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Abstract. The class of Newton methods is popular for solving large sparse nonlinear algebraic
systems of equations arising from the discretization of partial differential equations. The method
offers superlinear or quadratic convergence when the solution is sufficiently smooth and the initial
guess is close to the desired solution. However, in many practical problems, the solution may exhibit
some non-smoothness in part of the computational domain, due to, for example, the presence of a
shock wave. In this situation, the convergence rate of Newton type methods deteriorates considerably.
In this paper, we introduce a two-level nonlinear elimination algorithm, in which we first identify
a subset of equations that prevents Newton from having the fast convergence and then iteratively
eliminate them from the global nonlinear system of equations. We show that such implicit nonlinear
elimination restores the fast convergence for problems with local non-smoothness. As an example,
we study a compressible transonic flow in a shocked duct.
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1. Introduction. In [13], an interesting nonlinear elimination algorithm (NE)
was introduced for solving large sparse nonlinear systems of equations whose solution
is badly scaled in part of the computational domain. The key idea of NE is to
implicitly remove these components and obtain a better balanced system for which
the classical inexact Newton method can be applied. The technique works extremely
well for some relatively simple cases, and several recent attempts motivated by this
technique have been made in order to make inexact Newton methods work for other
nonlinear systems [3, 4, 5, 6, 7, 10, 11, 12]. In NE, an important step is to iteratively
eliminate the identified bad component using a subdomain Newton method, which by
itself may fail or take too many iterations to converge. In [13] it was suggested that
the nonlinear elimination algorithm can be used in a nested fashion; i.e., NE can be
used inside the outer NE when the regular inexact Newton fails to converge in the
implicit removing step for the subnonlinear system. Even though the idea of nested
NE is simple, but it has never been studied and to actually realize it is quite difficult.
The aim of this paper is to formulate a two-level NE and embed it into the classical
inexact Newton methods, which can be interpreted as a nonlinear Schur complement
algorithm.

We briefly recall the classical inexact Newton algorithm with backtracking (INB)
[8, 9], which is used as the basic building block of our algorithms for the global and
some subnonlinear systems. Consider a given nonlinear function F (x): Rn → Rn, we
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are interested in finding a vector x∗ ∈ Rn, such that

F (x∗) = 0,(1.1)

starting from an initial guess x(0) ∈ Rn. Here F = (F1, . . . , Fn)T , Fi = Fi(x1, . . . , xn),
and x = (x1, . . . , xn)T .

Algorithm 1.1 (Inexact Newton with Backtracking (INB)).

Given x(0)

Evaluate F (x(0)) and ‖F (x(0))‖
Set k = 0
While (‖F (x(k))‖ > ε1‖F (x(0)‖) and (‖F (x(k))‖ > ε2) do

Compute the Jacobian matrix F ′(x(k))
Inexactly solve the Jacobian system F ′(x(k))s(k) = −F (x(k))
Update x(k+1) = x(k) + λ(k)s(k), where λ(k) ∈ (0, 1] is determined to

satisfy
‖F (x(k) + λ(k)s(k))‖ ≤ (1 − αλ(k))‖F (x(k))‖

Set k = k + 1
End While

Here ε1 and ε2 are the relative and absolute stopping conditions. For the appli-
cations that we are interested, n is usually large, and in this case, the algorithm has
three expensive operations: the evaluation of F (·), the construction of the Jacobian
matrix, and the solve of the Jacobian system. It is important to note that all three
operations are global in the sense that all components of x and F are involved in all
three operations. However, as observed in many numerical experiments, the trigger of
these expensive “all components involved” operations is often local. In other words,
only a small number of F1, F2, . . . , Fn are large and these “bad components” are not
random, they are often associated with certain interesting physics of the solution of
the PDE. For example, in the shocked duct flow problem that we are looking at, all
these “bad components” are associated with the shock wave located in a small region
inside the computational domain. In other applications, they may be associated with
a boundary layer or other local singularities [13, 14, 16]. NE is a subproblem solver
inside a global INB that is designed to smooth out these “bad components” so that
the total number of global INB is reduced.

The rest of the paper is organized as follows. In Section 2, we formulate the
multilevel NE algorithm. We describe a shocked duct flow problem in Section 3. Some
numerical results and concluding remarks are given in Sections 4 and 5, respectively.

