International Journal of Computer Mathematics

B AT wae Y | e W

ekt deumal of

Computer
Mathematics

[ Sy

A Parallel Fully Coupled Implicit Domain Decomposition
Method for Numerical Simulation of Microfluidic Mixing in

3D

Journal:

International Journal of Computer Mathematics

Manuscript ID:

GCOM-2011-0311-B

Manuscript Type:

Original Article

Date Submitted by the
Author:

21-Apr-2011

Complete List of Authors:

Hwang, Feng-Nan; National Central University, Department of
Mathematics

Cai, X; University of Colorado at Boulder, Department of Computer
Science

Cheng, Yu-Lun; National Central University, Department of
Mathematics

Tsao, Chia-Wen; National Central University, Mechanical
Engineering

Keywords:

Navier-Stokes equations, Microfluidics, Fully implicit methods,
Domain decomposition, Parallel processing

SCHOLARONE™
Manuscripts

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com




April 20, 2011
Page 1 of 14

P OO~NOUILAWNPE

U OTUu U OITON OO DMBEMDIAMDIMBAEADIAMDIMDNWOWWWWWWWWWWNDNNNNNNMNNNNRERPRPRPERPRERPERRERE
QOO NOUPRRWNRPOOO~NOUOPRRWNPRPOOONOOOPRARWNRPFPOOONOODURAWNPOOO~NOOUUDMWNEO

14:37 International Journal of Computer Mathematics dd'microfluidic

International Journal of Computer Mathematics

International Journal of Computer Mathematics
Vol. 00, No. 00, Month 200x, 1-14

RESEARCH ARTICLE

A Parallel Fully Coupled Implicit Domain Decomposition Method
for Numerical Simulation of Microfluidic Mixing in 3D

Feng-Nan Hwang?®, Xiao-Chuan Cai®, Yu-Lun Cheng?®, Chia-Wen Tsao®*

& Department of Mathematics, National Central University, Jhongli, 32001 Taiwan;
> Department of Computer Science, University of Colorado, Boulder, CO 80309, USA;
¢Department of Mechanical Engineering, National Central University, Jhongli 32001,

Taiwan

(submitted to IJCM, April 2011)

A parallel fully coupled implicit fluid solver based on a Newton-Krylov-Schwarz algorithm
is studied for the simulation of microfluidic described by the three-dimensional unsteady in-
compressible Navier-Stokes equations. The popularly used fractional step method, originally
designed for high Reynolds number flows, requires some modification of the invicid-type pres-
sure boundary condition in order to reduce the divergence error near the wall, on the other
hand, the fully coupled approach works well without any special treatment of the boundary
condition for low Reynolds number microchannel flows. A key component of the algorithm is
an additive Schwarz preconditioner, which is used to accelerate the convergence of a linear
Krylov-type solver for the saddle point-type Jacobian systems. As a test case, we carefully
study a three-dimensional passive serpentine micromixer and report the parallel performance
of the algorithm obtained on a parallel machine with more than one hundred processors.

Keywords: Navier-Stokes equations; microfluidics; fully implicit methods; domain
decomposition; parallel processing

AMS Subject Classification: 66H10; 65N30; 65N55; 76D05

1. Introduction

Mixing enhancement is crucially important in many branches of emerging mi-
crofluidic technologies. Several different types of micromixers are available or
proposed. Generally speaking, the micromixers can be classified into two major
groups [16, 27]. One of them is the so-called active micromixer, in which mixing is
achieved by some external perturbation applied, for example, through the pressure
field [25], by magneto-hydrodynamics [4], or through acoustic disturbances [1, 41].
The other group consists of passive micromixers, where mixing relies solely on
diffusion or chaotic advection without importing external energy. In comparison
with the active type, the passive-type micromixers are more popular due to sev-
eral advantages, including efficient mixing performance, simple fabrication, and
high integration level with other lab-on-a-chip applications. To optimize the mix-
ing performance, the main goal of the design of passive micromixers is to increase
the contact surface between two fluids and to decrease the diffusion path between
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them by changing the microchannel geometry. The mixing enhancement techniques
include using a staggered herringbone microchannel to create three-dimensional
twisting flows inside the microchannel [12, 17, 20, 35, 39|, placing obstacles inside
the microchannel to create chaotic mixing [30, 33] or changing velocity profiles with
various microchannel cross-section geometries [37].

