
A Parallel Scalable PETSc-based

Jacobi-Davidson Polynomial Eigensolver with

Application in Quantum Dot Simulation

Zih-Hao Wei1, Feng-Nan Hwang1, Tsung-Ming Huang2, and Weichung
Wang3

1 Department of Mathematics, National Central University, Jhongli 320, Taiwan
(socrates.wei@gmail.com and hwangf@math.ncu.edu.tw)

2 Department of Mathematics, National Taiwan Normal University, Taipei 116,
Taiwan (min@math.ntnu.edu.tw)

3 Department of Mathematics, National Taiwan University, Taipei 106, Taiwan
(wwang@math.ntu.edu.tw)

Summary. The Jacobi-Davidson (JD) algorithm recently has gained its popularity
for finding a few selected interior eigenvalues of large sparse polynomial eigenvalue
problems, which commonly appear in many computational science and engineering
PDE based applications. As other inner-outer algorithms like Newton type method,
the bottleneck of the JD algorithm is to solve approximately the inner correction
equation. In the previous work, [Hwang, Wei, Huang, and Wang, A Parallel Addi-
tive Schwarz Preconditioned Jacobi-Davidson (ASPJD) Algorithm for Polynomial
Eigenvalue Problems in Quantum Dot (QD) Simulation, Journal of Computational
Physics, (2010)], the authors proposed a parallel restricted additive Schwarz pre-
conditioner in conjunction with a parallel Krylov subspace method to accelerate the
convergence of the JD algorithm. Based on the previous computational experiences
on the algorithmic parameter tuning for the ASPJD algorithm, we further inves-
tigate the parallel performance of a PETSc based ASPJD eigensolver on the Blue
Gene/P, and a QD quintic eigenvalue problem is used as an example to demonstrate
its scalability by showing the excellent strong scaling up to 2048 cores.

1 Introduction

Many applications in computational science and engineering modeled by par-
tial differential equations (PDEs) requires fast, accurate numerical solutions
to the large-scale polynomial eigenvalue problems (EVPs), e.g., generalized
EVPs in the linear stability analysis of incompressible flows and magnetohy-
drodynamics [4, 12, 13], quadratic EVPs in the vibration analysis of a fast
train or the acoustic problem with damping [3, 5], and cubic or quintic EVPs
in the estimate of discrete energy states and wave functions of the semicon-
ductor quantum dot with non-parabolic band structure [9, 10].



2 Zih-Hao Wei, Feng-Nan Hwang, Tsung-Ming Huang, and Weichung Wang

The Jacobi-Davidson (JD) algorithm originally proposed by Sleijpen and
Van der Vorst for linear EVPs, now has gained its popularity for solving
polynomial EVPs due to several advantages. For examples, without recasting
the polynomial EVPs as an enlarged linearized EVPs, one only needs to deal
with the problem as the same size of the original one and targets directly the
interior eigenvalues without using computational expensive shift-and-invert
techniques. Moreover, the JD algorithm is parallelizable, hence it is suitable
for large-scale eigenvalue computations.

The JD algorithm belongs to a class of subspace methods, which consists
of two key steps: one first enlarges a subspace or so-called search space by
adding a new basis vector and then extract an approximate eigenpair from
the search space through the Rayleigh-Ritz procedure. To obtain a new basis
vector for the search space, at each JD iteration, one needs to solve approxi-
mately a large sparse linear system of equations, which is known as the cor-
rection equation, by an iterative method. In [8] the authors proposed a new
algorithm, namely the additive Schwarz preconditioned Jacobi-Davidson algo-
rithm (ASPJD) that exports the idea from the area of parallel Schwarz-Krylov
solver to enhance the parallel scalability of the JD algorithms. The Schwarz
methods [14] have been widely used and is well-understood for solving a va-
riety of linear systems arising from the discretization of PDEs and is applied
to nonlinear systems as a linear preconditioner for the Jacobian system in the
Newton-Krylov-Schwarz algorithm [2] or as a nonlinear preconditioner in the
additive Schwarz preconditioned inexact Newton algorithm [7]. On the other
hand, however only a few studies are available in the literature for solving
eigenvalue problems using Schwarz methods, e.g., Schwarz methods is em-
ployed as the action of the spectral transformation in the Arnoldi methods
for generalized EVPs [13] or as a preconditioner in the locally optimal block
preconditioned conjugate gradient method [11].

In this paper, we continue the previous work investigating how the ASPJD
algorithm performs on a parallel machine with a large number of processors,
e.g., the Blue Gene/P. One of our target applications is a quintic polynomial
EVPs arising from the semiconductor quantum dot simulation [7].

