PARALLEL FULLY COUPLED SCHWARZ PRECONDITIONERS
FOR SADDLE POINT PROBLEMS*

FENG-NAN HWANG! AND XIAO-CHUAN CAI#

Abstract. We study some parallel overlapping Schwarz preconditioners for solving Stokes-
like problems arising from finite element discretization of incompressible flow problems. Most of
the existing methods are based on the splitting of the velocity and pressure variables. With the
splitting, fast solution methods are often constructed using various fast Poisson solvers for one of
the variables. More recently, several papers have investigated the so-called fully coupled approaches
in which the variables are not separated. The fully coupled approach has some advantages over
the variable splitting method when solving Stokes-like equations with many variables, where a good
splitting may be hard to obtain. In this paper we systematically study the parallel scalability of
several versions of the fully coupled Schwarz method for both symmetric and nonsymmetric Stokes-
like problems. We show numerically that the performance of a two-level method with a multiplicative
iterative coarse solver is superior to the other variants of Schwarz preconditioners.
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1. Introduction. We study some parallel fully coupled Schwarz preconditioned
iterative methods [36, 42, 43] for solving saddle point problems, which appear in
many areas of computational science and engineering [3, 4, 21, 32, 35, 40, 44]. Due to
the indefiniteness of saddle point problems the convergence of most iterative meth-
ods is often not guaranteed, and when they converge, the convergence rates of the
methods are sometimes too slow to be considered practical, especially for large-scale
applications. To resolve the situation, finding a good preconditioner is critical. In
this paper, we focus on two types of saddle point problems, namely the symmetric
Stokes problem discretized with a stabilized finite element method and the more gen-
eral, nonsymmetric Jacobian system arising in the Newton-Krylov-Schwarz (NKS)
algorithm for solving nonlinear incompressible Navier-Stokes equations. In NKS, the
Jacobian system has to be solved as a part of the nonlinear iteration, and is often the
most expensive part [17, 18, 23, 24, 25, 30]. The performance of Schwarz methods
depends on several important parameters, including the overlapping size, the quality
of the coarse and subdomain solutions, the coarse mesh size, as well as some physical
parameters of the continuous equations. We perform a large number of numerical ex-
periments to understand how these parameters affect the overall parallel performance
of Schwarz methods for both symmetric and nonsymmetric saddle point problems.
Our investigation is purely numerical, and to our knowledge, the corresponding opti-
mal convergence theory for Stokes-like problems is yet to be established.

Many iterative methods for solving saddle point problems are available, such as
Uzawa’s algorithms and their variants [7, 15, 33, 45], multigrid methods [5, 16, 23, 24,
25], Krylov subspace methods with block-type preconditioners [15, 17, 26, 27, 29, 41],
and domain decomposition methods [6, 28, 29, 30, 34, 45]. Most of the existing work
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explicitly uses the block structure of the discrete problem,

(1.1) (gﬁp)@):(g)

where C' is a symmetric positive definite matrix corresponding to a diffusion oper-
ator for the Stokes problem, B is a matrix corresponding to a discrete divergence
operator, and M, is a mass pressure matrix with a stabilization parameter «. The
block structure is obtained by using a variable splitting-based ordering of the un-
knowns. First, the velocity variables for all mesh points are ordered, followed by the
pressure variables for all mesh points. Even though the decoupled block structure is
non-physical, i.e. it splits the variables, velocity and pressure, which are supposedly
to be physically coupled at each mesh point, such algebraic structure is very useful in
the design and analysis of algorithms. The popular pressure projection methods, such
as the SIMPLE and SIMPLER algorithms [33], also known as Uzawa’s algorithms,
are typical examples of the fully decoupled solution strategy. These methods decou-
ple the discrete system (1.1) into two subsystems, the Schur complement system for
the pressure and the Laplacian system for the velocity; then Uzawa’s algorithm can
be constructed by solving these two subsystems iteratively. Also based on the block
structure of (1.1), the block diagonal preconditioner is constructed by dropping both
off-diagonal blocks [16, 18, 27, 29] and the block-triangular preconditioner is obtained
by replacing the lower off-diagonal block with a zero block [17, 26, 29, 41].

In contrast to the fully decoupled approaches, the Schwarz preconditioned iter-
ative methods are considered to be the fully coupled approaches in which the veloc-
ity and pressure variables are always coupled together throughout the computation.
Without being restricted to the block structure, the fully coupled methods can be
applied easily to other multi-component indefinite problems, such as the flow control
problem [4, 21, 35], which is one of the target applications of our algorithms and
software. Furthermore, it is also possible to generalize these preconditioners for the
purpose of nonlinear preconditioning, similar to the additive Schwarz preconditioned
inexact Newton algorithms [8, 9, 22]. The idea of the fully coupled methods for sad-
dle point problems is not new, and the methods have been studied in the context of
multigrid methods [5]. According to the multigrid results [23, 24, 25], the fully cou-
pled methods seem to be a better choice for saddle point problems over the decoupled
methods.

