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ALGORITHM FOR TRAJECTORY OPTIMIZATION PROBLEMS∗
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Abstract. The objectives of this work are to apply and study the full-space quasi Lagrange-
Newton-Krylov (FQLNK) algorithm for solving trajectory optimization problems arising from
aerospace industrial applications. As its name suggests, in this algorithm, we first convert the con-
strained optimization problem into an unconstrained one by introducing the augmented Lagrangian
parameters. The next step is to find the optimal candidate solution by solving the Karush-Kuhn-
Tucker (KKT) condition with the Newton-Krylov method. To reduce the computational cost of
constructing the KKT system, we employ the Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula to
build an approximation of the (1,1) subblock of the KKT matrix, which is the most expensive part of
the overall computation. The BFGS-based FQLNK algorithm exhibits a superior speedup compared
to some of the alternatives. We demonstrate our FQLNK algorithm to be a practical approach for
designing an optimal trajectory of the launch vehicle in the space missions.

Key words. Launch vehicle mission, trajectory optimizations, KKT system, BFGS, Lagrange-
Newton-Krylov solver
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1. Introduction. The optimal control is a commonly-used technique with a
broad range of applications in aerospace engineering, such as the spacecraft/launcher
optimal design problems [4, 8, 29]. Trajectory optimization plays an important role in
the space missions [2, 3, 5, 10, 21, 24]. For instance, during the mission design stage,
one of the main tasks is to find an optimal trajectory of the rocket to maximize the
mass of a payload or to minimize the duration of the flight from launch to satellite
insertion subject to the physical constraints and the insertion conditions. One other
example is an inter-planetary probe traveling between two orbits. During the mission
operation stage, aerospace engineers need to design an optimal trajectory to reduce
the consumption of fuel to extend its mission life further. Both practical examples
of the optimal trajectory missions can be modeled mathematically as some form of
continuous time optimal control problems.

Generally speaking, the solution algorithms available in the literature for optimal
control problems can be divided into two categories: indirect methods and direct
methods. See [2, 24, 31] and references therein for a comprehensive survey of these
two classes of methods. An indirect method is also referred to as the optimize-then-
discretize approach and is mainly based on the variation of calculus. After recasting
from the optimal control problem, the resulting two-point boundary value problem
is solved by some numerical ordinary differential equation (ODE) solver. In contrast
to an indirect method [8, 25], our proposed approach belongs to the class of direct
methods [11, 13, 32] known as the discretize-then-optimize approach [4]. The standard
procedure of the direct method is to reformulate a continuous time optimal control
problem as an algebraic constrained parameter optimization problem by using some
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numerical integrators [4, 11, 14, 32], such as the shooting, the multiple shooting, the
collocation, and the pseudo-spectral methods to transcribe the dynamical system into
the algebraic constraints. The nonlinear programming techniques developed for the
constrained parameter optimization problems can be implemented. Among them,
these techniques can be classified as gradient-based methods [20], such as Newton-type
methods and nonlinear conjugate gradient methods, etc. or gradient-free methods,
including genetic algorithms [27, 28, 33], particle swarm algorithms [22], or simulated
annealing [18].

The main objective of this research work is to study the full-space quasi-Lagrange-
Newton-Krylov (FQLNK) algorithm [7, 23] as the numerical solution of the optimal
trajectory problem, which is formulated as the optimization problems constrained by
the system of ODEs. To be more specific, we apply the FQLNK algorithm for the
multistage satellite launch vehicle problem. As its name suggests, in this algorithm,
we first convert the constrained optimization problem into an unconstrained one by
introducing the Lagrangian function, then find the candidate optimal solution by solv-
ing the first-order necessary condition, the Karush-Kuhn-Tucker (KKT) condition [20],
with an inexact Newton method in conjunction with a backtracking technique. At each
Newton iteration, the resulting full KKT system for all variables is solved in one shot
by a Krylov-subspace method combined with a preconditioner. One popular alternative
approach is the so-called reduced-space methods, where different field parameters are
obtained sequentially. Both full-space method and reduced-space method belong to the
family of well-known sequential quadratic programming (SQP) [20, 23]. One advantage
of the reduced space method is that the certain amount of memory usage can be
saved. However, due to the dramatic increase in computer power, full-space methods
recently gained popularity and have been successful, especially for (partial) differential
equation constrained optimization problems arising from different applications, such
as flow control problems [7, 23, 34]. Biro and Ghattas [6] reported several nontrivial
boundary control problems of complex incompressible flows by using full-space type
method. For reduced space methods, many sub-iterations are needed to converge the
outer iterations. As a result, their numerical results showed that full space method
was about ten times faster than a popular reduced space method. Also, they asserted
that other problems exhibit similar performance behaviors.

In practice, several computational issues need to be appropriately addressed to
make the Lagrange-Newton-Krylov method for large, sparse, constrained optimization
problems more efficient and robust. For example, the KKT system consists of a sub-
block matrix corresponding to the second derivatives of the Lagrangian function, which
is called the Hessian matrix. Deriving the Hessian matrix analytically is quite tedious,
while its numerical approximation could be very computationally expensive. Also, the
KKT system is indefinite and often ill-conditioned so that the convergence rate of
a Krylov subspace method degrades. Hence, designing an efficient preconditioner is
crucial in order to find a high-quality Newton direction. Furthermore, due to the highly
local nonlinearity of the problem, the convergence of the Newton method becomes to
be problematic. In this article, we focus on how to construct the Hessian matrix more
efficiently. To reduce the computational cost of the KKT matrix construction, following
the suggestion by [20], we propose employing the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) formula [9, 17, 20] to construct the approximation of the Hessian of the KKT
matrix. The BFGS method is initially developed for unconstrained optimizations
and is easily adapted for constrained cases. We carry out a comparative study of the
proposed approach with some of the alternative methods, including finite differences
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and automatic differentiation. We also discuss other computational issues regarding
the efficiency of KKT system solvers and the robustness of the inexact Newton solver.

The remainder of this article is structured as follows. In the next section, we build
the mathematical optimal control model for a multistage launch vehicle system as a
parameter optimization problem. In Section 3, we describe the FQLNK algorithm in
detail for solving the parameter optimization problems. In Section 4, we present some
numerical results and discussions. In addition to the multistage launch problem, we
also consider one additional benchmark problem to verify the correctness of our codes
and to evaluate the performance of our proposed full-space algorithm. In Section 5,
we end by summarizing the main contributions of this article.