Most of the numerical simulations are carried out by using commercial software
packages; e.g., ANSYS CFX [23], COMSOL [36], Fluent [8] or CFD-ACE [33, 39].
These package are easy to use because of the friendly interface, but are usually
not parallel, or restricted to very small number of processors, and therefore can
not be used for high fidelity simulations, which require very fine meshes and large
number of processors. Recently, Glatzel et al. [15] evaluated the performance of
some available computational fluid dynamics software packages with emphasis on
microfluidic applications and concluded that there is a real need for faster and more
accurate algorithms and software for microfluidic simulations on large-scale parallel
computers. Thus, the aim of this paper is to investigate a fully parallel approach for
solving incompressible Navier-Stokes (NS) equations, which is used to simulate the
mixing of fluids in microsystems. We hope the algorithms and software developed
in this paper will provide engineers with a more efficient approach for the design
of microfluidic devices, and a scalable tool for understanding the physics of fluids
at nano or micro level. As a numerical example to demonstrate the applicability
of our fluid solver to microfluidic systems and to evaluate the performance on a
parallel machine, we focus on a three-dimensional serpentine microchannel, which
is the passive micromixing model proposed by Liu et al. [24].

In this paper, we develop and study some fully implicit methods that have re-
cently gained in popularity [3, 5, 6, 11, 26, 28, 40], because they allow much larger
time-step size compared to fully explicit or linearly implicit methods and they are
more scalable on large scale parallel computers. Additionally they are able to accu-
rately capture the nonlinear coupling between components, conserve more physical
quantities, such as mass, momentum, or energy for a longer period of simulation
time. As pointed out by the authors of [21], the inviscid-type pressure boundary
condition in the classical temporal fractional step method, which is originally de-
signed for high Reynolds number flows, needs to be modified in order to reduce
the divergence error near the boundaries (See Figure 16.2 on page 517 [21]). On
the other hand, the fully coupled implicit approach considered in this paper works
well for both high Reynolds number laminar flows and lower Reynolds number
microflows without changing the boundary condition. The price to pay is that we
have to solve a nonlinear system at every time step. The inexact Newton method
is one of the popular approaches for solving such nonlinear system arising from
time-dependent PDE problems because of its robustness and fast convergence.
The kernel of the Newton type method is the linear Jacobian solver, which is the
most expensive part of the algorithm and the design of an efficient preconditioner
is crucial for the success of the algorithm.

Our parallel algorithm is based on a Newton-Krylov-Schwarz (NKS) algo-
rithm [7], which consists of three key ingredients: an inexact Newton method with
backtracking as the nonlinear solver, a Krylov subspace method [31] as the lin-
ear solver for the Jacobian systems together with a parallel overlapping Schwarz
domain decomposition based preconditioner [34, 38] to accelerate the convergence
of the linear solver. The major advantage of NKS is that it is fully parallel, since
one does not need to split the velocity and pressure fields. Furthermore, NKS is
extendable to simulate other more complex full microsystems involving coupled
electrical, mechanical, thermal, and fluid components.

The rest of this paper is organized as follows. In the next section, we briefly
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mention the microfluidic model based on incompressible NS equations, followed by a
description of a Newton-Krylov nonlinear solver, a parallel Schwarz preconditioner
for the saddle-point type Jacobian system, and an overview of parallel micro-flow
simulator. In Section 4, numerical results for three microfluidic mixing problems
are presented. Concluding remarks are given in Section 5.

2. A model for incompressible micro-flows and their mixing

To simulate the motion of fluids in a microchannel, we consider the three-
dimensional unsteady incompressible NS equations defined on a bounded domain
Q2 with the boundary I' =T'p UT'y [21],

ou
p(E—FuVu)

V-
V-u=0 in Q x (
V-

oc=0 onI'y x (0,
u=1ug in Qatt=0,

where u = (u1,uz,u3)” is the velocity, p is the fluid density, and ¢ is the Cauchy
stress tensor defined as 0 = —pI + p[(Vu) + (Vu)T], where p is the pressure, T
is a second-order identity tensor, and p is the dynamic viscosity. Here, we impose
two types of boundary conditions: the Dirichlet boundary condition on I'p and
the homogenous Neumann boundary condition on I'y and assume that the flow is
stationary at the beginning of computation. The Reynolds number, Re, is defined
as p(Q/A)Dy /i, where @ is the volumetric flow rate through the channel, A is the
cross-sectional area, and Dy = 4A/P (P is the wetting perimeter of the channel)
is the hydraulic diameter of the channel. The Reynolds number is quite low in a
microfluidic system, typically ranging from 0.01 to 100 [27]. However, due to the
presence of some abrupt turns in the computational domain, e.g., a 3D micromixer,
the effect of the convective acceleration term plays an important role during the
numerical simulation, thus the diffusive term can not be neglected. To measure the
degree of mixing of fluids, we solve a 3D convection-diffusion equation at certain
time steps,