In this paper, we consider three types of Schwarz preconditioners. We begin
by studying the one-level additive Schwarz preconditioner [28], which is defined by
summing up the solutions of the Stokes problem defined on overlapping subdomains
with certain artificial boundary conditions. The main advantage of the one-level
Schwarz preconditioner is that all subproblems are independent of each other and
can be solved in parallel. However, as expected, its convergence rate, in terms of the
number of iterations, degenerates when the number of processors is large due to the
lack of communication between subdomains. For a fully scalable method, a coarse
mesh problem is required. Based on sequential numerical results [28], Klawonn and
Pavarino showed that the number of GMRES [39] iterations for the two-level additive
Schwarz methods for symmetric indefinite problems (Stokes and linear elasticity) with
minimal overlap using exact subdomain and coarse solvers is independent of the mesh
size and the number of subdomains, provided that the coarse mesh is sufficiently fine.
However, the parallel performance of Schwarz methods for saddle point problems was
not studied until the work in [44]. For the Stokes problem on unstructured meshes,



FULLY COUPLED SCHWARZ PRECONDITIONERS 3

Tuminaro et al. compared one-level methods with two-level methods using an inexact
LU as the subdomain solver and SuperLU [13], a parallel direct LU solver, as the coarse
solver. Their numerical experiments showed that although the two-level method seems
to be scalable in terms of the number of GMRES iterations, the computing time
increases more than 200% from 64 to 256 processors. A similar problem also arises in
the case of nonsymmetric indefinite problems (a thermal convection problem) solved
by a GMRES-multigrid method using two meshes, in which Gauss-Seidel is used as
the smoother and SuperLU is used as the coarse solver. One solution to the problem
of high computing time is to replace SuperLU with a less expensive inexact solver,
such as the one-step Schwarz-Richardson method as in [44]. Indeed, total computing
time can be saved to a certain extent, but both the number of GMRES iterations
and the computing time grow as the number of processors is increased. Therefore,
it seems to us that these two coarse solvers are either too expensive or too inexact
to be effective. In this paper, we propose and test a parallel preconditioned iterative
coarse solver so that the cost of the coarse solve can be controlled easily by adjusting
the coarse stopping condition. The preconditioner for the coarse mesh problem is the
same as the one-level additive Schwarz preconditioner, except that it is constructed
on a partitioned coarse mesh. For the two-level methods, the coarse mesh part of
the preconditioner can be incorporated into its local subdomain part either additively
or multiplicatively. All components of the two-level method are parallel, including
the coarse solver, and the restriction and interpolation operators. We show, through
parallel numerical experiments, that the performance of the two-level method with a
multiplicative iterative coarse solver is superior to the other two variants of Schwarz
preconditioners.

The paper is organized as follows. In Section 2, we describe the Stokes and
Jacobian problems arising from finite element discretization of incompressible flow
problems. We introduce three types of Schwarz preconditioners in Section 3. Then,
in Section 4, we present some numerical results obtained on a parallel computer.
Finally, conclusions and some remarks are given in Section 5.

2. Model problems and their stabilized finite element formulations. We
first consider the two-dimensional steady-state Stokes problem [20, 37], which can be
described as

—Au+Vp=f in Q,
(2.1) V-u=0 in Q,
u=9g on r,

where u = (u1,us)? is the velocity, p is the pressure, and f = (f1, f2)7 is the body
force. Here we assume that 2 is a bounded domain in R? with a polygonal boundary
T". Since only Dirichlet boundary condition is considered, the pressure p is determined
up to a constant. To make p unique, we impose the condition fQ pdx = 0.

To discretize (2.1), we use a stabilized finite element method on a given conforming
quadrilateral mesh 7" = {K} [20]. For each element K, we denote by hx as its
diameter. Let V" and P" be a pair of finite element spaces for the velocity and
pressure given by

Vh={v e (CO)NHYQ)?: v|x € Qi(K)? KeT"}
and

Ph={peC®(QNL*Q): plx € Q1(K), K eT"}.
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Here, C°(2), L?(Q2), and H'(2) are the standard notations with usual meanings in
the finite element literature [20]. For simplicity, our implementation uses a Q1 — Q1
finite element (continuous bilinear velocity and pressure). The weighting and trial
velocity function spaces V{* and Vgh are defined as

Vohz{'vGVh:'v:OonF}andVgh:{'UEVh: v=gonl}

Similarly, let the finite element space Pél be both the weighting and trial pressure

function spaces:
PéL:{pEPh:/pdx:O}.
Q

As suggested by [14], the stabilized finite element method for the steady-state
Stokes problem reads: Find u” € Vgh and p" € Pl, such that

(2.2) B(u",p";v,q) = F(v,q) V(v,q) € V§' x P}
with

B(U’»p;v7Q) = (VU,V’U) - (V’U,p) - (VU7Q)_
! Z hi(—Au + Vp, Au + Vq)k
KeTh

and

F(’U,q):(f,’l))—a Z h%{(f,A’U"‘V(])K
KeTh

In [14], Douglas and Wang showed that this method is stable and has the optimal
convergence for any choices of positive stabilization parameter a. We use a constant
of a = 1 throughout this paper. The equivalent matrix form of (2.2) can be written
as

(2.3) Az = b,

where A is a large, sparse, symmetric indefinite matrix, and x is a vector corresponding
to the nodal values of u = (u},u}) and p" in (2.2). In our implementation, we
number the unknown nodal values in the order of u?, u%, and p” at each mesh point.
The mesh points are grouped subdomain by subdomain for the purpose of parallel
processing. The subdomain partitioning will be discussed further in the next section.
Note that the linear system (2.3) can be written explicitly in the same block-structure
form as in (1.1) by rearrangement of the unknown variables in the order of u?, uf,
and p". We solve the linear systems (2.3) by a right preconditioned Krylov subspace

method, i.e.
(2.4) AM 'y =b, with z = M1y,

where M~ is called a right preconditioner to be defined in the next section.

In addition to the Stokes problem, we also consider some nonsymmetric indefinite
Jacobian systems that we have to solve in order to obtain search directions when
using NKS for solving incompressible Navier-Stokes equations. Briefly speaking, NKS
is a general framework for solving a large, sparse, nonlinear system of equations,
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Fi1G. 2.1. Nonzero pattern of the discrete Stokes matriz (left) and the Jacobian matriz (right)
for Re = 1,000 on a 32 X 32 mesh. nz is the number of nonzero elements.

