preconditioner in the aspects of the average number of
FGMRES iterations and the compute time. However, comparing Figure 4 with
5, it can be seen that the one-level preconditioner has better scalability than the

12

two-level preconditioner using over ten thousand processor cores although both
preconditioners are scalable. Because the linear system on the coarse mesh Ωc
is very small and solved in parallel on all processor cores, the overall scalability
of the two-level method suffers to a certain extent. The performance of the two-
level method may be improved if a more efficient preconditioner, for example,
two-level or multilevel preconditioner, is applied to the linear system on the
coarse mesh.

Table 5: On Mesh2, the computed eigenvalue ei and the coarse mesh Ωc in the two-level
preconditioner for each eigenvalue.

ei Ωc

0 0.4162094856604 56 × 56 × 42
1 0.5990754117523 80 × 80 × 60
2 0.5990754117522 80 × 80 × 60
3 0.7179731206719 128 × 128 × 96
4 0.7295254300372 120 × 120 × 90
5 0.7925318512082 140 × 140 × 105

 1

 1.2

 1.4

 1.6

 1.8

 2

 5120 6144 7168 8192 9216 10240

S
p
e
e
d
u
p

Number of processor cores

 Ideal

 e0

 e1

 e2

 e3

 e4

 e5

Figure 4: Speedup for Mesh2 with one-level
preconditioner.

 1

 1.2

 1.4

 1.6

 1.8

 2

 5120 6144 7168 8192 9216 10240

S
p
e
e
d
u
p

Number of processor cores

 Ideal

 e0

 e1

 e2

 e3

 e4

 e5

Figure 5: Speedup for Mesh2 with two-level
Schwarz preconditioner.

4.4. Convergence rate studies

To understand the convergence rate of JD, especially how it depends on the
accuracy of the solution of the correction equation, we solve the Schrödinger
equation (1) discretized on Mesh1 using Algorithm 1 with the two-level Schwarz
preconditioner on 128 processor cores. The coarse mesh Ωc for the two-level
preconditioner is 120× 120× 90.

We first test the case when the stopping parameter εn for the correction
equation on the fine mesh Ωf changes with the residual of eigenpair. Let εn =
0.1‖rn‖2 if ‖rn‖2 ≥ 10−3; otherwise, εn = 10−4. We report the histories of the
residual norm ‖rn‖2 of the six eigenpairs in Table 7. It is shown that except

13

Table 6: On Mesh2, comparison of the results obtained by the one-level and two-level pre-
conditioners. ei is the ith computed eigenvalue, np is the number of processor cores, JD is
the number of JD iterations, FGMRES is the average number of FGMRES iterations for the
solution of the correction equations, and Time is the total compute time in seconds.

One-level Two-level
np JD FGMRES Time JD FGMRES Time

5120 4 185.25 42.48 4 38.75 7.48
e0 7168 4 185.25 29.20 4 39.50 6.36

9216 4 186.00 23.23 4 38.75 5.34
10240 4 186.00 22.46 4 39.75 4.84

5120 4 251.75 71.10 4 34.75 9.47
e1 7168 4 255.75 47.96 4 34.25 6.20

9216 4 254.50 39.29 4 34.50 5.64
10240 4 256.50 37.37 4 34.00 5.29

5120 4 258.25 71.90 4 34.25 9.99
e2 7168 4 243.25 45.42 4 34.25 6.71

9216 4 258.00 40.99 4 35.50 5.92
10240 4 250.50 35.42 4 34.50 5.44

5120 6 391.50 220.52 6 35.00 21.29
e3 7168 6 391.67 148.76 6 33.33 14.77

9216 6 392.00 115.58 6 32.67 13.29
10240 6 391.67 109.52 6 34.17 12.53

5120 5 359.20 158.55 4 32.75 13.69
e4 7168 6 366.17 135.42 5 34.00 11.12

9216 5 360.00 85.73 5 34.40 10.58
10240 5 360.00 79.69 4 32.25 8.72

5120 9 394.89 333.04 5 30.40 18.34
e5 7168 8 396.25 199.63 5 33.20 13.33

9216 9 400.00 185.20 5 25.40 10.43
10240 7 393.86 126.93 5 26.20 9.82

Table 7: Residual norms of eigenpairs at each JD iteration for Mesh1 using 128 processor
cores in the case that εn changes with n. n represents the number of JD iteration.