2. Multistage satellite launch vehicle problem.

2.1. Problem description. Consider our target application, the multistage
satellite launch vehicle problem as follows. The primary goal of the mission is to
provide both sufficient speed and altitude for the satellite with an appropriate insertion
angle so that it can be successfully delivered into a designated orbit. In practice, a
shorter launch flight distance (or flight duration) can ensure that the telecommunication,
the telemetry, tracking, and control (TT&C) system is functional between the ground
station and the launch vehicle. Generally speaking, for the low Earth orbit satellites,
two common strategies based on different launch rocket procedures, were proposed
for inserting a satellite by riding a multistage rocket into an orbit. The first one is
the so-called the direct insertion approach (see the left of Fig. 2.1): Each stage of the
rocket burns fuel continuously in order and accelerates until the speed of its last stage
equals to the insertion speed of the satellite at the burnout point. On the other hand,
as shown on the right of Fig. 2.1, the second strategy is similar to the first one, but
it allows some coasting-flight period during the launch procedure so that less fuel is
consumed to insert the satellite into the orbit with higher altitude.

Fig. 2.1. An illustration of two strategies for inserting a satellite into an orbit. Direct insertion
(left) and an insertion with coasting-flight period (right).

In the following subsections, we first build a mathematical model for the minimum
time trajectory design problem of a multistage launch vehicle with some coasting-
flight period based on the second strategy as the free final time-optimal control
problem. In this problem, we try to find an optimal trajectory that minimizes the
flight duration from launch to an insertion point, subject to the insertion condition
and path constraints. After using the change of variable by introducing some pseudo-
time variable and then discretizing the differential constraints by using the composite
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trapezoidal rule, we finally derive a large, sparse, algebraic constrained parameter
optimization from the continuous free final time control problem.

2.2. Mathematical model for launch vehicle system. For simplicity, we
consider that the motion of the launch vehicle is a point mass on a two-dimensional
plane and the earth is perfectly spherical. As shown in Fig. 2.2, the launch point
inertial frame is set to be the reference coordinate system [30]. For aerodynamics, we
also take the air resistance effect into account, and the data for the mass distribution
and thrust of each stage of the launch vehicle is assumed available in advance.

Fig. 2.2. The geometric configuration for the multistage satellite launch vehicle problem.

Let the multistage rocket launch process, starting from time t0 and ending at time
tf , consist of (N + 1) events (t0 < t1 < t2, ..., < tN = tf ). The launch vehicle under
consideration involves more than one stage and possibly complex mission sequence.
In that case, some of the state or other variables may be discontinuous at particular
time points, which are referred to as events. The semi-closed time interval [ti−1, ti)
is called the ith phase, where i = 1, ..., N . The period for each phase is defined as
4ti = ti − ti−1. Without loss of generality, we assume that only one coasting period
presents and it lasts 4tc during the kth phase, [tk, tk+1). The generalization of the
proposed method in the case of multiple coasting periods is straightforward. The
launch vehicle trajectory design problem is formulated as the free final time optimal
control problem (OCP1) as follows. Find the piecewise continuous control history ϕ(t)
on the time interval [t0, tf ] that minimizes the objective function

(2.1) J = tf

subject to the differential constraints

(2.2) ds
dt

= f (i)(s, ϕ, t), i = 1, · · · , N,

and the initial and final conditions at time t0 and tf

(2.3) ψ0(s(t0), t0) = 0, and
ψf (s(tf ), tf ) = 0,
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respectively. Here, the vector s = (u, v, x, y)T is the set of the state variables, where
(u, v) are the x-and y-components of the velocity of the rocket at the position (x, y).
The final time tf is to be determined, and it is referred to as a design variable.
Moreover, the differential constraint is explicitly defined as

f (i)(s, ϕ, t) =


T (i)

M(i) cosϕ− D
M(i) cos θ − g x

‖r‖
T (i)

M(i) sinϕ− D
M(i) sin θ − g y+R

‖r‖
u
v

 , i = 1, ..., N,

where T (i) and M (i) are the thrust and the total mass, including the structure mass
and the fuel mass at the ith phase, respectively, and ‖r‖ (with r = (x, y +R)) is the
distance between the rocket and the earth’s core. Here R is the earth’s radius. In
addition, the control variable ϕ is the pitch angle relative to the positive y-axis and
the flight path angle θ is defined as

θ = tan−1 v

u
.

Note that during the coasting-flight period, the thrust is zero, i.e., T (k) = 0, and the
control variable ϕ is determined solely by the motion of the vehicle. Furthermore, the
air resistance D, which is calculated via

D = 1
2ρV

2CDSref

where two constants, CD and Sref are the drag coefficient and the area of the cross-
section of the vehicle, respectively, V =

√
u2 + v2 is the total velocity, the density of

the air is ρ = ρ0 exp((R− r)/H), the density of air at ground is ρ0, the thickness of
earth’s atmosphere is H, and the gravity g is defined as

g = g0

(
R

r

)2

with the gravity at ground, g0. The initial condition is prescribed as

(2.4) ψ0(s(t0), t0) =

 ‖r(t0)‖ − r0
V (t0)− V0
θ(t0)− θ0

 = 0.

and the final condition is prescribed as

(2.5) ψf (s(tf ), tf ) =

 ‖r(tf )‖ −R−H(tf )
V (tf )−

√
µ/‖r(tf )‖

(x(tf ), y(tf ) +R) · (u(tf ), v(tf ))/(‖r(tf )‖V (tf ))

 = 0.

Condition (2.5) is an insertion condition to assure the launch vehicle reaches enough
height, H(tf ), and sufficient speed,

√
µ/‖r(tf )‖, with an appropriate insertion angle.

Here, µ is the gravitational parameter of Earth. In addition, all state parameters are
assumed to be continuous at each ti; hence, the linkage condition between each stage
is imposed, i.e.,

s(t−i ) = s(t+i ), i = 1, 2, ..., (N − 1).
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Here, s(t−i ) ≡ limt→t−
i
s(t) and s(t+i ) ≡ limt→t+

i
s(t) are the left-hand and right-hand

limits of S at t = ti, respectively.
Remarks:

1. The objective function considered here is known as in the Mayer form. Another
possibility is in the Lagrange form, which involves some integral terms, such
as the objective of minimizing the quantity of fuel consumed during the entire
launch process, or in the Bozlta form, which is a mixed form combining both
the Mayer and the Lagrange forms.