2. Multilevel nonlinear elimination algorithms. We begin with the one-
level nonlinear elimination algorithm. The first step is to split the residual compo-
nents, F1, F2, ..., Fn, into two sets consisting of the “bad components” to be eliminated
and the good components to be solved by the classical inexact Newton algorithm. Let
I = {1, 2, . . . , n} be an index set; i.e. one integer for each unknown xi and each resid-
ual function Fi. Assume that Sb

1 (“b” for bad) is a subset of I with m components
and Sg

1 (“g” for good) with (n − m) components is its complement; that is

I = Sb
1 ∪ Sg

1 .

Usually m ≪ n. For this partition, we define two subspaces

V b
1 = {v|v = (v1, ..., vn)T ∈ Rn, vk = 0 if k /∈ Sb

1}
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and

V g
1 = {v|v = (v1, ..., vn)T ∈ Rn, vk = 0 if k /∈ Sg

1},

respectively, and the corresponding restriction operators, Rb
1 and Rg

1, which transfers
data from Rn to V b

1 and V g
1 , respectively. Here, we use the subscript 1 to indicate the

partition, the subspaces, and the restriction/interpolation operators at the first level,
which is used to distinguish the corresponding ones defined later at the second level.
Using the restriction operator Rb

1, we define the sub-nonlinear function FSb
1

: Rn → V b
1

as

FSb
1

(x) = Rb
1(F (x)).

For any given x ∈ Rn, T b(x): Rn → V b
1 is defined as the solution of the following

subspace nonlinear system,

FSb
1

(Rg
1x + T b(x)) = 0.(2.1)

Using the subspace mapping functions, we introduce a new global nonlinear function,

y = G(x) ≡ Rg
1x + T b(x).

Note that for a given x, the evaluation of G(x) is not straightforward, a nonlinear
system corresponding to the subspace V b

1 has to be solved using either the classical
INB algorithm restricted to the subspace V b

1 or a NE algorithm in the subspace V b
1 .

Let us summarize the above procedure as the following algorithm.
Algorithm 2.1 (Evaluate y = G(x)).

If flag=0 then y = x else
If flag=1: one-level nonlinear elimination:
Solve (2.1) by INB using Rb

1x as an initial guess.
If flag=2: two-level nonlinear elimination:
Solve (2.1) by one-level NE using Rb

1x as an initial guess.
endif
Compute y = Rg

1x + T b(x)
Here flag is an input parameter from somewhere else of the algorithm to indicate

if a nonlinear elimination is needed and if the one-level or two-level NE is to be called.
Two-level NE becomes necessary when the local problem (2.1) is still too difficult to
solve by INB, and in this case, another partition of the index set Sb

1 into two subsets
is needed, i.e. Sb

1 = Sb
2 ∪ Sg

2 . At the second level for the subset Sb
1 two subspaces

of Rn, V b
2 and V g

2 , the corresponding restriction operators, Rb
2 and Rg

2, as well as
sub-nonlinear function FSb

2

can all be defined in a manner similar to the ones at the
first level.

Now NE in conjunction with INB can be realized in the following algorithm.
Algorithm 2.2 (INB-NE).

Given x(0). Set k = 0 and flag= 1
Compute y(0) = G(x(0)).
Evaluate F (y(0)) and ‖F (y(0))‖
While (‖F (y(k))‖ > ε1‖F (y(0)‖) and (‖F (y(k))‖ > ε2) do

Compute F ′(y(k))
Inexactly solve F ′(y(k))s(k) = −F (y(k))
Update x(k+1) = x(k) + λ(k)s(k), where λ(k) is determined to satisfy
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‖F (G(x(k) + λ(k)s(k)))‖ ≤ (1 − αλ(k))‖F (y(k))‖
Compute y(k+1) = G(x(k+1))
Evaluate F (y(k+1)) and ‖F (y(k+1))‖
If ‖F (y(k))‖ < ε3‖F (y(0))‖ then flag=0
Set k = k + 1

End While

INB-NE can be interpreted as follows. Find the solution y∗ ∈ Rn of (1.1) by
solving a right nonlinearly preconditioned system, F (G(x∗)) = 0. Once x∗ is found,
the solution of the original system can be obtained as y∗ = G(x∗). It was shown
theoretically in [13] that under certain assumptions, INB-NE possesses local quadratic
convergence provided that the subspace nonlinear problems (2.1) are solved exactly.
Note that if F (x) is linear, i.e.