2 A description of the ASPJD algorithm

In this section, we briefly describe the ASPJD algorithm for solving polyno-
mial eigenvalue problems of degree τ , which take the form of

A(λ)x =
τ

∑

i=0

λiAix = 0, (1)

where Ai ∈ Rn×n are the large sparse matrices arising from some discretiza-
tion of certain PDEs, λ ∈ C is an eigenvalue and x ∈ Cn is the correspond-
ing eigenvector. The detailed algorithm in conjunction with other techniques,



ASPJD on BG/P 3

such as locking and restarting can be found in [8]. Let V be the current search
space. Assume that (λ, u) is current approximate eigenpair, which is not close
enough to the exact one, (λ∗, u∗). Then the next eigenpair (λnew , unew) can
be obtained through the following two steps:

Step 1 Update the search space V = [V, v] by solving the correction

equation.

(

I −
pu∗

u∗p

)

A(λ)(I − uu∗)t = −r

approximately for t ⊥ u by a Krylov subspace method with a precondi-
tioner B−1

d defined as

Bd =

(

I −
pu∗

u∗p

)

B(I − uu∗) ≈

(

I −
pu∗

u∗p

)

A(λ)(I − uu∗)

Here r = A(λ) and p = A′(λ)u, where A′(θ) =

τ
∑

i=1

iθi−1Ai. Then t is

orthogonalized against V , and v is defined as v = t/‖t‖2.
Step 2 Perform the Rayleigh-Ritz procedure to extract (λnew , unew)
from the search space V by solving the small projected PEP, (V TA(θ)V )s =
0. Then set λnew = θ and compute unew = V s.

In practice, one does not explicitly form Bd to perform the preconditioning
operation, z = B−1

d y with z ⊥ u for a given y, as it can be done equivalently
by computing

z = B−1y − ηB−1p, with η =
u∗B−1y

u∗B−1p

Note that the preconditioning operation B−1p and inner product u∗B−1p
need to be computed only once for solving each correction equation and there
is no need to re-compute them in the Krylov subspace iteration. Furthermore,
in the ASPJD algorithm, the construction of the preconditioner B−1 is based
on an additive Schwarz framework defined as follows.

Let S = {1, 2, ..., n} be an index set and let each integer corresponds to
one component of the eigenvector. Let S1, S2, ..., SN be an non-overlapping
partition of S, i.e.

∪N
i=1

Si = S and Si ∩ Sj = ∅ i 6= j

To obtain an overlapping partition of S, we extend each Si to a larger subset
Sδ

i with the size of ni, i.e. Si ⊂ Sδ
i . Here δ is a positive integer indicating the

degree of overlap and in general
∑N

i=1
ni ≥ n. Using the overlapping partitions

of S we define a subspace of Rn, V δ
i as

V δ
i = {v|v = (v1, ..., vn)T ∈ C

n, vk = 0 if k /∈ Sδ
i },



4 Zih-Hao Wei, Feng-Nan Hwang, Tsung-Ming Huang, and Weichung Wang

and the corresponding restriction operators, Rδ
i , which transfers data from Cn

to V δ
i . Then, the interpolation operator (Rδ

i )
T

can be defined as the transpose
of Rδ

i . Using the restriction operator, we define the one-level restricted additive
Schwarz (RAS(δ)) preconditioner with the degree of overlapping δ as

B−1 =

Ns
∑

i=1

(R0

i )
T
B−1

i Rδ
i ,

where B−1

i is the subspace inverse of Bi and Bi = Rδ
iA(λ)(Rδ

i )
T
. Note that

the block Jacobi preconditioner can be considered as a special case of the RAS
preconditioner by setting the level of overlap equal to 0.

In the second step, we compute the eigenpair of the projected eigenvalue
problem, (V TA(θ)V )s = 0, by solving the corresponding linearized projected
eigenvalue problem,

MAz = θMBz, (2)

where

MA =















0 I 0 . . . 0
0 0 I . . . 0
...

...
...

. . .
...

0 0 0 . . . I
M0 M1 M2 . . . Mτ−1















,

MB =















I 0 0 . . . 0
0 I 0 . . . 0
0 0 I . . . 0
...

...
...

. . .
...

0 0 0 . . . −Mτ















, z =















s
θs
θ2s
...

θτ−1s















.

Here Mi = V T AiV . Note that the dimension of V TA(θ)V is usually small
and not larger than a user defined restarting number.