2. In many real-world applications, the trajectory optimization problems often
involve some inequality constraints. These inequality constraints can be in the
form of the control, the state, and the mixed state and control constraints [29].
For example, in the space mission, when the rocket lifts off, a large bending
moment is generated due to a high density of the atmosphere. As a result,
the large angle of attack of the vehicle not only causes the rocket to get out
of control but also damages the rocket structure. To prevent this disastrous
situation from happening, we can confine the angle of attack within a smaller
angle, say 5◦ in the first few seconds after takeoff. Here, the angle of attack
α is defined in terms of the pitch angle ϕ and the flight path angle, θ as
α ≡ ϕ − θ. To simplify the presentation, we first confine our discussion to
the equality constraint case, which is transcribed from the optimal control
problem arising in the aerospace trajectory optimizations. Subsection 4.7 will
discuss an extension of our proposed algorithm for the problem with inequality
constraints.

We next transform the free final time optimal control problem (2.1)–(2.3) into a
fixed final time one, by introducing a new pseudo-time variable as follows.

τ =

 t in [t0, tk−1)
tk−1 + (t− tk−1)/(4tc) in [tk−1, tk)
(t− tk) + tk−1 + 1 in [tk, tf )

.

and performing the change of variable with respect to τ . Then the new transformed
temporal slots become

[τ0, τ1) ∪ [τ1, τ2)∪, ...,∪[τk−1, τk), ...,∪[τN−2, τN−1) ∪ [τN−1, τf ],

where ∆τk ≡ (τk − τk−1) = 1 and now τf is known. The differential constraint
corresponding to the coasting-flight phase is rewritten as

dŝ(τ)
dτ

= g(k)(̂s, ϕ̂, τ),

with

g(k)(̂s, ϕ̂, τ) = (∆tc)


T (k)

M(k) cos ϕ̂(τ)− D
M(k) cos θ̂(τ)− g x̂(τ)

‖r̂(τ)‖
T (k)

M(k) sin ϕ̂(τ)− D
M(k) sin θ̂(τ)− g ŷ(τ))+R

‖r̂(τ)‖
û(τ)
v̂(τ)

 ,

where ϕ̂ = ϕ(h(τ)), ŝ = s(h(τ)), θ̂ = θ(h(τ)), and h : [tk−1, tk−1 + 1]→ R is defined
as h(τ) = ∆tc(τ − tk−1) + tk−1. Note that g(i) = f (i), for i = 1, ..., N and i 6= k.
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Therefore, the fixed final time optimal control problem can be stated as follows.
Find the control history ϕ̂(τ) and the design parameter ∆tc that minimizes the
objective function,

(2.6) J = ∆tc

subject to the differential constraints

(2.7) dŝ
dτ

= g(i)(̂s, ϕ̂, τ), i = 1, · · · , N,

and the initial and final conditions at time τ0 and τf

(2.8) ψ0(̂s(τ0), τ0) = 0,
ψf (̂s(τf ), τf ) = 0.

Here ψ0 and ψf are defined as in (2.4) and (2.5). To simplify the notations, we drop
the hat symbol for all variables and replace the variable τ by t throughout the article.

2.3. A parameter constrained optimization problem. To convert the fixed
final time optimal control problem (2.6)–(2.8) into a finite-dimensional parameter
optimization problem, we first discretize the dynamical system for the motion of the
launch vehicle by partitioning each time interval of the phase i, (ti−1, ti), into Mi

finite subintervals. For the sake of simplicity, we assume the time lengths for the
subintervals in each phase are equal, i.e.,

h(i) = (ti − ti−1)
Mi

, i = 1, ..., N.

Let the jth node of phase i be denoted by t(i)j . For j = 0, · · · ,Mi, i = 1, · · · , N , ϕ(i)
j

and s(i)
j = (u(i)

j , v
(i)
j , x

(i)
j , y

(i)
j )T represent the approximate solutions of the control and

state variables at the time t(i)j , respectively. From the differential constraints, we take
the integral both sides and then approximate the integral on the right hand side by
the trapezoidal rule,

ds

dt
= g(i)(s, ϕ, t)

⇒
∫ t(i)

j

t
(i)
j−1

ds =
∫ t(i)

j

t
(i)
j−1

g(i)(s, ϕ, t)dt

⇒ s
(i)
j − s

(i)
j−1 ≈

h(i)

2 (g(i)
j−1 + g

(i)
j ),

Next, we define the residual constraints at each t(i)j ,

R
(i)
j ≡ s

(i)
j − s

(i)
j−1 −

h(i)

2 (g(i)
j−1 + g

(i)
j ),

where j = 1, · · · ,Mi and i = 1, · · · , N . In addition, R0 and Rf are the initial and
final residual constraints, respectively. Other possible higher order integrators, such
as Simpson’s rule, or 4th order implicit Runge-Kutta method, can be employed [4].
For clarity, let px ∈ Rn be a vector containing all the discrete state variables s(i)

j , the
discrete control parameters, ϕ(i)

j , as well as the design parameter ∆tc. The design
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parameter is numbered first, followed by the state parameters and control parameters
in order at each time grid point. The objective function for this problem is defined as
J (px) = ∆tc. In addition, the constraint vector is defined as

c(px) = (R0, R
(1)
1 , R

(1)
2 , ..., R

(1)
M1
, R

(2)
1 , ..., R

(2)
M2
, ..., R

(N)
MN

, Rf )T ∈ Rm

As a result, the equality-constrained parameter optimization problem for the fixed
final-time optimal control problem (2.6)–(2.8) reads. Find the parameter vector px
such that

(2.9)
{

min
px

J (px) ≡ ∆tc
subject to c(px) = 0,

Note that in the case that either J or the equality constraint condition c is nonlinear,
the problem is referred to as a nonlinear programming (NLP) problem. Such problems
have a variety of applications in physics, chemistry, and engineering [4, 8, 14]. In
next section, we describe the FQLNK algorithm for solving the equality-constrained
parameter optimization problem (2.9).

3. Full-space quasi-Lagrange-Newton-Krylov algorithm.

3.1. A description of the algorithm. To solve the equality-constrained pa-
rameter optimization problem (2.9), we begin by defining the Lagrangian functional
as

L(p) ≡ J − pTλ c

where p = (px, pλ)T ∈ Rn+m is the full space unknown vector. Here, pλ is a sub-vector
corresponding to the Lagrangian multipliers. Then the quasi-Newton method with
the backtracking technique (QNB) is applied to solve the KKT condition given by

(3.1) F (p) ≡ ∇L(p) = 0.

and the corresponding KKT matrix takes the form of

K(p) =
(
H(p) G(p)T
G(p) 0

)
,

where H ≡ ∇2
xxL is the Hessian matrix of the Lagrangian function, G ≡ ∇xc is the Ja-

cobian matrix of the constraints and g ≡ ∇xJ is the gradient of the objective function.
As shown in Algorithm 1, the QNB algorithm consists of three key components:

• the numerical construction of the KKT matrix in Step 3,
• the computation of Newton step ∆p in Step 4, and
• the selection of an appropriate damping scalar α(k) in Step 5.