Stokes problem: 32 by 32 Navier—Stokes: 32 by 32
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F(z*) = 0, arising from a discretization of nonlinear partial differential equations. As
its name suggests, NKS consists of three main components: a Newton-type method as
the nonlinear solver, a Krylov subspace method as the linear solver, and a Schwarz-
type method as the preconditioner. To be more specific, NKS can be described as
follows. Let z(9) be a given initial guess. Assume z(*) is the current approximation
of 2*. Then a new approximation z**1) can be computed by first finding a Newton
direction s®) by solving the following preconditioned Jacobian system approximately,

(2.5) J@"Y My = —F(z®), with s = M, 1y,

then obtaining the new approximation via z*+t1) = z(*¥) £ \(#)5(¥) "wwhere J(x) is the
Jacobian of F evaluated at z(®) and A(%) ¢ (0,1] is a damping parameter. In our
case, the nonlinear system, F(z) = 0, is obtained by applying Q1 — Q1 Galerkin least
square (GLS) finite element discretization [37] on the mesh 7" and the corresponding
Jacobian J is constructed by using a multi-colored forward finite difference method
[12]. Figure 2.1 is an example showing that the discrete Stokes problem in (2.3) and the
Jacobian matrix in (2.5) have similar nonzero structures. The matrix for the discrete
Stokes problem has about 3/4 the number of nonzero elements as in the Jacobian
matrix. The additional nonzero elements in the Jacobian matrix come from mainly
the derivatives of the convection and stabilization terms in GLS. For incompressible
Navier-Stokes equations, the Reynolds number (Re) plays an important role in the
behavior of the numerical solution and the convergence of iterative methods. Several
numerical difficulties arise due to high Re. It is well known that the convergence
radius for a Newton-type method becomes smaller as Re increases. Newton-type
methods often fail to converge when a good initial guess is unavailable. In this paper
we will not address the issues related to the robustness of Newton-type methods;
interested readers may consult [8, 9, 22, 40]. Instead, we restrict our study to the
parallel performance of Schwarz preconditioned Krylov subspace methods for solving
the Jacobian systems. Note that the Jacobian systems become more nonsymmetric
and ill-conditioned as Re increases.
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3. Fully coupled Schwarz methods. In this section, we introduce several
Schwarz preconditioners for the Stokes and Jacobian problems.

3.1. One-level additive Schwarz preconditioner. To define parallel Schwarz
type preconditioners we need to partition the finite element mesh 7" introduced in

the previous section. Let {Q i = 1,...., N} be a non-overlapping subdomain partition

whose union covers the enti;e domain Q and its mesh 7". We use Z;" to denote the

collection of mesh points in Qi‘ To obtain overlapping subdomains, we expand each

subdomain QF to a larger subdomain Q?"s with the boundary 89?’6. Here 4 is an

integer indicating the level of overlap. We assume that neither Q% nor 89?’6 cut any

elements of 7". Similarly, we use 7;}“5 to denote the collection of mesh points in Q?"S.
Now, we define the subdomain velocity space as

2

VI = {o" e VI (HY(QM) 0" =0 on 0Q"°}

and the subdomain pressure space as
Pl = {p" e PPN L2(QM°) : ph = 0 on 0QM\T'}.

Both are subspaces of V* and P", respectively, if all subdomain functions are extended
to the whole domain by zero. Note that for Q1 — Q)1 elements, each interior node has
three degrees of freedom, two for the velocity and one for the pressure. On the physical
boundaries, we impose Dirichlet conditions according to the original equations (2.1).
On the artificial boundaries, we assume both w = 0 and p = 0. Similar boundary
conditions are used in [29]. Although it is still not certain that these boundary
conditions are mathematically correct, they work well in practice. The subdomain
problem reads as follows: Find u? € V/* and p! € P!, such that

(3.1) B(ul,pt;v,q) = F(v,q) V(v,q) € V" x P!,
which takes the matrix form

Note that the right-hand side of (3.1) is not important, since we only use the left-hand
side matrix A; to define the subdomain preconditioner. The right-hand side is not
used at all in the computation.

Let R; : VI x PP — Vih X Pih be a restriction operator, which returns all degrees
of freedom (both velocity and pressure) associated with the subspace V/* x P!. R;
is an (3n; — 2d;)x(3n — 2d) matrix with values of either 0 or 1, where n and n;
are the total number of mesh points in 7" and ’];h’&, respectively. Similarly, » and
r; are total number of mesh points imposed the Dirichlet boundary conditions for
velocity in 7" and ’Tih’é, respectively. Since our subdomain partition is element-
based, Zf\il(i’)m —2r;) > 3n — 2r. Then, the interpolation operator RI can be
defined as the transpose of R;. The multiplication of R; (and RT) with a vector
does not involve any arithmetic operations, but does involve communication in a
distributed memory implementation. Using the restriction operator, we write the
one-level additive Schwarz preconditioner (ASM1) in the matrix form as

N
Pyivn =Y _ RIAT'R,

i=1
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where A; ! is the subspace inverse of A;. In practice, it is more convenient to obtain
A; from A; = RiAR;TF. We remark that the global-to-local restriction operator R;
collects the data from neighboring subdomains, while the local-to-global prolongation
operator R sends partial solutions to neighboring subdomains.