F (x) ≡

(
B E
F C

)(
Rb

1x
Rg

1x

)
−

(
f
g

)
=

(
0
0

)

then

y =

(
T b(x)
Rg

1x

)
=

(
−B−1E(Rg

1x) + B−1f
Rg

1x

)
.

As a consequence, solving F (G(x)) = 0 is mathematically equivalent to decouple it
into two steps: first solve the reduced system, U(Rg

1x) = g−FB−1f , where U = C −
FB−1E is the Schur complement matrix then compute Rb

1x = −B−1E(Rg
1x)+B−1f .

However, rather than solving the Schur complement system, in practice, it is desirable
and often more efficient to solve the full system, since the Schur complement is denser,
and good preconditioners may not be available.

Note that in our approach the subproblem corresponding to the bad components
is simply a restriction of the global nonlinear system to the subdomain, not a Schur
complement of the global system with respect to the subdomain consisting of the bad
components. The Schur complement approach is considerably more expensive and is
not studied in this paper.

Since the extra function evaluations of G(x) are needed, NE is intended for the
cases, in which INB fails to converge or experiences unacceptably slow convergence.
As suggested by [13](the bottom of pp. 555), when the intermediate solution is close
to the exact solution, NE is switched back INB by letting G(x) = x. The switching
condition is controlled by ε3 in Algorithm 2.

3. A shocked duct flow problem. Compressible flows passing through a
diverge-converge duct are governed by the compressible Navier-Stokes equations [1, 2].
Instead of solving Navier-Stokes equations, we consider a simpler model problem, a
quasi-one-dimensional full potential problem [6, 16] defined on the interval, 0 ≤ x ≤ 2,
as follows.

{
(A(x)ρ(φx)φx)x = 0,
φ(0) = 0 and φ(L) = φR,

(3.1)

where A(x) is the area of the cross-section of the duct at x

A(x) = 0.4 + 0.6(x − 1)2
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and the density function is described as

ρ(u) = (c2)
1/(γ−1)

=

(
1 +

1

2
(γ − 1)(1 − u2)

) 1

γ−1

.(3.2)

Here γ = 1.4 is the specific heat for air, u = φx is the flow velocity, and c is the speed
of sound. See the left figure of Fig. 3.1 for the geometric configuration of the shocked
duct flow problem. Although this problem looks quite simple, it is still considered
as a difficult test problem for the convergence of inexact Newton methods because
the solution has a strong shock as the value of φR becomes larger than 1.15 in the
domain, as shown in Fig. 3.1 (right figure). The flow is supersonic at the points in
the interval (0,2), where the Mach number, M = |u|/c, is greater than 1.

Fig. 3.1. Left: transonic flow in a converge-diverge duct; Right: Mach number curves for
different right boundary condition φR, grid size h = 1/256.
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To approximate (3.1) by a standard finite difference method, we begin by intro-
ducing a uniform grid 0 = x0 < x1 < x2...... < xn = 2 with the grid size h = 2/n.
Let Φ = (φh

1 , φh
2 , · · · , φh

n−1)
T be the numerical approximations at these interior grid

points. We define points, xi−1/2 and xi+1/2, as the midpoints of subintervals [xi−1, xi]
and [xi, xi+1], respectively. Consider the subinterval [xi−1/2, xi+1/2], we approximate
(Aρ(φx)φx)x at the point xi using a second-order centered finite difference method,
i.e.

Ai+ 1

2

ρi+ 1

2

φh
i+1 − φh

i

h
− Ai− 1

2

ρi− 1

2

φh
i − φh

i−1

h
h

= 0.

For the leftmost grid point, we have A 3

2

ρ 3

2

(φh
2 − φh

1 ) − A 1

2

ρ 1

2

φh
1 = 0 and for the

rightmost grid point we have An− 1

2

ρn+ 1

2

(K −φh
n−1)−An− 3

2

ρn− 3

2

(φh
n−1 −φh

n−2). Here

Ai±1/2 = A((xi±1 ± xi)/2) and ρi±1/2 = ρ((φx)i±1/2).
For purely subsonic flows, using (3.2) for calculating the flow density is sufficient.