We next discuss these three components in order and in detail below.
3.2. KKT matrix construction. The KKT matrix is in a 2 × 2 block form

of the saddle point type with a zero (2,2) block. Compared to that of the Hessian
matrix, the computational cost of constructing the Jacobian matrix of the constraints
is relatively cheap. Hence, we focus on the Hessian matrix part in this work. Following
the suggestion by [20], we propose the use of a BFGS method for SQP [9, 17, 20]
to build a quasi-Newton approximation B(k) for H(k). Two alternative numerical
approaches for computing the Hessian matrix H(k) are the finite difference (FD)
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Algorithm 1 A quasi-Newton with backtracking algorithm (QNB)

Input: Given initial guess vector p(0) = (p(0)
x , p

(0)
λ )T , and prescribed tolerance atol

and rtol
1: Set k = 0
2: while ‖F (p(k)‖ ≥ atol and ‖F (p(k))‖ ≥ rtol‖F (p(0)‖ do
3: Form the KKT system approximately,

K(k) =
(
H(k) G(k)T

G(k) 0

)
and F (k) =

(
g(k) −G(k)T p

(k)
λ

−c(k)

)
,

where the superscript k indicates that all terms of KKT system are evaluated at
p(k).

4: Find the Newton search direction ∆p(k) by solving K(k)∆p(k) = −F (k) inex-
actly.

5: Choose a damping scalar α(k) ∈ (0, 1] by using the backtracking technique.
6: Update p(k+1) = p(k) + α(k)∆p(k) and set k = k + 1
7: end while

Output: p(k)

approximation and the automatic differentiation (AD). The idea of FD, AD, and
BFGS is not new, and the description of these three approaches have been discussed in
many numerical optimization books, e.g., [20]. However, a comparison of these three
approaches under the framework of the direct full-space method with applications to
trajectory optimization problems are not available in the literature, and we will report
their comparative study in terms of efficiency in Section 4.6. For the FD method, for
example, we can use a second-order central scheme for H = (Hij) at p(k), which is
given as
(3.2)

H
(k)
ij ≈

L(p(k) + ηei + ξej)− L(p(k) − ηei + ξej)− L(p(k) + ηei − ξej) + L(p(k) − ηei − ξej)
2η 2ξ ,

where η, ξ > 0, 0 ≤ i, j ≤ n, and ei is the i-th unit vector. The accuracy of this
approximation depends not only on the selection of η and ξ but also on the regularity
of L. Few potential shortcomings of FD are as follows. When the function value of
L changes rapidly in some direction, the approximation (3.2) may result in a large
error. Also, the element-wise calculation of the KKT matrix is quite costly if the
gradient of L is not available. One further improvement is to take advantage of
using the sparsity of the KKT system and compute them by skipping the known
zero elements. On the other hand, AD is a class of computational techniques for
constructing the derivatives of a given function in the analytical form automatically
by using a computer software package. The basic idea of AD is based on the fact
that most of functions can be expressed as a composite function of some elementary
functions and a series of arithmetic operators. By recursively applying the chain
rule in Calculus, the evaluation of a derivative turns into serial operations on the
values of elementary functions and their derivatives. Therefore, it could be performed
automatically with any programming language capable of operator overloading. For
further details, interested readers can consult the reference [20].

We now give a description of the BFGS algorithm as follows. Let B(0) be a given
positive definite matrix. Assume that B(k−1) is an approximation of H(k−1) and the
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current approximate solution, p(k) = (p(k)
x , p

(k)
λ )T is available. Since the update of the

KKT matrix is limited to B(k), we can only consider

s(k) ≡ p(k)
x − p(k−1)

x and y(k) ≡ g(p(k)
x , p

(k)
λ )− g(p(k−1)

x , p
(k)
λ )

rather than the full space vectors. Note that the curvature condition [s(k)]T y(k) > 0,
which ensures the positive definiteness of B(k) in the undamped BFGS method for
unconstrained optimization, is not guaranteed in this case. Hence, we modify y(k), if
necessary, and introduce a new variable r(k) as

r(k) ≡ θ(k)y(k) + (1− θ(k))B(k)s(k),

where the scalar θ(k) ∈ [0, 1] is chosen by

θ(k) ≡


1 if [s(k)]T y(k) ≥ 0.2 [s(k)]TB(k)s(k),

0.8[s(k)]TB(k−1)s(k)

[s(k)]TB(k−1)s(k) − [s(k)]T y(k) if otherwise.

The selection of θ here is suggested by [20]. Note that such r(k) satisfies the curvature
condition [s(k)]T r(k) > 0, and it can be verified that the new B(k) updated by

B(k) = B(k−1) − B(k−1)s(k)[s(k)]TB(k−1)

[s(k)]TB(k−1)s(k) + r(k)[r(k)]T

[s(k)]T r(k)

is symmetric and positive definite. In addition, such choice of θ(k) leads to B(k+1)

being a positive definite matrix interpolating B(k), i.e., θ(k) = 0, and the matrix
updated from undamped BFGS method, i.e., θ(k) = 1.

3.3. Newton step computation. A tremendous amount of research is dedi-
cated to the development of an efficient solution algorithm for solving saddle-point
problems, like the KKT system [1]. Some popular methods include full-space methods,
e.g., direct block factorization methods or domain decomposition-based preconditioned
Krylov subspace iterative methods and reduced space methods such as dual or range
space or null-space method [20], to name a few. Among them, both the Schwarz
preconditioner [23] and the Schur preconditioner [7] belong to the family of the domain
decomposition methods. These two preconditioners are suitable to be implemented on
the distributed-memory machines and are designed for PDE-constrained optimization
problems. On the other hand, solving the KKT system arising from the trajectory
optimization problem only contributes a small portion of the total computational
time (for example, only 11% for our targeted problem as shown in Table 4.6). The
reasons for this phenomenon are twofold: First, in this work, we assume that the
objective function and the constraints are provided by a user. The associated Hessian
and gradient constructions are done numerically by one of the approaches mentioned
in Section 3.2, which requires the evaluation of the constraints a large number of
times. Secondly, the number of state variables is relatively less than the one for
PDE-constrained optimization problems. Hence, the benefit from the parallel comput-
ing technique for our numerical solution of KKT system is expected to be marginal.
Here, we consider a variant of an incomplete lower/upper triangular decomposition
to construct a preconditioner in conjunction with GMRES, namely incomplete LU
decomposition with a threshold and pivoting (ILUTP) [26].
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3.4. Globalization strategies. Once the Newton search direction ∆p(k) is
determined, its size needs to be appropriately scaled to ensure the global convergence
of Newton’s method, and a merit function is used to monitor its progress toward to
the desired solution. Here, we employ the augmented Lagrangian merit function,Mρ:
Rn → R, which is defined as

(3.3) Mρ(p) ≡ L(p) + ρ

2c(px)T c(px).