n e0 e1 e2 e3 e4 e5

0 1.581 2.436 2.436 6.426 3.215 4.908
1 1.980 · 10−1 6.390 · 10−1 6.390 · 10−1 1.874 7.346 · 10−1 2.224
2 4.272 · 10−3 5.815 · 10−2 5.806 · 10−2 4.670 · 10−1 6.212 · 10−2 6.828 · 10−1

3 7.533 · 10−7 2.767 · 10−4 2.978 · 10−4 3.214 · 10−2 4.277 · 10−4 2.836 · 10−2

4 4.516 · 10−11 1.885 · 10−8 1.027 · 10−8 2.221 · 10−4 1.406 · 10−8 9.985 · 10−5

5 6.930 · 10−13 5.042 · 10−13 4.011 · 10−8 1.733 · 10−11 6.069 · 10−9

6 3.802 · 10−12 1.122 · 10−12

14

the last JD iteration, JD achieves the quadratic convergence for e1, e2, e3 and
e4, and super-quadratic convergence for e0 and e5.

Next, we consider a constant stopping criteria. In this case, we choose
εn = 10−4. Table 8 shows the histories of the residual norm of the six eigenpairs.
It can be seen that JD achieves the super-quadratic convergence for e0, e1 and
e2 except the last iteration. Since the initial eigenpair of e3 is less accurate, JD
does not show the quadratic convergence immediately for e3. The convergence
rate of JD is very interesting for e4 and e5, it converges super quadratically in
the first four iterations, and converges linearly in the last three iterations with
a damping factor around 10−4, which is equal to the stopping condition of the
correction equation solver.

Table 8: Residual norms of eigenpairs at each JD iteration for Mesh1 using 128 processor
cores in the case that εn is equal to 10−4. n represents the number of JD iteration.

n e0 e1 e2 e3 e4 e5

0 1.581 2.436 2.436 6.426 3.215 4.908
1 5.187 · 10−2 1.367 · 10−1 1.367 · 10−1 3.817 3.551 · 10−1 7.379 · 10−1

2 1.170 · 10−4 2.038 · 10−4 2.044 · 10−4 4.297 3.556 · 10−3 2.770 · 10−2

3 3.816 · 10−9 6.366 · 10−9 2.445 · 10−8 1.035 4.961 · 10−7 1.387 · 10−5

4 4.151 · 10−13 4.991 · 10−13 1.806 · 10−12 4.651 · 10−2 1.753 · 10−10 2.844 · 10−9

5 1.222 · 10−4 5.232 · 10−13 9.982 · 10−13

6 1.009 · 10−8

7 9.956 · 10−13

To understand how the convergence rates of JD and FGMRES are related
to the overlapping size δ, we run Algorithm 1 for Mesh1 on 128 processor cores
with the one-level and two-level preconditioners. It can be seen from Tables
9 and 10 that JD with various overlap sizes takes almost the same number of
iterations for each eigenvalue when the residual norm of the solution of the
correction equation is less than εn. For FGMRES convergence, the overlapping
size has a greater impact on the one-level preconditioner than on the two-level
preconditioner, since the coarse mesh of the two-level preconditioner provides
more global information.

Table 9: The number of JD iterations and the average number of iterations of FGMRES
with the one-level preconditioner (shown in brackets) for Mesh1 using 128 processor cores
for different δ. The stopping criteria εn of FGMRES is equal to 10−4.

δ e0 e1 e2 e3 e4 e5

0 4(127.25) 4(179.75) 4(179.75) 6(388.5) 4(286.5) 6(382.83)
1 4(102.75) 4(138.75) 4(133) 7(355.29) 4(230) 5(304.2)
2 4(100.25) 4(134.75) 4(126) 7(330) 4(224) 5(288.2)
3 4(99.5) 4(134) 4(126.75) 7(333) 4(224.5) 5(305.2)
4 4(99.5) 4(134) 4(126.75) 7(335.43) 4(223.5) 5(304)

We report the compute time and the number of JD iterations in Table 11 for
the cases that the number of iterations of FGMRES with the two-level precon-

15

Table 10: The number of iterations of JD and the average number of iterations of FGMRES
with the two-level preconditioner (shown in brackets) for Mesh1 using 128 processor cores
for different δ. The stopping criteria εn of FGMRES is equal to 10−4 and the coarse mesh is
120 × 120 × 90.