w-VC — DAC =0, (2)

where u is the velocity field obtained from the solution of the NS equations, D is
the diffusivity coefficient of the species, and C' is the concentration of the species.
The corresponding mixing efficiency at a cross-section of a channel is defined as

w2 ”

where n. is the number of mesh points on the cross-section, C; is the concentration
at the mesh point and C'(= 0.5) is the average number of concentration.
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3. A parallel fully coupled and fully implicit fluid solver

Our parallel time-dependent 3D incompressible fluid solver is implemented on top
of the Portable, Extensible Toolkit for Scientific Computation (PETSc) [2]. The
solver has been validated and successfully applied to blood flows in the arteries [19].
In addition, the parallel fluid solver has been integrated with other state-of the-
art pre-processing and post-processing software packages, including (1) Cubit [9]
for 3D unstructured finite element mesh generation; (2) ParMETIS [22] for mesh
partitioning for the purpose of parallel processing; (3) ParaView [29] for scientific
visualization of numerical results and conducting data analysis. Below we give a de-
scription of the discretization scheme and the parallel solution algorithm employed
in the fluid solver.

To discretize the NS equations (1), we use an implicit backward Euler finite dif-
ference method for the temporal variable and a stabilized P; — P; Galerkin/least-
squares finite element method [13] in the spatial domain covered by a given tetra-
hedral mesh. At each time step, it is necessary to solve a large, sparse, nonlinear
algebraic system

F(z) =0, (4)

where the vector x corresponds to the nodal values of uj = (u}L, u%, ui) and pj, at
the time ¢t = (n + 1)At. Here, only a uniform time step At is considered. To solve
the nonlinear algebraic system a NKS algorithm is employed as follows. Let 2(©)
be a given initial guess, which is taken from the velocity and pressure solutions at
the previous time step and assume z(*®) is the current approximation of the exact
solution z*. Then a new approximation z**1 can be computed via the following
steps:

Step 1: Find a Newton direction s(*) by solving the following preconditioned
Jacobian system approximately by a Krylov subspace method, such as the Gen-
eralized minimal residual method (GMRES) [32],

T Mty = —F(2®), with s®) = M1y, (5)

where J;, is the Jacobian of F evaluated at 2(*) and the additive Schwarz pre-
conditioner, M, 1 is defined in detail below.

Step 2: Obtain the new approximation z* D = z*) 4 XK k) where AK)
(0,1] is a damping parameter used to enhance the robustness of Newton type
methods [10].