However, for transonic flows, this formulation needs to be modified in order to capture
the shock. By applying a first-order density upwinding scheme as suggested by Young
et al. [14, 16], a modified flow density value at the point xi+1/2 is expressed as

ρ̃i+ 1

2

= ρi+ 1

2

− µ̃i+ 1

2

(ρi+ 1

2

− ρi− 1

2

),

where the switching parameter µ̃i+ 1

2

is defined as µ̃i+ 1

2

= max{µi− 1

2

, µi+ 1

2

, µi+ 3

2

}

with µi+1/2 = max{0, 1 − M2
c /M2

i+1/2}. Here Mc is called the cutoff Mach number
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and Mi+1/2 is the numerical Mach number at xi+1/2 given by

Mi+1/2 ≈ (ux)i+1/2/ρ
1

γ−1

i+1/2 ≈

(
φh

i+1 − φh
i

h

)
/ρ

(
φh

i+1 − φh
i

h

) 1

γ−1

.

In summary, the discrete shocked duct flow problem can be written as a large
sparse nonlinear system of algebraic equations,

F (Φ) = 0,(3.3)

where F (Φ) = (F1(Φ), F2(Φ), · · · , Fn(Φ))T with Fi defined as

Fi(Φ) =





(A 3

2

ρ̃ 3

2

)φh
2 − (A 3

2

ρ̃ 3

2

+ A 1

2

ρ̃ 1

2

)φh
1

(Ai+ 1

2

ρ̃i+ 1

2

)φh
i+1 − (Ai+ 1

2

ρ̃i+ 1

2

+ Ai− 1

2

ρ̃i− 1

2

)φh
i + (Ai− 1

2

ρ̃i− 1

2

)φh
i−1

for any 2 ≤ i ≤ n − 2
(Ai+ 1

2

ρ̃i+ 1

2

)K − (An− 1

2

ρ̃n− 1

2

+ An− 3

2

ρ̃n− 3

2

)φh
n−1 + (An− 3

2

ρ̃n− 3

2

)φh
n−2.

In our implementation, the Jacobian matrix of F (Φ) is constructed approximately
by using the forward finite differences. Note that for the case of purely subsonic flows,
the formulation (3.3) leads to a symmetric, weakly diagonally dominant, tridiagonal
Jacobian matrix, while for the case of transonic flows the associate Jacobian is non-
symmetric due to the derivative of the upwinding density coefficient ρ̃i± 1

2

correspond-
ing to the supersonic region.

4. Numerical experiments and observations. In this section, we present
some numerical results for solving the shocked duct flow problem (3.3) using the
classical inexact Newton method and the new algorithm. The stopping condition for
Newton is

‖F (x(k))‖ ≤ max{10−8‖F (x(0))‖, 10−10},

and a linear initial guess that interpolates the boundary conditions is used for Newton
for all test cases. In our implementation of the classical inexact Newton method with
backtracking, as described in Algorithm 1.1, a right preconditioned GMRES [15] is
used for solving the global Jacobian system with zero initial guess. The stopping
condition for GMRES is

‖F (x(k)) + (F ′(x(k))M−1
k )(Mks(k))‖ ≤ max{η‖F (x(k))‖, 10−10}.

Here η = 10−6 and M−1
k is a block Jacobi preconditioner constructed using the matrix

F ′(x(k)). In the tests, we partition the computational domain into 15 non-overlapping
subdomains and therefore M−1

k has 15 blocks. The global Newton step is updated by

x(k+1) = x(k) + λ(k)s(k).

The step length, λ(k) ∈ [λmin, λmax] ⊂ (0, 1], is selected so that

‖F (x(k) + λ(k)s(k))‖ ≤ (1 − αλ(k))‖F (x(k))‖,

where the two parameters λmin and λmax act as safeguards, which are required for
strong global convergence and the parameter α is used to assure that the reduction of
‖F‖ is sufficient. Here, a quadratic linesearch technique [8] is employed to determine
the step length λ(k), with α = 10−4, λmin = 1/10 and λmax = 1/2.