3.2. Two-level methods with a parallel coarse preconditioner. The direct
coarse preconditioner proposed in [28] provides good mathematical properties, but is
not easy to parallelize. Here we propose a parallel coarse solver, which is the same as
the one-level additive Schwarz preconditioned Krylov subspace method discussed in
the previous subsection, except that it is constructed on a partitioned coarse mesh.
More precisely, we assume there exists a finite element mesh 7 covering the domain
Q. The two meshes 75 and 7" do not have to be nested. The coarse mesh problem
will help speed up the convergence of the iterative method, but has nothing to do with
the accuracy of the discretization, which is determined by the fine mesh 7" only.

For the purpose of parallel computing, the coarse mesh is partitioned into non-
overlapping subdomains {Q} and overlapping subdomains {Q2°}. The correspond-
ing sets of mesh points are denoted by {Z;7}, and {’];Hé} For the simplicity of our
software implementation, we assume that we have a nested non-overlapping partition.
In other words, we have

h H
Q) =Q;
for i = 1,..., N, even though the corresponding sets of mesh points do not have to
be nested, i.e.
T T

This also means that the same number of processors is used for both the fine and
coarse mesh problems. If the overlap is taken into account, in general,

Q0 £ Qf° and T ¢ T,

As in the fine mesh case, we can also define the restriction and extension operators
R¢ and (RS$)T for each coarse subdomain. On the coarse mesh 7 we can define
finite element subspaces similar to the ones defined on the fine mesh, and discretize
the original Stokes problem to obtain a linear system of equations

Az =b°.

Note that the vectors b° and x¢ are not used in the computation; only the matrix
A€ is used to define our coarse preconditioner. Following a similar argument, on the
coarse subdomains, we obtain the coarse submatrices

A¢i=1,...,N.

As opposed to strongly elliptic problems, our experiments show that the coarse
mesh size for indefinite problems needs to be sufficiently fine to retain the scalability
of the algorithm. (see also [11]). Hence, the parallelization of a coarse solver is nec-
essary, and, in general, there are three strategies: (1) A direct exact approach, which
performs an LU decomposition of A€ in parallel and then does the forward /backward
substitutions using some parallel sparse direct solvers, such as SuperLU_DIST [13].
(2) A direct inexact approach, which replaces (A¢)~" by Zf.vzl(Rf)T(Bf)_lRf, where
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B¢ could be an ILU(k) decomposition of AS. (3) An iterative approach, which solves
the coarse mesh problem, A¢z¢ = w€, by some parallel iterative methods, such as
parallel GMRES, with a coarse additive Schwarz preconditioner.

Aitbayev et al. [1] and Tuminaro et al. [44] have studied the performance of
some direct exact coarse solvers based on the first approach and inexact domain
decomposition coarse solvers based on the second approach. However, they are either
too expensive or too inexact to be effective. Instead, in this paper we adopt the third
approach, which is something in between the first and the second approaches, and
the solution accuracy of the coarse mesh problem can be controlled easily. Now we
discuss the parallel iterative coarse solver and the operators that transfer the data
between the fine and coarse meshes. We define the coarse preconditioner (M¢)~! in
terms of a matrix-vector multiply: For any given coarse mesh vector w®,

2 = (MC)7 lwc
is understood as an approximate solution of the following preconditioned linear system
of equations

N

D (RO (A7) RS

i=1

N

> (BT (AT RS

=1

(3.2) A° y© = w’, with 2¢ = y°,

which satisfies the condition
[w® — A%, < ec w5

Note that for any given w®, the computation of z¢ can be carried out in parallel using
all N processors. M€ is not exactly a matrix, but a preconditioned iterative solver.

We next define the coarse-to-fine and fine-to-coarse mesh transfer operators. Let
{d)f (z),7 =1,...,m} be the finite element basis functions on the coarse mesh, where
m is the total number of coarse mesh points in 7. Let s be the total number of
coarse mesh points at which the Dirichlet boundary condition for velocity in TH is
imposed. We define an (3n — 2r)x (3m — 2s) matrix 17, the coarse-to-fine extension
operator, as

Il = [E\Ey -+ E,)",

where the block matrix F; of size 3 x 3m is given by

(efﬁ)z‘ 0 0
Ei = 0 (B}IL{)Z 0
0 0 (el

and the row vector (ef); of length m is given by
(el)i = [0t (i), 85 (i), .. Phn(w3)], @i € T"

fori=1,...,n. A global fine-to-coarse restriction operator I}’ can be defined as the
transpose of II’&I.

Using the coarse preconditioner defined above, we can define a two-level additive
Schwarz preconditioner (ASM2)

N
(3.3) Pudne =M I+ > " RTAT'R,.

i=1
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Because the partitioned coarse mesh problem and the partitioned fine mesh prob-
lem are allocated to the same processor, the coarse and fine subproblems cannot be
solved at the same time. Therefore it is reasonable to consider a multiplicative ap-
proach for the coarse mesh problem in order to obtain a faster convergence. Following
[31], we define the following hybrid Schwarz method (HSM),

N
G4) Py = IOV 4 (1 — 1(M%) 1 A) (z Rz“AfRi) |
=1

which is additive among all fine mesh subdomains, and multiplicative between the
fine and coarse preconditioners.