Note that this merit function tries to balance the conflict between multiple goals that
both force the objective function to decrease and satisfy the constraint.

The weight parameter ρ(k), as well as the scaling factor α(k), are updated in
sequence based on the following two rules.

1. Select ρ(k) so that ∆p(k) is the descent direction ofMρ(k) at p(k). As suggested
in [23], we choose ρ(k) = max{ρ̄(k), ρ(k−1)}, with ρ(−1) > 0 and

ρ̄(k) = −2 [∇L(k)]T p(k)

[c(k)]T∇c(k)p
(k)
x

,

which is updated at each Newton iteration.
2. Choose α(k) = α ∈ [αmin, 1] such that the merit function Mρ(k) reduces

sufficiently along p(k) to satisfy the Armijo condition

(3.4) Mρ(k)(p(k) + α∆p(k)) ≤Mρ(k)(p(k)) + αβ [∇Mρ(k)(p(k))]T p(k),

where the parameter β ∈ (0, 0.5) is used to assure that the reduction ofMρ

is sufficient and the parameter αmin > 0 acts as a safeguard required for
the strong global convergence. Here, a quadratic linesearch technique [9] is
employed to determine the step length α(k).

4. Numerical results and discussion. Besides the multistage satellite launch
vehicle problem, we consider one additional benchmark problem, called the Earth-
to-Mars orbit transfer problem [8, 11, 32], which is commonly used for testing or
evaluating the performance of new algorithms. This test problem can be viewed as
a special case of the multistage satellite launch vehicle problem. The final time is
given, i.e., tf is known, and the only single stage is considered with constant thrust,
mass, and gravity. Sections 4.1 and 4.2 provide the detailed descriptions of these
two numerical examples, including the physical parameters used in the numerical
experiments. Section 4.6 reports the performance of the FQLNK algorithm for solving
the parameter optimization problem (2.9). The FQLNK code was developed by
using Matlab, and all computations were carried in double precision. We claim
our solver has converged if the following conditions are met: ‖F (p(k))‖2 ≤ atol or
‖F (p(k))‖2 ≤ rtol‖F (p(0))‖2, where both of the absolute tolerance atol and the relative
tolerance rtol are set to be 10−6. ILUTP preconditioned GMRES is used to solve the
KKT system. The dropping tolerance τ of ILUTP is set to be 10−6. The accuracy
of the solution to the KKT systems is controlled by the parameter, ηk, to force the
condition

‖F (p(k)) +K(k)∆p‖ ≤ ηk‖F (p(k))‖

to be satisfied. ηk is selected to be 10−6.
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4.1. Earth-to-Mars orbit transfer problem.. The Earth-to-Mars orbit trans-
fer problem, whose geometrical setting is shown in Fig. 4.1, can be mathematically
described in the non-dimensional form as follows: Find the control history ϕ(t),
t ∈ [t0, tf ] to minimize the performance index

J = −r(tf ),

subject to the dynamic equations of motion

(4.1) ṡ = d

dt

 r
u
v

 = f(r, u, v, ϕ) ≡


u

v2

r
− 1
r2 + T

m
sinϕ

−uv
r

+ T

m
cosϕ

 ,

with the condition for the flight in the initial orbit

(4.2) ψ(t0) ≡


r(t0)− 1.0

u(t0)

v(t0)− 1.0

 = 0,

and the condition for the final orbit insertion

(4.3) ψ(tf ) ≡


u(tf )

v(tf )−
√

1
r(tf )

 = 0,

where s(t) = (r(t), u(t), v(t))T are the state variables. Here, r is the radial distance of
spacecraft from the attracting center, u and v are the radial and tangential components
of velocity, respectively. In addition, T is the thrust, and the mass of the spacecraft
m(t) = m0 − |ṁ|t with a given initial mass m0 and a constant fuel consumption rate
|ṁ|. In the numerical experiments, the values of these constants are specified as t0 = 0,
tf = 3.32, T = 0.1405, m0 = 1.0, and |ṁ| = 0.0749.

Fig. 4.1. The geometrical configuration for the orbit transfer problem.
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Note that this orbit transfer problem is relatively simple, such that the indirect
method can be easily applied [8]. The indirect numerical solution to the system of
two-point boundary ordinary differential equations obtained by using the Matlab
bvp4c routine serves as the reference solution used to compare with the one obtained
by using our proposed method.

4.2. Three-stage satellite launch vehicle problem. For the multistage launch
vehicle problem, we consider a three-stage satellite launch vehicle as a numerical ex-
ample. The major task of the mission is to deliver a micro-satellite of weight ranging
from 40 to 120 kg into a low-Earth circular orbit with an altitude of 500 km. Table
4.1 lists the structure and propulsion data for each stage of the launch vehicle, and
Table 4.2 summarizes its launch process. Also, the physical parameters involved in
the numerical experiment are specified as follows: the average radius of the Earth,
R = 6.378 × 103 km, the air density at ground ρ0 = 1.225 kg/m3, the atmospheric
scale height, H = 7.6 km, and the gravity at sea level, g0 = 9.80665× 10−3 km. Also,
Fig. 4.2 shows the plot of the drag coefficient CD as a function of the Mach number.

Table 4.1
Data of the three-stage launch vehicle.

Stage I II III
Reference area (m2) 0.7854 0.7854 0.1564
Motor mass (kg) 10091 1906 344
Propellant mass (kg) 8880 1677 296
Thrust (Nt) 243824 57555.4 6085.8
Burn time (sec) 100 80 133

Table 4.2
A list of the key events during the launch process.