In the implementation of the new algorithm, two more nested Newton solvers are
needed. We simply use the inexact Newton just described for all nonlinear solvers.
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4.1. Classical inexact Newton. We first show some results using the inexact
Newton methods with and without backtracking for solving the problem. In Table
4.1, we show the number of Newton iterations on three grids of size 1/64, 1/128 and
1/256 with four different boundary conditions φR = 0.5, 1.0, 1.15, 1.18. For this set
of tests, the inexact Newton without backtracking fails to converge when the grid
is fine and φR is large, but INB converges in all cases. However, the stronger the
shock wave is the more INB iterations are needed for convergence. In the left figure of
Fig. 4.1, we show the convergence history of INB on the three different grids. For all
cases, INB converges rapidly at the beginning (the nonlinear residual is reduced by
more than one order of magnitude in the first few iterations) and then stagnates for
a while before exhibiting the quadratic convergence behavior. Clearly, the finer the
grid the longer the stagnation period becomes. To understand how INB updates the
intermediate solution during the stagnation period, we focus on the case with grid size
equals to 1/128. INB takes 223 steps to converge, and the 11 selected Mach curves
corresponding to the computed velocities are shown in the right figure of Fig. 4.1. It is
interesting to observe that at most grid points the solution convergence happens after
the second INB iteration, and the rest of the INB iterations are devoted exclusively
for grid points near the shock. Note that, practically speaking, after the second INB,
the Newton corrections are needed only in the neighborhood of the shock, but the
Newton calculations (including the nonlinear residual evaluation and the Jacobian
solve) are actually carried out for the whole computational domain. This is clearly a
waste of computation!

Table 4.1
A comparison of the number of iterations of inexact Newton without backtracking (IN) and

INB. ‘Div.’ means divergence.

IN
grid sizes (h) 1/64 1/128 1/256

φR = 0.50 3 3 3
φR = 1.00 6 6 6
φR = 1.15 13 22 Div.
φR = 1.18 14 25 Div.

INB
φR = 0.50 3 3 3
φR = 1.00 4 4 4
φR = 1.15 46 223 735
φR = 1.18 83 278 1009

To further understand the situation from an algebraic viewpoint, we partition
the interval Ω = (0.0, 2.0) into three subintervals, Ω1 = (0.0, 0.8), Ω2 = (0.8, 1.3),
and Ω3 = (1.3, 2.0), with the middle interval contains the shock. Correspondingly,
we partition the nonlinear vector-valued function F (·) into three pieces, F1(·) for the
subinterval to the left of the shock neighborhood, F2(·) for the subinterval contain-
ing the shock neighborhood, and F3(·) for the subinterval to the right of the shock
neighborhood. Note that the solution components at the grid points in Ω1 ∪ Ω3 rep-
resent the good components while the ones in Ω2 correspond to the bad components.
In Fig. 4.2, we show the residual of a test run on a h = 1/128 grid using INB. We
include the history of the complete residual ‖F‖, the smooth part of the residual√
‖F1‖2 + ‖F3‖2, and the non-smooth part of the residual ‖F2‖. It is important to

note that the residual is completely dominated by F2; the two curves virtually sit on
top of each other in Fig. 4.2.



8 F.-N. HWANG, H.-L. LIN, and X.-C. CAI

Fig. 4.1. Left: Convergence history of INB norm of nonlinear residuals for different grid sizes.
φR = 1.15; Right: Convergence history of Mach number curves, h = 1/128.
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4.2. One-level INB-NE. On the other hand, in Fig. 4.3, we show the residual
of the same test case on a h = 1/128 grid as in Fig. 4.2 by using the one-level INB-NE
algorithm (INB-NE1), in which the bad component near the shock is eliminated with
an inner Newton iteration. It is clear that, after the elimination, the component F2 is
no longer the dominant term in the overall residual, and the convergence of the outer
Newton takes only 5 iterations.

When using INB-NE1, a key question is how to properly pick the bad components.
In Table 4.2, we show the number of iterations with different choices of the “bad”
interval. Note that the shock is located at the point near x = 1.2. As mentioned
before, to exactly solve the local problem is essential for the fast convergence of INB-
NE1. In practice, from our numerical experiences, the elimination calculation has to
be carried out with a certain degree of accuracy. Otherwise, INB-NE1 may fail to
converge. Hence, for the results in Table 4.2, we use the following stopping condition

‖FSb
1

(x
(k)
b,1 )‖ ≤ max{10−8‖FSb

1

(x
(0)
b,1)‖, 10−10}

for the nonlinear system, and

‖FSb
1

(x
(k)
b,1 ) + F ′

Sb
1

(x
(k)
b,1 )s(k)‖ ≤ max{10−2‖FSb

1

(x
(k)
b,1 )‖, 10−10}
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Fig. 4.3. After nonlinear elimination, the nonlinear residual of INB corresponding the good
components becomes more dominant and INB converges very fast. h = 1/128. Note that the curves
corresponding to ‖F1 + F3‖ and ‖F‖ are virtually on top of each other.
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for the subdomain Jacobian system, which is solved by GMRES without precondi-
tioning. Table 4.2 suggests that the appropriate subinterval of the “bad” components
should include all grid points near the location of the duct throat and the shock.