3 A PETSc-based ASPJD polynomial eigensolver

The ASPJD algorithm was implemented using two powerful scientific software
libraries, namely the PETSc [1] and the SLEPc [6]. As shown in Figure 1, the
design of PETSc adopts the principle of software layering. As an application
code of PETSc, the major component in our ASPJD polynomial eigensolver,
the JD object, is built on top of the KSP, a Linear Equation Solver. All PETSc
libraries are based on Message Passing Interface (MPI) and two modules of
linear algebra libraries: Basic Linear Algebra Subproblems (BLAS) and Lin-
ear Algebra Packages (LAPACK) library. The vector (Vec) and matrix (Mat)
are two basic objects in PETSc. The eigenvector x and other working vectors



ASPJD on BG/P 5

are created as parallel vectors in the Vec object. The column vectors of V are
stored as an array of parallel vectors. The coefficient matrices Ai and the ma-
trix A(θ) are created in a parallel sparse matrix format. We do explicitly form
A(θ) using parallel matrix-matrix addition and it is used in the construction
of a RAS type preconditioner.

SLEPcPETSc

JD Object

MPI LAPACK BLAS

Linear Solver

PC+KSP

Eigenvalue Solver

EPS

Spectral Transform

ST
Mat Vec DA AO IS

Fig. 1. The organization of PETSc, SLEPc, and the ASPJD eigensolver

The fully parallel correction equation solve as described in Step 1 is the
kernel of the JD algorithm. The ASPJD eigensolver employs a Krylov subspace
method, such as GMRES or CG, which is provided by PETSc, in conjunction
with the preconditioner, B−1

d , where the RAS preconditioner B−1 is set to
be a default one. For simplicity, in our current implementation both of the
construction and the application of RAS are done internally by PETSc.

On each processor, the sequential QZ routine, called ZGGEVX in LA-
PACK, is employed to redundantly solve the same linearized projected eigen-
value problem, MAz = θMBz, through an interface provided by SLEPc [6].
Here, the matrices MA and MB, as well as Mi, are stored in the sequential
dense matrix format and their sizes increase as ASPJD iterates.



6 Zih-Hao Wei, Feng-Nan Hwang, Tsung-Ming Huang, and Weichung Wang

4 Numerical results

To demonstrate the scalability of our newly developed ASPJD eigensolver, we
consider a quintic QD eigenvalue problem as a test case. The eigenvalue prob-
lem is derived from the second order finite volume discretization of the time-
independent Schrödinger equation with non-parabolic effective mass, which is
used to model a pyramidal InAs dot embedded in a cuboid GaAs matrix. The
size of the resulting quintic QD eigenvalue problem is about 32 millions.

The numerical experiment was performed on the Blue Gene/P and all
computation were done in double precision complex arithmetic. We claim
that the JD iterations converge to an eigenpair if the absolute or the relative
residuals ‖A(λ)x‖ is less than 10−10. Vini = (1, 1, . . . , 1)T is normalized and
set to be in the initial search space. We report the numerical results obtained
by using the ASPJD algorithm, where the correction equation is solved by
right 20 (or 40) steps RAS(0) preconditioned GMRES incorporate with the
ILU(0) as a subdomain solver for finding the smallest positive eigenvalue.

128 256 512 1024 2048
0

5

10

15

20

25

30

np

JD
 it

er
at

io
ns

 

 

GMRES(20)

GMRES(40)

Fig. 2. The number of JD iterations with respect to np for the case of GMRES(20)
and GMRES(40) as the correction equation solver

Figure 2 shows the number of JD iterations of the ASPJD eigensolver with
respect to the number of processor np, ranging from np = 128 to np = 2048.
We observe that except for the case of np = 128, the ASPJD eigensolver
is quite algorithmically scalable, i.e., while the number of inner correction
equation iterations is kept constant, the number of outer JD iterations remains
almost the same with 26 and 15 JD iterations required to achieve convergence
for the cases of GMRES(20) and GMRES(40), respectively. We may conclude
that for this particular case, the number of JD iterations only depends on the
number of GMRES iterations to be employed. A similar observation is made
in [8] for the same test case but with a small size (about 1.5M) and solved by
the smaller number of processors (about np = 320).



ASPJD on BG/P 7

It should be noted that the QD eigenvalue problem we consider has a
special structure such that the eigenvectors corresponding to the eigenvalues
of interest are localized to the dot. That is, the components of the eigenvector
corresponding to the matrix (outside of the QD) are mostly zero. In our
simulations, the ratio of the cuboid matrix to the pyramidal dot is about
35 : 1 in the computational domain. Consequently, that is why we are able to
decouple the original pyramidal QD eigenvalue problem problem into many
subproblems using RAS(0) without a penalty in terms of an increased number
of the JD iterations.