δ e0 e1 e2 e3 e4 e5

0 4(10.25) 4(10.25) 4(10.25) 8(14.5) 5(29.2) 5(12.8)
1 4(6.75) 4(6.75) 4(6.5) 7(9.86) 5(8.2) 5(8.6)
2 4(6.75) 4(6.75) 4(6.75) 7(9.43) 4(7.5) 5(8.4)
3 4(6.75) 4(6.75) 4(6.5) 8(9.63) 5(8.2) 5(8.6)
4 4(6.75) 4(6.75) 4(6.5) 8(14.25) 5(12.2) 5(8.8)

ditioner is fixed. Compared to Table 3, we see that one can find a fixed number
that leads to less compute time, if it is chosen carefully.

Table 11: The number of JD iterations and compute time in seconds (shown in brackets)
for Mesh1 using 128 processor cores with various coarse meshes as showed in Table 2 and
several fixed numbers of iterations of FGMRES. The notation it denotes the fixed number
of iterations of FGMRES and N/A means that Algorithm 1 fails to converge within 50 JD
iterations.

it e0 e1 e2 e3 e4 e5

5 13(23.99) 15(27.97) 38(79.83) 8(27.57) N/A 6(21.23)
10 7(18.28) 7(20.49) 11(25.39) 7(44.57) 32(96.20) 5(24.61)
20 4(21.03) 4(19.83) 5(22.28) 7(99.93) 10(41.22) 4(39.70)
30 4(33.27) 4(29.43) 4(30.75) 7(157.70) 7(51.28) 4(65.56)
40 4(41.58) 4(41.90) 4(41.04) 7(225.73) 6(64.01) 4(109.93)
50 4(63.99) 4(56.04) 4(54.45) 7(265.38) 4(66.11) 4(130.19)
60 4(73.78) 5(94.95) 4(72.19) 7(356.07) 4(70.71) 4(194.22)

In addition, we test JD with the various initial guess eigenvectors, but still
use the eigenvalue obtained on Ω0 as the initial guess eigenvalue. For Mesh1,
JD converges to the undesired eigenvalue when the one-vector is used as the
initial guess vector, and JD can not converge when the random vector is used
as the initial guess vector.

5. Conclusion

In this paper, a parallel domain decomposition based JD algorithm was
introduced and studied for the pyramidal quantum dot simulation. In the pro-
posed method, the correction equation is solved efficiently to a certain level
of accuracy by FGMRES with a projected two-level Schwarz preconditioner.
Compared with the one-level method and TOAR, the two-level method reduces
greatly the total compute time and the number of iterations for solving the cor-
rection equations. It is worth mentioning that, in addition to the coarse mesh
for the preconditioner, another coarse mesh is introduced for generating the
initial guess for the JD iterations. Numerical experiments confirmed that our
method converges quadratically, and also is scalable for problems with over 160

16

millions unknowns on a parallel computer with over 10,000 processor cores. The
algorithm can be extended to multilevels if the coarse problem in the two-level
preconditioner is solved by two-level or multilevel methods.

Acknowledgement

We would like to thank the referees for the helpful comments that improve
the paper. The first author and the third author were supported by the Shen-
zhen Peacock Plan grant KQCX20130628112914303. The second author was
supported by the grant MOST-100-2115-M-008-008-MY2.

References

[1] F.-N. Hwang, Z.-H. Wei, T.-M. Huang, W. Wang, J. Comput. Phys. 229
(2010) 2932–2947.

[2] M. Hochbruck, D. Löchel, SIAM J. Sci. Comput. 32 (2010) 3151–3169.

[3] T.-M. Hwang, W.-W. Lin, W.-C. Wang, W. Wang, J. Comput. Phys. 196
(2004) 208–232.

[4] Y. Saad, J. R. Chelikowsky, S. M. Schontz, SIAM Rev. 52 (2010) 3–54.

[5] P. Arbenz, M. Bec̆ka, R. Geus, U. Hetmaniuk, T. Mengotti, Parallel Com-
puting 32 (2006) 157–165.