Table 4.2
Subinterval selection for INB-NE1: h = 1/128, ε3 = 10−6.

subinterval its subinterval its subinterval its subinterval its subinterval its
[0.8, 1.0] 144 [0.9, 1.0] 162 [1.0, 1.1] 167 [1.1, 1.2] 40 [1.2, 1.3] 208
[0.8, 1.1] 92 [0.9, 1.1] 115 [1.0, 1.2] 9 [1.1, 1.3] 40 [1.2, 1.4] 197
[0.8, 1.2] 6 [0.9, 1.2] 8 [1.0, 1.3] 7 [1.1, 1.4] 41 [1.2, 1.5] 154
[0.8, 1.3] 6 [0.9, 1.3] 7 [1.0, 1.4] 7 [1.1, 1.5] 24
[0.8, 1.4] 6 [0.9, 1.4] 5 [1.0, 1.5] 7
[0.8, 1.5] 8 [0.9, 1.5] 5

To make the INB-NE algorithm more efficient, it is wise to sometimes switch
to the outer INB iteration from the inner elimination iteration. This is controlled
by the parameter ǫ3 in Algorithm 2.2. In Table 4.3, we show the number of INB
iterations in the bad subdomain with different values of ǫ3. When ǫ3 is too large,
more outer iterations is needed, but below certain value, it is simply a waste of
computation. In Fig. 4.4, we show the history of Mach number distribution curves
corresponding to both x(k) and y(k). In Algorithm 2.2, x(k) is the solution from
the outer Newton iteration and y(k) is the modified x(k) with the subspace correction.
Note that NE correctly detects the location of the shock at the second iteration, but it
takes 77 iterations to solve the local problem. Clearly after the subspace correction,
the sequence y(k) converges quickly to the desired solution. Hence, the switching
should take place as soon as the location of the shock is detected. For experiments in
the rest of the section, we set ǫ3 = 10−4.

Table 4.4 summarizes the number of outer Newton iterations, the average number
of inner Newton iterations and the average number of GMRES iterations for solving
the global Jacobian systems in INB-NE1. We observe that once the bad components
are removed the total number of outer INB iterations stays small regardless the size of
the grid and the right boundary condition, which controls the strength of the shock.



10 F.-N. HWANG, H.-L. LIN, and X.-C. CAI

Table 4.3
The inner INB iteration numbers in INB-NE1 algorithm with different ε3. Subinterval:

[0.8, 1.3]. h = 1/128. φR = 1.15.

inner INB its
NE iteration ε3 = 10−2 ε3 = 10−4 ε3 = 10−6

0 3 3 3
1 5 5 5
2 77 77 77
3 32 32 32
4 0 34 34
5 0 0 34
6 0

Table 4.4
A summary of the number of the outer INB iterations, the average number of inner Newton

iterations per outer INB iteration and the average number of GMRES iterations for solving the
global Jacobian systems in INB-NE1 with ε3 = 10−4.

outer INB its, ave. inner INB its (ave. GMRES its)
(φR) subinterval h = 1/64 h = 1/128 h = 1/256
0.5 [0.8,1.3] 3,3.0 (30.0) 3,3.0 (30.0) 3, 3.0 (30.0)
1.00 [0.8,1.3] 4,3.8 (30.0) 4,3.8 (30.0) 4, 3.8 (30.0)
1.15 [0.8,1.3] 5,10.4 (31.2) 5,30.2 (31.2) 6,99.8 (32.7)
1.18 [0.8,1.7] 5,17.6 (32.4) 5,53.0 (32.2) 9,212.4 (33.6)

4.3. Two-level INB-NE. When using the one-level algorithm, as discussed in
the previous subsection, for some cases, the subspace Newton solver may need many
iterations (e.g. the cases of h = 1/256 with φR = 1.15 and 1.18 in Table 4.4) and
sometime the subspace Newton may even fail to converge. In this situation, one may
want to use the one-level algorithm recursively; i.e., further partition the subdomain
into “good” and “bad” sub-subdomains and then introduce a third Newton solver in
the “bad” sub-subdomain. For both levels, we use the following stopping condition