Figure 3 exhibits a very good strong scaling result for our ASPJD eigen-
solver for up to 2048 processors. Note that by the definition, strong scaling
means the execution time decreases in inverse proportion to the number of
processors, provided that the problem size is fixed. In the ideal case, the slope
of the curve is expected to be −1. The parallel efficiency for the case of GM-
RES(40) is about 80% based on the timing result obtained by using np = 256.
Using a better grid partitioning and taking the design of the network topol-
ogy of the BG/P into account to reduce the communication cost might further
improve the parallel scalability of the ASPJD eigensolver.

10
2

10
3

10
410

1

10
2

10
3

np

T
im

e

 

 

GMRES(40)

GMRES(20)

Ideal scaling

Fig. 3. Strong scalability of ASPJD on BG/P

Acknowledgments

The authors are grateful to the BG/P computer sources provided by IBM dur-
ing the workshop on computational science: IBM research and BG/P held at
National Taiwan University during summer 2009. This work is partially sup-
ported by the National Science Council, the Taida Institute of Mathematical
Sciences, and the National Center for Theoretical Sciences in Taiwan.



8 Zih-Hao Wei, Feng-Nan Hwang, Tsung-Ming Huang, and Weichung Wang

References

[1] S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley,
L. C. McInnes, B. F. Smith, and H. Zhang. PETSc webpage, 2010.
http://www.mcs.anl.gov/petsc.

[2] X.-C. Cai, W. D. Gropp, D. E. Keyes, R. G. Melvin, and D. P. Young.
Parallel Newton-Krylov-Schwarz algorithms for the transonic full poten-
tial equation. SIAM J. Sci. Comput., pages 246–265, 1998.

[3] K.-W. E. Chu, T.-M. Hwang, W.-W. Lin, and C.-T. Wu. Vibration
of fast trains, palindromic eigenvalue problems and structure-preserving
doubling algorithms. J. Comput. Appl. Math., pages 237–252, 2008.

[4] K. Cliffe, H. Winters, and T. Garratt. Is the steady viscous incompressible
two-dimensional flow over a backward-facing step at Re= 800 stable?
Internat. J. Numer. Methods Fluids, pages 501–541, 1993.

[5] M. B. Van Gijzen. The parallel computation of the smallest eigenpair
of an acoustic problem with damping. Int. J. Numer. Meth. Eng., pages
765–777, 1999.

[6] V. Hernandez, J.E. Roman, and V. Vidal. SLEPc: A scalable and flexible
toolkit for the solution of eigenvalue problems. ACM T. Math Software,
pages 351–362, 2005.

[7] F.-N. Hwang and X.-C. Cai. A parallel nonlinear additive Schwarz pre-
conditioned inexact Newton algorithm for incompressible Navier-Stokes
equations. J. Comput. Phys., pages 666–691, 2005.

[8] F.-N. Hwang, Z.-H. Wei, T.-M. Huang, and W. Wang. A parallel addi-
tive Schwarz preconditioned Jacobi-Davidson algorithm for polynomial
eigenvalue problems in quantum dot simulation. J. Comp. Phys., pages
2932–2947, 2010.

[9] T.-M. Hwang, W.-W. Lin, J.-L. Liu, and W. Wang. Jacobi-Davidson
methods for cubic eigenvalue problems. Numer. Linear Algebra Appl.,
pages 605–624, 2005.

[10] T.M. Hwang, W.C. Wang, and W. Wang. Numerical schemes for three-
dimensional irregular shape quantum dots over curvilinear coordinate
systems. J. Comput. Phys., pages 754–773, 2007.

[11] A.V. Knyazev. Toward the optimal preconditioned eigensolver: Locally
optimal block preconditioned conjugate gradient method. SIAM J. Sci.

Comput, pages 517–541, 2001.
[12] M. Nool and A. van der Ploeg. A parallel Jacobi-Davidson-type method

for solving large generalized eigenvalue problems in magnetohydrody-
namics. SIAM J. Sci. Comput., pages 95–112, 2000.

[13] R.P. Pawlowski, A.G. Salinger, J.N. Shadid, and T.J. Mountziaris. Bi-
furcation and stability analysis of laminar isothermal counterflowing jets.
J. Fluid Mech., pages 117–139, 2006.

[14] B.F. Smith, P.E. Bjørstad, and W. Gropp. Domain Decomposition: Par-

allel Multilevel Methods for Elliptic Partial Differential Equations. Cam-
bridge University Press, 1996.