[6] Y.-T. Feng, Comput. Methods in Appl. Mech. Engrg. 190 (28) (2001) 3543–
3563.

[7] Y. Su, Z. Bai, SIAM J. Matrix Anal. Appl. 32 (2011) 201–216.

[8] G. L. G. Sleijpen, H. van der Vorst, SIAM J. Matrix Anal. Appl. 17 (1996)
401–425.

[9] G. L. G. Sleijpen, A. G. L. Booten, D. R. Fokkema, H. van der Vorst, BIT
36 (1996) 595–633.

[10] T.-M. Huang, F.-N. Hwang, S.-H. Lai, W. Wang, Z.-H. Wei, Comput. Flu-
ids 45 (2011) 207–214.

[11] T.-M. Hwang, W.-W. Lin, J.-L. Liu, W. Wang, Numer. Linear Algebra
Appl. 12 (2005) 605–624.

[12] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia,
2003.

[13] A. Quarteroni, A.Valli, Domain Decomposition Methods for Partial Differ-
ential Equations, Clarendon Press, Oxford, 1999.

17

[14] B. F. Smith, P. E. Bjørstad, W. Gropp, Domain Decomposition: Parallel
Multilevel Methods for Elliptic Partial Differential Equations, Cambridge
University Press, New York, 1996.

[15] A. Toselli, O. Widlund, Domain Decomposition Methods: Algorithms and
Theory, Springer-Verlag, Berlin, 2005.

[16] S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik,
M. G. Knepley, L. C. McInnes, B. F. Smith, H. Zhang, PETSc Users Man-
ual, v. 3.5.2, Argonne National Laboratory (2014).

[17] J. E. Roman, C. Campos, E. Romero, A. Tomas, SLEPc Users Manual, v.
3.5.3, Universitat Politècnica de València (2014).

[18] L.-W. Wang, J. Kim, A. Zunger, Phys. Rev. B 59 (1999) 5678–5687.

[19] J.-L. Liu, J.-H. Chen, O. Voskoboynikov, Comput. Phys. Commun. 175
(2006) 575–582.

[20] X. Dai, X. Gong, Z. Yang, D. Zhang, A. Zhou, Multiscale Model. Simul. 9
(2011) 208–240.

[21] C. Vömel, S. Z. Tomov, O. A. Marques, A. Canning, L.-W. Wang, J. J.
Dongarra, J. Comput. Phys. 227 (2008) 7113–7124.

[22] W. Wang, T.-M. Hwang, W.-W. Lin, J.-L. Liu, J. Comput. Phys. 190
(2003) 141–158.

[23] G. H. Golub, C. F. V. Loan, Matrix Computation, 3rd Edition, John Hop-
kins University Press, Baltimore, 1996.

[24] J. Olsen, P. Jørgensen, J. Simons, Chem. Phys. Lett. 169 (1990) 463–472.

[25] G. L. G. Sleijpen, W. Wubs, SIAM J. Sci. Comput. 25 (2003) 1249–1272.

[26] X.-C. Cai, O. Widlund, SIAM J. Numer. Anal. 30 (1993) 936–952.

[27] X.-C. Cai, X. Li, SIAM J. Sci. Comput. 33 (2011) 746–762.

[28] X.-C. Cai, M. Sarkis, SIAM J. Sci. Comput. 21 (1999) 792–797.

[29] X.-C. Cai, W. Gropp, D. Keyes, R. Melvin, D. Young, SIAM J. Sci. Com-
put. 19 (1998) 246–265.

[30] P. Havé, R. Masson, F. Nataf, M. Szydlarski, H. Xiang, T. Zhao, SIAM J.
Sci. Comput. 35 (2013) C284–C302.

[31] M. E. Hochstenbach, G. L. G. Sleijpen, Numer. Lin. Alg. Appl. 15 (2008)
35–54.

[32] P. N. Brown, H. F. Walker, SIAM J. Matrix Anal. Appl. 18 (1997) 37–51.

18

	Introduction
	Pyramidal quantum dot problem
	Jacobi-Davidson algorithm with a projected two-level Schwarz preconditioner for the correction equation
	Numerical results
	Test case setup
	Initial guess calculation
	Parallel performance studies
	Convergence rate studies

	Conclusion