We remark that once the overlapping subdomains and the mesh transfer op-
erators are defined on both coarse and fine meshes, the three parallel overlapping
Schwarz preconditioners just described are easily adapted for solving nonsymmetric
Jacobian systems. The only issue now is, how to define, for each Newton itera-
tion, the subdomain problems on both fine and coarse meshes and the coarse mesh
problem. We define the matrices associated with the fine mesh subdomain prob-
lems and coarse mesh problem in a simple way. For the subdomain problems, we
define J; by J; = RiJ(m(k))RiT. For the coarse problem, on the coarse mesh 7, we
first discretize the original Navier-Stokes equations to obtain a nonlinear system of
equations, F°(z°) = 0. Then the corresponding coarse Jacobian J¢(z) is computed
using multi-colored finite differences. Hence at the i-th Newton iteration, the coarse

mesh matrix takes the form JC(I};x(’C)), where Iﬁ, is the standard injection operator,
which restricts the solution from the fine mesh to the coarse mesh. Similar to the
fine mesh, on the coarse subdomains, we define the coarse Jacobian submatrices as

T = (R (Ta ) (R9)".

4. Numerical experiments. In this section, we consider a two-dimensional lid-
driven cavity flow problem as a benchmark for evaluating the parallel performance of
the three preconditioners introduced in the previous section. A detailed description of
the lid-driven cavity problem can be found in [19]. Several parameters in the Schwarz
methods need to be specified for achieving optimal performance, in this paper, we
focus on the impact of the following parameters on the convergence rate and the
overall execution time: (1) the subdomain overlapping size; (2) the subdomain and
coarse mesh solution quality; and (3) the coarse mesh size. We also investigate the
parallel scalability, which shows how the algorithm behaves as the size of fine mesh
and the number of processors grow. The Portable, Extensible Toolkit for Scientific
computation (PETSc) [2] is used for the parallel implementation and all numerical
results are obtained on a cluster of PCs running Linux. All timings are reported
in seconds, and the execution time excludes the time spent on preprocessing steps
including the setup of the problem matrix, the construction of the extension matrix,
and the decomposition of the meshes. The matrix decomposition is included in the
timing. The parameters and other details of the numerical experiments for the Stokes
problem are summarized below:

e For the one-level Schwarz method, restarted GMRES(100) is employed for
solving the preconditioned linear system (2.4). For the two-level Schwarz
methods, including ASM2 and HSM, Flexible GMRES (FGMRES) [38] is
applied for solving the preconditioned system while restarted GMRES(100)
is used for the coarse mesh problem (3.2). It should be noted that according
to our numerical experiences, when standard GMRES was used instead of
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FGMRES for the two-level Schwarz methods, there was no convergence prob-
lem. However, we did observe some loss of solution accuracy if the coarse
mesh problem is not solved accurately enough under the same outer stopping
criterion. So due to the changes of two-level Schwarz preconditioners with
the inexact coarse solver at each of the outer iterations, FGMRES is more
suitable than the standard GMRES. We use a zero initial guess for both
problems. The stopping criterion for (2.4) is that the condition

o= (M) 2 | < e ol

is satisfied and we set ez = 107> for all test cases. Similarly, the stopping
criterion for the coarse mesh problem (3.2) is

ch — Acz(F) H <ec |lwl,-
2

Several values of e¢ are tested, ranging from 10~! to 10719,

e Three uniform checkerboard subdomain partitions are used for our experi-
ments: 2 X 2, 4x 4, and 8 x 8. The number of subdomains is always the same
as the number of processors, n,.

e Three fine meshes are considered: 128 x 128, 256 x 256, and 512 x 512 and
the number of unknowns ranges from 50,000 to 780,000. The coarse mesh is
varied from 16 x 16 to 80 x 80. Since a non-nested coarse mesh is used, the
number of processors and the coarse mesh size are not related.

e The overlapping size for the fine mesh is defined as

L, — L, L;—Ly}

ovlpzmax{ ohK ' T o9nk

for both interior subdomains and those touching the boundary. Since square
elements are used for the test problem, the elemental diameter h¥s are the
same and equal to the fine mesh size. L) and L; are defined here as the

side lengths of the overlapping subdomain Q?’5 in the z-direction and the
y-direction, respectively. Similarly, L, and L, are defined as the side lengths
of the non-overlapping subdomain Qf in the z-direction and the y-direction,
respectively. We defined the overlapping size ovip® for the coarse mesh prob-
lem in the same fashion as above, and used the value ovlp™ =1 for all test
cases.

e Either a direct sparse solver or an inexact LU(k) solver, with level of fill-in
k=0,1,2,...,5, is employed to solve the subdomain problems.

4.1. The effect of the coarse mesh size and inexact coarse solvers. In
Table 4.1, we examine the effect of the coarse mesh size on the convergence and
execution time of the two-level Schwarz methods. In this set of numerical experiments,
we keep the subdomain size fixed and scale up /n, and the fine mesh size h by a
factor of 64. All subdomain problems are solved by an exact sparse LU decomposition
and ovlp = 1. We vary the coarse mesh size from 16 x 16 to 80 x 80. The tolerance for
the coarse iterative solver is e = 10710, The empty entry (—) in the table indicates
that a uniform partitioning for such coarse mesh size is not available. In each row of
Table 4.1, for both two-level Schwarz methods, the number of FGMRES iterations is
reduced monotonically when the coarse mesh size is increased. However, the smallest
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TABLE 4.1
Varying the coarse mesh size. Fized subdomain mesh size 64 x 64. All subdomain problems are
solved by LU, ovlp = 1. The tolerance ec for the coarse mesh problem is set to be 10710,

Fine mesh (np) [ Coarse mesh | 16x16  20x20 32x32  40x40 64x64  80x80

ASM2
128128 (4) FGMRES 25 23 19 17 15 13
Time (sec) 2.3 2.4 2.8 3.5 6.4 8.9
256%256 (16) FGMRES 33 30 25 22 19 18
Time (sec) 3.0 2.9 2.9 3.1 4.7 6.9
512x512 (64) FGMRES 59 - 40 35 27 25
Time (sec) 6.5 — 5.4 5.2 6.0 7.8