Time (Sec) Events
t0 = 0 Stage 1 ignition and liftoff
t1 = 5 Beginning of kick-turn
t2 = 100 Stage 1 burnout, stages 1 & 2 separation, and stage 2 ignition
t3 = 180 Stage 2 burnout, stages 2 & 3 separation, and beginning of free flight
t4 = 180 + ∆tc End of free flight period and stage 3 ignition
t5 = 313 + ∆tc Stage 3 burnout and orbit insertion

Some additional detailed information is given below. First of all, the launch vehicle
takes off and climbs vertically before a gravity turn begins. Therefore, an additional
path constraint

ϕ(t) = π

2 , t ∈ [t0, t1]

is imposed. Second, the payload fairing, weighing 50 kg, that encapsulates and provides
protection for payload, separates when the launch vehicle reaches the altitude of 100
km. Finally, the total mass of the launch vehicle steadily decreases in the powered
flight due to the burning of fuel and drops suddenly when each stage, as well as the
payload fairing, separates from the launch vehicle at the end of its burn time. By
taking these facts into account, this test problem has five phases.

We notice that all state parameters and corresponding dynamic equations with
units differ by several orders of magnitude. Poor scaling may lead to slow convergence
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Fig. 4.2. The drag coefficient CD, a function of the value of Mach number

of an iterative method or inaccuracy of numerical solutions. To achieve better scaling,
we nondimensionalized this problem by introducing the canonical units, including
the time unit TU = 806.8 sec, the distance unit DU = R = 6378.165 km, and
the initial total mass of the launch vehicle Mref as the characteristic of time, the
characteristic of length and the characteristic of mass, respectively. As a consequence,
the nondimensionalized variables and parameters are defined as follows.

ū = u

DU/TU
, v̄ = v

DU/TU
, x̄ = v

DU
, ȳ = v

DU
.

t̄ = t

TU
, M̄ = M

Mref
, ḡ = g

DU/TU2 , T̄ = T

(Mref ·DU)/TU2 .

S̄ref = Sref
DU2 , ρ̄0 = ρ0

Mref/DU3 , µ̄ = µ

DU3/TU2 = 1.

Both differential constraints and boundary conditions take the same form in the
dimensional form and the non-dimensional form. Also, all of our calculation are done
in the non-dimensional form.

4.3. Selection of initial guess. The selection of an initial guess vector, p(0), as
an input for Algorithm 1 is crucial since the convergence of most nonlinear iterative
methods strongly depends on the initial guess, and there is no exception for the
Newton-type method. The failure of the algorithm may happen due to a bad initial
guess. In general, we desire a guess that is simple (even trivial) and easy to obtain,
such as a zero vector. However, our numerical experience suggests that such naive
initial guess sometimes causes very ill-conditioned KKT system. In this case, the
choice of a “good” initial guess could be problematic. For the trajectory optimization
problem, we borrow the idea from the reduced-space approach to generate a more
reasonable (and maybe much better) initial guess vector. To start with, we give a
guess for the design parameter, the coasting-flight period, ∆tc, if needed and set
some “reasonable” control variables, based on some a priori physical knowledge. Then
the discrete state variables on each grid point can be calculated by performing some
numerical integration for the right-hand-side of the differential constraints. Finally,
to initialize the discrete Lagrangian multiplier vector, we employ the least-squares
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multipliers estimates, which equivalently solves the normal equation

(4.4) λ(0) =
[
G(0)G(0)T

]−1
G(0)g(0),

which is motivated from minimizing the first term of the left-hand side of the KKT
system in Step 4 in Algorithm 1. Fig. 4.3 shows that two samples of initial guesses for
the control variable used in the numerical experiments.
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Fig. 4.3. The initial guesses for the control variable for two test cases. (left: Orbit transfer
problem; right: Three stages lunch vehicle problem)

Fig. 4.4 shows the convergence sensitivity analysis of our proposed for the three-
stage launch vehicle problem. We tested the different values of the coasting-flight
period ∆tc ranging from 70 to 250 seconds. Beyond this range, we will produce either
overshooting or undershooting trajectories. From this figure, we observed that except
for the extreme values, the number of Newton iterations depends mildly on the choice
of the coasting-flight period.
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Fig. 4.4. Sensitivity analysis of the FLNKS algorithm for different coasting-flight periods.

4.4. Grid test and its comparisons with indirect solution. To validate
the implementation of the FQLNK algorithm, we perform a grid independent study
for both test problems. For the Earth-to-Mars orbit transfer problem, we use a set of
grids with different sizes from 3.32/8 to 3.32/256, respectively. For the three-stage
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launch vehicle problem, we select a fixed number of grids for each phase: M=4, 8,
12, 16, and 32. Tables 4.3 and 4.4 show the convergence analysis of the control and
state parameters for two cases. All errors are computed in the infinity norm, and
the finest grid solution is used as an exact solution. From the tables, we observe
that all numerical state parameters converge to the desired solution at a quadratic
convergence rate. The convergence behavior of our numerical solution is consistent
with the theoretical prediction when the composite trapezoidal rule is employed to the
dynamical constraints.

Table 4.3
The grid test for the Earth-to Mars orbit transfer problem. “p.i." is the optimal value of the

performance index. The numerical solution with the finest grid, h = 3.32/256 is used as the exact
solution for the error calculation.

# subint. h p.i. ϕ r u v
8 4.1500e-01 3.8179e-02 3.4605e+00 4.1236e-02 5.5937e-02 7.3486e-02
16 2.0750e-01 5.0925e-03 1.4181e-01 5.3232e-03 1.1195e-02 3.5663e-03
32 1.0375e-01 1.2153e-03 3.0599e-02 1.2953e-03 2.9655e-03 1.3774e-03
64 5.1875e-02 2.9106e-04 8.3307e-03 3.1329e-04 7.6265e-04 4.3971e-04
128 2.5938e-02 5.8325e-05 2.7179e-03 6.2582e-05 1.7809e-04 9.1695e-05

conv. rate 2.2838 2.4718 2.2815 2.0466 2.2313

The adaptive mesh refinement (AMR) with a posteriori error estimation techniques
is one of the practical approaches for finding an optimal solution with the minimal
number of grid points employed. But for our target application, the optimal control
problem (an optimization problem constrained by a system of ODEs), its problem size
is linearly proportional to the number of time steps. Hence, the dimension issue is not
severe as the one for the PDE-constrained problem even just using a uniform time step
refinement. On the other hand, the accuracy of the optimal solution for our approach
depends on the choice of the time integrator for the dynamic constraint. For example,
the composite trapezoidal rule being used in the article, all numerical state parameters
converge at a quadratic convergence rate, while the control parameters converge
superlinearly. Such a priori error estimate is useful for engineers or practitioners to
determine an appropriate time step size based on their need.