‖FSb
∗

(x
(k)
b,∗ )‖ ≤ max{10−8‖FSb

∗

(x
(0)
b,∗)‖, 10−10}

for the nonlinear systems, and

‖FSb
∗

(x
(k)
b,∗ ) + F ′

Sb
1

(x
(k)
b,∗ )s(k)‖ ≤ max{10−6‖FSb

∗

(x
(k)
b,∗ )‖, 10−10}

for the subdomain Jacobian systems, which are solved by GMRES without precondi-
tioning and with a zero initial guess. The notation “*” represents 1: 1st level or 2:
2nd level. In Table 4.5, we show the number of iterations of three nested INB itera-
tions for different choices of subintervals at each level. How to choose an appropriate
subinterval at each level is mostly empirical. From our numerical experiences, the
subinterval at the second level should be covered by that at the first level and both
subintervals should include the shock and the throat. Note that with this additional
level of nonlinear elimination, the number of INB iterations in the first level can be
kept small. Fig. 4.5 shows the history of Mach number curves corresponding to x
and the original solution y. Similar to INB-NE1, with the help of NE2, INB correctly
detects the location of the shock at the 1st iteration, and it takes only 5 NE iterations
to solve the local problem.
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Fig. 4.4. From top to bottom, from left to right: the outer iteration starting from 0 to 5 in
INB-NE1 for the Mach number curves corresponding to x and original solution y. Subinterval:
[0.8,1.3], h = 1/128, φR = 1.15, and ε3 = 10−4
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5. Concluding remarks and future work. When solving nonlinear system
of algebraic equations using inexact Newton methods, the convergence is often deter-
mined by a small number of equations in the system that are much more nonlinear
than the others. In the paper, we developed several methods that implicitly eliminate
these highly nonlinear components through an approximate inner subdomain Newton
iterations. The number of outer Newton iterations, which are considerably more ex-
pensive than the inner subdomain iterations, can be drastically reduced if the highly
nonlinear components are correctly identified and sufficiently removed. A shocked
duct flow problem was carefully studied. For this problem, all the bad components of
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Table 4.5
2nd level subinterval selections for INB-NE2. The number in the table are the number of 1st

level NE iterations, the average number of 2nd-level INB iterations, and the average number of the
inner-most INB iterations. Note that the duct throat is located at x = 1.0 and the shock is at around
x = 1.2. h = 1/128, φR = 1.15, and ε3 = 10−4

1st level subinterval 2nd level subinterval
[0.5,1.5] [0.8, 1.3] [0.9, 1.3] [1.0, 1.3]

4,4.8,25.8 4,4.8,18.7 4,5.5,15.7
[0.8,1.3] [0.85, 1.25] [0.95, 1.25] [1.05, 1.25]

5,6.4,37.7 5,4.0,22.1 5,5.0,17.0
[1.0,1.3] [1.05, 1.15] [1.1, 1.15] [1.10, 1.25]

7,8.2,17.3 7,17.3,11.8 7,13.3,23.9

the nonlinear system are near the shock wave, and our numerical results showed that
once these bad components are approximately removed, the number of outer Newton
iterations is reduced from over 200 to just 5, for a particular example on a h = 1/128
grid. A two-level version of the algorithm was also introduced using a combination of
the idea of two-level nonlinear elimination and classical inexact Newton type methods.

The focus of the paper was on the convergence of the one-level and two-level
algorithms and we did not discuss anything related to computing time. As a future
project, we will consider the extension of the algorithms to two and three dimen-
sional spaces. In INB-NE, a judicious choice of the bad subspace is crucial for fast
convergence of Newton methods. In the shocked duct flow problem, as illustrated
numerically in the previous section, this choice depends on the location of the shock.
We know where these bad components physically are and we observe that they do
not move during the solution process, hence Algorithm 2.2 can be employed. In prac-
tice, it may not always be possible to determine before hand which subsystem to be
eliminated. Therefore, it is necessary to develop a domain decomposition version of
Algorithm 2.2 [7], which extends NE where a single local problem is considered to
multiple local problems. The new nonlinear domain decomposition based algorithm
is able to identify this subspace without already knowing the solution profile and it is
more suitable for large scale parallel processing.
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