HSM
128%x128 (4) FGMRES 18 17 14 12 10 8
Time (sec) 1.9 2.1 2.5 3.0 5.0 6.3
256256 (16) FGMRES 24 21 17 15 11 10
Time (sec) 2.5 2.5 2.4 2.5 3.3 4.6
512x512 (64) FGMRES 39 - 27 24 18 16
Time (sec) 4.7 - 4.0 4.0 4.4 5.4

number of iterations does not imply the fastest convergence. The two-level methods
with a 80x80 coarse problem are always slower than with a 16x16 coarse problem,
although they only take fewer iterations. This is because solving the larger coarse
mesh problem takes a more significant portion of the total time. The optimal coarse
mesh size for both methods, based on the optimal execution time, depends on the fine
mesh size. Roughly H ~ 10h is needed to achieve the fastest convergence.

Next, we relax the requirement of solution accuracy for the coarse problem, and
vary ec from 1071 to 10710, The ratio of the coarse to fine mesh sizes, H/h, is set
to be 8. As shown in Table 4.2, the accuracy of the coarse mesh solution does not
need to be very high in order to retain the optimal convergence rate of the two-level
Schwarz preconditioners. ec = 1072 is sufficient in both cases. Surprisingly, previous
work has shown that this is not true for other types of problems such as indefinite
elliptic problems [11]. In [11], a theory for ASM2 requires an exact solver on the
coarse mesh. Furthermore, the inexact coarse solver saves a significant amount of
time in both two-level Schwarz methods, especially when the number of processors is
large. In the 64-processor case, the inexact coarse solver with e = 1072 takes only
about half of the time needed for the almost exact solver with ec = 10710,

4.2. The effect of inexact subdomain solvers. We investigate the effect of
using ILU(k) as inexact subdomain solvers. In Table 4.3 we report computational
results with varying levels of fill-in in ILU(k) for a fixed 64 x 64 subdomain problem
and increasing the number of processors and the fine mesh size. We use a fixed coarse
to fine mesh size ratio of H/h = 8 for the two-level Schwarz preconditioners. The
tolerance for the iterative coarse solver is set to be e = 1072 and a fixed ovip = 1
is used. We vary the level of fill-ins, k, from 0 to 5. As shown in Table 4.3, we
observe that the number of iterations for ASM1 is more sensitive to the change of
k in ILU(k) and the number of processors (or the fine mesh size) than ASM2 and
HSM: the convergence rate of ASM1 can be improved dramatically by increasing k,
especially when the number of processors is large. On the other hand, for ASM2 and
HSM with ILU(k), k from 0 to 3, the numbers of iterations are nearly independent of
the numbers of processors. About the timing, we observe that ASM1 with ILU(k) is
faster than ASM1 with LU only in the 4-processor case. ASM1 with ILU(k) becomes
less efficient as the number of processors increases due to the exceedingly large number
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TABLE 4.2
Varying the tolerance e for the coarse mesh problem. Fired subdomain problem size: 64 X 64.
The ratio of coarse to fine mesh sizes: H/h = 8. All subdomain problems are solved by exact LU,
ovlp = 1.

Fine mesh (n,) | ec [10°T 1077 107* 10°% 10°% 10
ASM2
128x128 (4) FGMRES 19 19 25 25 25 25
Time (sec) | 1.7 1.7 2.1 2.1 2.2 2.3
256x256 (16) FGMRES 25 25 25 25 25 25
Time (sec) | 2.1 2.2 2.6 2.7 2.7 2.9
512x512 (64) FGMRES 28 27 27 27 27 27
Time (sec) | 2.6 2.8 4.0 5.0 5.5 6.0
HSM
128 %128 (4) FGMRES 14 14 18 18 18 18
Time (sec) 1.5 1.6 1.8 1.9 1.9 2.0
256x256 (16) FGMRES 19 17 17 17 17 17
Time (sec) 1.9 1.8 2.1 2.2 2.3 2.4
512x512 (64) FGMRES 29 19 18 18 18 18
Time (sec) 2.6 2.2 2.9 3.5 4.0 4.4

TABLE 4.3
Varying the level of ILU(k) fill-in. Fized subdomain mesh size: 64 x 64. The ratio of coarse
to fine mesh sizes is fived at H/h = 8. The tolerance ec for the iterative coarse solver is set to be
10~2, ovlp = 1.

Fine mesh (np) | ILU(k) [ k=0 k=1 k=2 k=3 k=4 k=5[] LU

ASM1
128 %128 (4) GMRES 190 98 67 51 44 40 22
Time (sec) 8.4 3.4 2.2 1.8 1.6 1.7 1.7
256256 (16) GMRES 743 328 163 124 103 90 54
Time (sec) 37.9 16.5 7.9 5.5 5.0 4.8 3.3
512x512 (64) GMRES 4151 1980 962 628 490 410 168
Time (sec) 137.8 69.8 35.5 24.6 20.3 18.3 9.3

ASM2
128 x128 (4) FGMRES 27 23 23 22 23 30 19
Time (sec) 0.7 0.8 0.8 0.9 1.1 1.5 1.7
256256 (16) FGMRES 27 23 23 23 22 22 25
Time (sec) 0.9 0.9 1.2 1.1 1.5 1.7 2.2
512x512 (64) FGMRES 26 23 23 23 23 24 27
Time (sec) 1.2 1.3 1.5 1.6 1.6 2.1 2.8

HSM
128128 (4) FGMRES 19 14 14 15 21 25 14
Time (sec) 0.7 0.6 0.7 0.8 1.1 1.4 1.6
256256 (16) FGMRES 19 14 14 15 16 20 17
Time (sec) 0.7 0.7 0.7 0.9 1.2 1.3 1.8
512x512 (64) FGMRES 19 14 14 15 16 20 25
Time (sec) 1.0 0.9 1.1 1.1 1.3 1.9 2.2

of iterations required for convergence. For ASM2 and HSM, the results with optimal
execution time are obtained by using k¥ = 0 and k = 1, respectively, and the time
savings are remarkable for both cases compared to the cases using LU as a subdomain
solver: ILU(k) is more than 55% faster than LU.