Table 4.4
The grid test for the three-stage launch vehicle problem. “p.i." is the optimal value of the

performance index. The numerical solution with the first grid case, (2, 32, 32, 32, 32), is used as
the exact solution for the error calculation.

# subint. p.i. ϕ u v x y
(2,4,4,4,4) 1.9827e-02 1.2540e-01 1.0406e-02 3.0956e-02 1.2449e-02 2.1882e-03
(2,8,8,8,8) 4.8262e-03 4.5499e-02 2.2711e-03 7.3778e-03 3.0313e-03 6.0661e-04
(2,12,12,12,12) 2.0843e-03 2.4556e-02 1.0070e-03 3.1631e-03 1.3059e-03 2.7793e-04
(2,16,16,16,16) 1.1222e-03 1.4625e-02 5.7386e-04 1.6858e-03 7.0082e-04 1.4367e-04
conv. rate 2.1654 1.6114 2.1903 2.1948 2.1694 2.0363

On the other hand, Figs. 4.5 and 4.6 shows a comparison of two solution plots
for the Earth-to-Mars orbit transfer problem obtained by using the indirect method
and the present method, respectively. These series of plots include the history of the
thrust angle, the radius variation, and the velocity in both the radial and tangential
directions. At first glance, except for the control parameter profiles, the two sets of
solution plots are almost indistinguishable. The relative difference of the radii of the
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final orbit between the two solutions is smaller than 0.01. As shown in Fig. 4.6, the
only noticeable difference for the control parameter profile is that the discontinuity of
the direct solution near the middle of the computational domain is stronger than that
of the indirect solution. To evaluate the performance of our method and the indirect
method, we perform the numerical simulation by using two computed control profiles
as shown in Fig. 4.6 as the guidance law. We compare the simulation errors at the
final time (Eq. (4.3)). Here, the explicit fourth-order Runge-Kutta time-integrator is
used for the simulation. We find that our method produces more accurate numerical
results than the indirect method does. The numerical errors for our methods are
3.9e-3 and 1.5e-3, respectively, which is one order of magnitude smaller than the ones
for direct method. (2.4e-2 and 6.2e-2). We should mention that such discontinuity
is mainly due to the domain of the control variable θ chosen to be [−π, π], also see
[11, 32]. On the other hand, the right of Fig. 4.6 shows a mathematically equivalent
plot but now defined in [0, 2π], which is continuous everywhere. This figure suggests
that we control the thrust angle rapidly around t = 1.6 to steer the spacecraft toward
a feasible point of orbit insertion.

4.5. Typical numerical solutions for the three-stage launch problem.
In this subsection, we present a typical numerical solution of a three-stage launch
vehicle problem for the case that the weight of the payload is set to be 100 kg. The
numerical solution is obtained on the grid with 32 subintervals for each phase. In this
case, the launch vehicle achieves the orbit insertion point at 410.80 sec, including a
coasting-flight period of 97.76 sec. Fig. 4.7 shows the histories of the controlled pitch
angle, the velocity, the down range, and the optimal trajectory.

We next study how the payload weight affects the optimal trajectory of the launch
vehicle. As shown in Fig. 4.8, all optimal trajectories are similar with different payload
weights, except for the duration of the coasting-flight period. The coasting flight time
becomes longer as the weight of the payload increases. Also, when the weight of the
payload is less than 43 kg, the launch vehicle does not require a coasting-flight period
in the space mission.

4.6. Performance evaluation of the LNK algorithm. We further numeri-
cally investigate the robustness and the efficiency of our proposed algorithm, where
the BFGS formula is used for the update of the Hessian matrix B(k). To begin with,
we build an initial Hessian matrix B(0) by using the AD approach. For comparison
purposes, we also report the numerical results obtained by using the FD and AD
approach for all Hessian matrices H(k). We refer to these three solution algorithms as
BFGS, FD, and AD, respectively. For FD, the second-order central difference formula
(3.2) with η = 10−3 and ξ = 10−3 is used. For AD, an open Matlab source code [12]
is employed. Besides, for all cases, the Jacobian matrices of the constraint G(k) are
computed approximately by using a forward finite difference scheme. Tables 4.5 and
4.6 show the total number of Newton iterations, the average number of GMRES
iterations per Newton iteration, and the computing time in seconds spent by the
proposed algorithm with different grid sizes. The timing percentages spent by some
selected main components are also included. Fig. 4.10 presents the history of the
nonlinear residual norm, ‖F (k)‖ of AD and BFGS with or without using backtracking
techniques. We summarize some key findings observed from the tables as follows:

1. For the Earth-to-Mars problem, we find that the number of Newton iterations
increases as the grid is refined no matter which approaches are used for the
Hessian matrix construction. This is a typical example of the problem with
local nonlinearity. The Newton-type method becomes hard to converge as
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Fig. 4.5. A comparison of two numerical state variables of the Earth-to-Mars orbit transfer
problem obtained by using the indirect method (left column) and the our method (right column),
respectively.

stronger local nonlinearity exists. One possible solution is to employ some
nonlinear preconditioner to enhance the efficiency and robustness of the inexact
Newton method. Interested readers are referred to [15, 16, 34] for details. On
the other hand, we notice that in some cases, FD and AD might converge to
some unphysical local minimum or saddle point, see Fig. 4.9, while BFGS
converges nicely to the desired solution. The performance index for the
unphysical case is 1.504 which is slightly worse than one for the physical case
(1.525).
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Fig. 4.8. A comparison of optimal trajectories for different payload weights.
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2. Fig. 4.10 suggests that AD exhibits local quadratic convergence behavior,
while BFGS only has super-linear convergence, as expected, which reflects the
different typical nature of the Newton-type and the quasi-Newton methods.
Besides, the importance of the merit function and backtracking process is
evident. AD without the backtracking technique results in either convergence
failure or a slower rate of convergence.

3. GMRES in conjunction with ILUPT preconditioner is quite effective: the
average numbers of GMRES iterations are all less than five and are almost
independent of the problem size.

4. The data listed in the fourth and fifth columns indicates that the most
computationally demanding part of the entire algorithm is on the construction
of the Hessian matrix. This component contributes more than 72% of the
total computing time for all cases. On the other hand, for PDE-constrained
optimization problems, we have a different situation: the most expensive
component is typically on the numerical solution of the KKT system.

5. BFGS demonstrates an excellent speedup compared with AD and FD. BFGS
is eight times faster than AD and FD.

Table 4.5
The Earth-to-Mars orbit transfer problem. A comparison of the FQLNK algorithm with three

approaches for constructing the KKT system. The symbol “*" indicates that the FQLNK algorithm
converges to a unphysical local minimum.

# subint. Newton Avg. GMRES Avg. Hessian Avg. KKT Total Speedup
Ites Ites Form (sec) Solve (sec) Time (sec)

FD
8 6 1.2 0.29 (97.2%) 0.001 (<1%) 1.79 –
16 8 1.4 0.98 (99.1%) 0.002 (<1%) 7.91 –
32 8 1.8 3.62 (99.5%) 0.003 (<1%) 29.11 –
64 14 2.0 13.81 (99.6%) 0.010 (<1%) 194.07 –

128∗ 21 2.1 52.60 (99.8%) 0.051 (<1%) 1107.38 –
AD

8 6 1.2 0.28 (94.4%) 0.007 (<1%) 1.78 1.0x
16 8 1.4 0.50 (95.7%) 0.004 (<1%) 4.13 1.9x
32 8 1.8 1.20 (98.5%) 0.005 (<1%) 9.75 3.0x
64 14 2.0 3.18 (98.7%) 0.010 (<1%) 45.12 4.3x

128∗ 21 2.1 18.92 (99.4%) 0.045 (<1%) 399.71 2.8x
BFGS

8 14 1.3 0.03 (76.3%) 0.003 (7.6%) 0.55 3.3x
16 17 1.8 0.04 (72.3%) 0.003 (5.4%) 0.94 8.4x
32 16 2.0 0.10 (78.4%) 0.009 (7.1%) 2.04 14.3x
64 14 2.0 0.27 (77.9%) 0.043 (12.4%) 4.85 40.2x
128 15 2.1 1.45 (83.0%) 0.231 (13.1%) 26.22 42.2x
256 25 3.0 7.21 (83.2%) 1.320 (15.2%) 216.62 –

4.7. An extension to the problem with inequality constraints. Now, we
consider the OCP1 problem along with an additional mixed state and control constraint,
i.e.,

(4.5) − π

36 ≤ ϕ(t)− θ(t) ≤ π

36 , t ∈ [0, 40]

Many numerical techniques are available for handling the inequality constraint condi-
tion: active set methods [20], barrier function methods, semismooth Newton meth-
ods [35], and the introduction of a slack variable, to name a few. Our proposed
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Table 4.6
The three-stage launch vehicle problem. A comparison of the FQLNK algorithm with three

approaches for constructing the KKT system.

# subint. Newton Avg. GMRES Avg. Hessian Avg. KKT Total
Ites Ites Form (sec) Solve (sec) Time (sec) Speedup

FD
8 7 3.0 16.14 (99.7%) 0.004 (<1%) 113.32 –
12 8 3.0 32.19 (99,8%) 0.009 (<1%) 258.13 –
16 9 3.6 53.76 (99.8%) 0.015 (<1%) 484.74 –
32 8 2.9 190.21(99.9%) 0.072 (<1%) 1523.54 –

AD
8 10 2.8 2.64 (98.1%) 0.004 (<1%) 26.92 4.2x
12 11 2.7 5.64 (98.6%) 0.008 (<1%) 62.76 4.1x
16 10 3.2 9.68 (99.1%) 0.014 (<1%) 97.72 5.0x
32 10 4.1 101.10 (99.8%) 0.088 (<1%) 1013.40 1.5x

BFGS
8 23 3.5 0.16 (72.7%) 0.018 (8.2%) 5.06 22.4x
12 24 3.0 0.30 (74.0%) 0.040 (9.9%) 9.73 26.5x
16 20 4.5 0.59 (77.4%) 0.085 (11.1%) 15.24 31.8x
32 20 4.7 5.37 (90.0%) 0.420 (7.0%) 119.29 12.7x
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Fig. 4.9. Earth-to-Mars orbit transfer problem. An unphysical local minimum is obtained by
FD. The performance index for this case is 1.516, which is worse than the case obtained by BFGS,
1.525.

FQLNK algorithm is general and can be readily employed in conjunction with one
of these techniques with some modification. For illustration purposes, we use the
slack variable approach ([14], p.64), which is relatively simple, along with FQLNK.
Our FQLNK code developed only for equality constraints can be generalized to the
trajectory optimization with inequality constraints in a straightforward manner, and
the overhead of our FQLNK is expected to be rather marginal. As shown on the left
of Fig. 4.11, the right inequality condition, α < π/36, has already been satisfied in
the original solution. Hence, we introduce a new slack variable ε to reformulate the
one-sided inequality constraint only on the left of the equality constraint condition.

(4.6) − π

36 ≤ ϕ(t)− θ(t) ⇒ ϕ− θ + π

36 − ε
2 = 0.
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Fig. 4.10. Earth-to-Mars orbit transfer problem. History of nonlinear residual norms for AD
and BFGS with/without the backtracking technique.

Then the mixed state and control equality constraint (4.6) is discretized on each grid
point as we did before for the dynamic constraints and FQLNK can be directly applied.
Note that the discrete slack variables are treated as some new auxiliary components
of the full space unknown vector and their values are determined when the optimal
solution has been found by FQLNK. Fig. 4.11 displays a comparison of histories of
two angles of attack before (right) and after (left) the inequality condition (4.5) is
imposed.
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Fig. 4.11. A comparison of histories of the angle of attack before (left) and after (right)
inequality constraints imposed for the three-stage launch vehicle problem.

5. Concluding remarks. In this work, we proposed and studied the full-space
quasi Lagrange-Newton-Krylov method for solving the parameter optimization problem
resulting from the optimal trajectory design in aerospace applications. One of the main
contributions was to show numerically that using the BFGS was an efficient way to
construct the Hessian matrix in the KKT system. The BFGS-based FQLNK algorithm
exhibited an impressive speedup compared to the FD- and AD-based ones. Other key
ingredients of the FQLNK algorithm included the efficient ILU type preconditioner for
GMRES in the numerical solution of the KKT system that provided a high quality of
Newton search direction, along with an appropriate merit function and backtracking
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technique that assured the progress of the inexact Newton method toward the desired
solution. Taking both the three-stage launch vehicle problem and the Earth-to-Mars
orbit transfer problem as numerical examples, we demonstrated the robustness and
efficiency of the FQLNK algorithm for solving trajectory optimization problems. Our
numerical results showed the BFGS-based FQLNK algorithm was a promising approach
for solving trajectory optimization problems with aerospace engineering applications.
Some further possible works along this research direction include the extension of
3D dynamic constraints for the motion of launch vehicles and the generalization of
multi-objective optimization problems [19], which are currently under development.

Acknowledgements. The authors thank the anonymous reviewers for construc-
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