4.3. The effect of the overlapping size. Table 4.4 shows the effect of the
overlapping size for the two-level Schwarz methods with 64 processors. The overlap-
ping size varies from 1 to 16. A fixed 512 x 512 fine mesh and a fixed 64 x 64 coarse
mesh are used. In the table, we observe that the behavior of these two-level Schwarz
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TABLE 4.4
Varying the overlapping size ovlp. Fine mesh size: 512 x 512. Coarse mesh size: 64 X 64.
ny = 64.

[ olp |1 2 4 8 16
LU subdomain solver, almost exact coarse solver, e¢c = 10~ 10
ASM2 | FGMRES 27 25 21 17 17
Time (sec) | 6.3 6.0 54 5.2 6.9
HSM FGMRES 18 16 12 13 13
Time (sec) | 44 3.9 3.7 4.5 6.1
ILU(1) subdomain solver, inexact coarse solver, ¢c = 102
ASM2 | FGMRES 23 22 23 26 31
Time (sec) | 1.3 1.3 14 1.8 2.7
HSM FGMRES 14 14 15 19 22
Time (sec) | 0.9 1.0 1.1 14 2.1

methods depends on the subdomain and coarse mesh solution quality. Similar to
elliptic-type PDEs, when using exact LU subdomain solve and almost exact coarse
solve (ec = 10719), the number of iterations is reduced monotonically as we increase
ovlp, except in the case of HSM with ovlp = 8 and 16. However, the saving in
computing time is limited. With the optimal ovip, the total time taken to solve the
problem is about 17% less than the time with the minimal ovlp. On the other hand,
if we relax the quality of solution for both subdomain and coarse problems, the con-
vergence rates of ASM2 and HSM degenerate with ovlp increasing, and the optimal
execution times are obtained by the use of the small ovlp. We do not fully under-
stand why the number of iterations increases when ovlp becomes larger, although we
have observed that this also happens for some indefinite problems, e.g. the Helmholtz
problem [10], and we believe the indefiniteness of the problem plays a role here.

4.4. Parallel performance study. Scalability is an important issue in parallel
computing, and the issue is more significant when solving large-scale problems with
many processors. 1o evaluate the parallel scalability of the three Schwarz methods,
we adopt the fixed-subdomain-mesh-per-processor scalability as a measurement. An
algorithm is considered to be scalable if the computing time remains constant pro-
vided that the fine mesh and the number of processors both increase at the same
rate, while the subdomain size is fixed. The scalability study of ASM1, ASM2,
and HSM is summarized in Table 4.5. Note that the data in the table, including
the iteration numbers and execution time for ASM1 except for the single-processor
case, is excerpted from the last column of Table 4.3 and for ASM2 and HSM with
ASM1 as a coarse solver from the first column and second column of Table 4.3,
respectively. For the purpose of comparison, we also include the numerical results
for two-level Schwarz methods with two different coarse solvers, namely a redundant
LU approach (RLU), which redundantly solves the same coarse mesh problem on all
processors and a one-step Schwarz-Richardson method (SR), which is equivalent to
the second approach mentioned in Section 3.2. For the case of single processor, the
numerical result is obtained by using ILU(1) in conjunction with GMRES. The scaled
efficiency shown in Table 4.5 is defined by n = T1/T;,,,where Ty and T),, are the
computing time obtained with 1 and n, processors. In the ideal case, n ~ 1.

From Table 4.5, we observe that ASM1 is not scalable; the number of GMRES
iterations grows, roughly, as ,/n;, and only 6% scaled efficiency is achieved. Comparing
the two-level Schwarz methods with different coarse solvers, we find that neither RLU
nor SR is as efficient as ASM1. Although the cost per FGMRES for SR is quite low
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TABLE 4.5

Fine mesh (np) | FGMRES iterations [ Time (sec) | Scaled efficiency 7

(1) ASM1, LU as subdomain solver

64x64 (1) 36 06 100%
128128 (4) 22 1.7 35%
256256 (16) 54 3.3 18%
512x512 (64) 168 9.3 6%

(2) ASM2, ILU(0) as subdomain solver

(a) Coarse solver: ASM1

64x64 (1) 36 06 100%
128x128 (4) 27 0.8 75%
256x256 (16) 27 0.9 67%
512x512 (64) 26 1.2 50%
(b) Coarse solver: Redundant LU (RLU)

64%64 (1) 36 06 100%
128128 (4) 27 0.7 86%
256x256 (16) 27 1.1 55%
512x512 (64) 26 4.1 15%
(¢) Coarse solver: One-Step Schwarz-Richardson (SR)

64x64 (1) 36 06 100%
128x128 (4) 35 1.1 55%
256x256 (16) 44 1.3 46%
512x512 (64) 86 3.2 18%
(3) HSM, ILU(1) as subdomain solve

(a) Coarse solver: ASM1

64%64 (1) 36 06 100%
128x128 (4) 14 0.6 100%
256x256 (16) 14 0.7 86%
512512 (64) 14 0.9 67%
(b) Coarse solver: Redundant LU (RLU)

64x64 (1) 36 0.6 100%
128x128 (4) 14 0.6 100%
256x256 (16) 14 0.9 66%
512x512 (64) 14 3.5 17%
(¢) Coarse solver: One-Step Schwarz-Richardson (SR)

64%64 (1) 36 06 100%
128128 (4) 22 0.8 75%
256256 (16) 40 1.5 40%
512512 (64) 82 3.7 16%

and scalable (see the last three rows of Table 4.6), the solution of SR is not accurate
enough to retain the scalability of the method. Also, as shown in Table 4.6, for the
small coarse mesh problem, RLU is preferable to ASM1, but as the coarse problem
size increases, ASM1 outperforms RLU. ASM1 takes only 10% of the computing
time needed for RLU in the case of 64 processors. Next, we compare ASM2 and
HSM using ASM1 as the coarse solver. Both ASM2 and HSM are scalable in terms
of FGMRES iterations and HSM requires only about half the FGMRES iterations
needed for ASM2. Furthermore, HSM is always 20 — 25% faster than ASM and the
scaled efficiency of HSM maintains at at least 67% for all cases. While the number of
FGMRES iterations is unchanged, the degradation of the scaled efficiency is mainly
due to the non-scalable cost per FGMRES iteration. From the first three rows of Table
4.6, we see that the computing time increases as the number of processors grows.

4.5. Schwarz preconditioners for the nonsymmetric saddle point prob-
lem. In this section, we study the performance of HSM for the nonsymmetric indef-
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TABLE 4.6
Computing time per FGMRES iteration for the iterative and direct coarse solvers.

Coarse Mesh Size | np | Ave. Inner iterations [ Time
ASM1
16x16 4 5 4%x1073
32x32 16 7 6x1073
64x64 64 12 2x10~2
Redundant LU
16x16 4 1 2x1073
32x32 16 1 2x10~2
64x64 64 1 2x10~1
One-step Schwarz-Richardson
16x16 4 1 6x10~1%
32x32 16 1 Tx10~%
64x64 64 1 7x1073
TABLE 4.7

Average number of FGMRES iterations and computing time. HSM for the Jacobian system
in the NKS algorithm for Navier-Stokes equations. Reynolds number Re is varied from 1 to 1,000.
Fine mesh: 512x512 and coarse mesh: 64x64. The tolerance ec for the coarse mesh problem is set
to be 1072, ovlp = 1, and nyp = 64.

Re ILU(k) k=0 k=1 k=2 k=3 LU

1.0 | FGMRES | 305 (2) 1260 (2) 7019 (2)  163.0 (2) | 20.0 (2)
Time (sec) 2.4 11.1 76.9 14.2 3.1

100.0 | FGMRES | 36.5 (4) 1435 (4)  827.0 (4) 1745 (4) | 24.8 (4)
Time (sec) 3.6 15.2 82.4 16.4 3.6

500.0 | FGMRES | 48.0 (7) 1994 (7) 5589 (7)  289.4 (7) | 32.1 (7
Time (sec) 6.1 60.3 64.9 34.4 5.6

1000.0 | FGMRES | 66.2 (11) 279.2 (11) 354.5 (11) 319.5 (11) | 38.9 (11)
Time (sec) 9.8 34.4 42.0 38.9 7.0

inite Jacobian systems in the NKS algorithm for incompressible Navier-Stokes equa-
tions. Table 4.7 shows the average number of FGMRES iterations and the execution
time for HSM during a Newton iteration for the two-dimensional lid-driven cavity
problem on 64 processors. The stopping criterion for (2.5) is:

1E (™) + (@) M) (Mis™) [l < 1074 F (@)

The numbers in parentheses are Newton iteration counts required to reduce the initial
nonlinear residual by a factor of 107, that is, ||F(x(®)|2 < 1076 F(z(®)||5. The
Reynolds number Re is varied from 1 to 1,000. A fixed fine mesh 512x512 and a fixed
coarse mesh 64x64 are employed. Some key observations from Table 4.7 are made as
follows:

(1) The number of FGMRES iterations becomes exceedingly large when ILU(k)
is used as the subdomain solve. The only exception is the case of ILU(0). This
phenomenon is different from the case of symmetric Stokes problems. We suspect
that ILU(k) is not stable for the nonsymmetric indefinite saddle point problem, and
therefore do not recommend it.

(2) HSM with ILU(0) is competitive with HSM with LU only for small Re. As
Re increases, HSM with LU is found to be 20 — 40% faster than HSM with ILU(0).

(3) The number of FGMRES iterations for HSM with LU depends slightly on
Re. The higher the Reynolds number is, the more linear and nonlinear iterations it
takes to meet the stopping requirement.
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5. Concluding remarks. We presented a fully coupled parallel solver with
three types of overlapping Schwarz preconditioners for saddle point problems arising
from CFD. As shown in the numerical results, additive Schwarz-type preconditioners
for the Stokes problem and the elliptic-type problems have some similar convergence
properties: the number of GMRES iterations decreases monotonically as the overlap-
ping size increases when LU is used as the subdomain solve; the number of GMRES
iterations for ASM1 grows as /n,, and HSM requires roughly half as many FGM-
RES iterations as ASM2. Our numerical results also showed that the ILU(k) based
inexact subdomain solver is useful only for the symmetric Stokes problem but not for
the nonsymmetric indefinite Jacobian systems in NKS due to the possible instability
of the incomplete decomposition. The iterative inexact coarse solver is sufficient to
retain the optimal convergence rate of the two-level Schwarz preconditioners. In com-
parison with ASM1 and ASM2, HSM with a iterative coarse solver showed superior
parallel performance.
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