Here we define the additive Schwarz preconditioner. Let {Qf,z =1,...,N} be a
non-overlapping subdomain partition whose union covers the entire domain €2 and
its mesh 7". To simplify the implementation, each subdomain problem is assigned
to a single processor of the parallel computer. We denote by ’771 as the collection of
mesh points in Q? To obtain overlapping subdomains, we expand each subdomain
Q? to a larger subdomain Q?’é with the boundary 89?’5. Here 6 is an integer
indicating the level of overlap. We assume that 89?’5 does not cut any elements
of T". Similarly, we denote by ’Eh’é as the collection of mesh points in Q?’(S. We
define the additive Schwarz preconditioner for the Jacobian system, which is an
extension of that for the saddle-point type Stokes equations as follows [18]. First
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:2L we introduce the subdomain velocity space
3 h h h 1 ohd\\3 . h )
4 Vir={v"eV"Nn(H (Q;°)) :v"=0o0n0Q,"}
5
? and the subdomain pressure space
g P = {p" € PPN L2(QM) : p" = 0 on 0QM\T'p},
10
11 where V" and P" are the linear finite element spaces defined on the domain €2
12 for the velocity and the pressure, respectively. L?(2), and H'(Q) are the standard
13 notations with the usual meanings in the finite element literature [13, 14]. On the
14 physical boundaries, we impose the Dirichlet condition according to the original
15 equations (1). On the artificial boundaries, we assume both v = 0 and p = 0.
i? Similar boundary conditions were used in [18].
18 Let R; : VI x PP — Vih X Pl-h be a global-to-local restriction operator, which
19 returns all degrees of freedom (both velocity and pressure) associated with the
20 subspace Vih X Pl-h. R; is an 4n; X 4n matrix with values of either 0 or 1, where
21 n and n; are the total number of mesh points in Th and 7;h’5 , respectively, and
22 Zf\; 14n; > 4n. Note that for linear elements, we have four variables per mesh
gi point, three for the velocity and one for the pressure. Then, the local-to-global
o5 interpolation operator RZ-T can be defined as the transpose of R;. Using the restric-
26 tion and interpolation operators, we write the additive Schwarz preconditioner in
27 the matrix form as
28
29 -1 ol T 7—1
30 M => RIJ'R;,
31 i=1
32
33 where Jfl is subspace inverse of J; = RiJR;fF. We remark that the multiplica-
34 tion of R; (and R?) with a vector does not involve any arithmetic operation,
35 but does involve communication in a distributed memory parallel implementation.
g? The restriction operator R; collects the data from neighboring subdomains, and
38 the local-to-global prolongation operator RiT sends partial solution to neighboring
39 subdomains. In practice, to save the computational cost and the memory use, the
40 J[l in M, 1 are often replaced by an inexact solver, such as an incomplete LU
41 decomposition (ILU) with some levels of fill-ins.
42
43
jg 4. Numerical results and discussions
jg We report the simulation results for the three-dimensional serpentine microchannel
48 flows together with a straight micorchannel and a square-wave microchannel for
49 the purposes of comparison; see Fig. 1 for the geometrical configurations for these
50 three test cases. Note that only one unit for each case is shown in the figure
51 and the microchannel geometric models are constructed by connecting these units
52 repeatedly. The number of units are selected so that the traveling paths for each
53 case are roughly the same.
54 The simulations are performed using np = 64 starting from ¢ = 0 and finishing at
22 t = 10 with At = 0.1. Detailed information for the three test cases are summarized
57 in Table 1. The mesh size for each case roughly equals to 0.1.
58 All numerical simulations are performed on the Vger PC cluster with a peak
59 performance of 5184 Gflop/s at the National Central University in Taiwan. The
60
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Figure 1. The dimensions of three microchannel models (only one unit is shown). From left to right: 1D
straight, 2D square-wave, and 3D serpentine.

Models # of elements # of nodes # of unknowns
1D straight 590,445 115,140 460,560
2D square-wave 558,695 109,704 438,816
3D serpentine 642,300 124,569 498,276

Table 1. Detailed information of three test cases.

system consists of 108 compute nodes, and each node has two Intel Xeon 3.0 GHz
Dual-Core processor with 4 GB memory. The nodes are interconnected by a Infini-
Band switch. All computations are done in double precision. The execution time is
reported in seconds. The Jacobian matrices are constructed by a hybrid approach;
i.e., all the linear terms and nonlinear terms associated with the Galerkin formu-
lation are computed analytically, other stabilization terms are approximated by
multicolored finite differences.

At each time step, we employ NKS to solve (4) with the previous time step
solution as the initial guess. We claim the intermediate solution converges when
the stopping condition for Newton

1E(2®)]| < max{10~°| £ (z)|], 1077}

is satisfied. A cubic linesearch technique [10] is employed to determine the step
length A*). Note that the previous time step solution is a good initial guess for
most cases so that the line search procedure is seldom invoked. A right additive
Schwarz preconditioned GMRES with a zero initial guess is employed to solve the
Jacobian system. The accuracy of the solution to the Jacobian system is controlled
by the stopping condition

1E (2 ™) + (T (™) M) (Ms™) | < max {1074 F (@), 10710,

Due to the nature of convection-dominated characteristic (typical Peclet number
ranges from 10? to 10°), the Galerkin/least squares finite element method is em-
ployed to discretize the equation (2), where the stabilization parameter employed
is the one suggested by Franca et al. [14]. The corresponding linear system is solved
by one-level additive Schwarz preconditioned GMRES, with the LU decomposition
as the subdomain solver.

4.1 Simulation results

The fluids in the channel are assumed to be stationary at t = 0. At the beginning
of the numerical simulation, two fluids with the same velocity are injected into a
single microchannel and they merge at the vertical middle line at the inlet. The
concentration of the left stream is set to be 0 (blue) and the right stream is set
to be 1 (red) as the inlet boundary condition for the concentration in (2) and
the homogenous Neumann boundary condition is imposed on the wall and at the
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outlet. Such condition implies that there is no mixing taken place before entering
the micromixer. Note that it is observed that the flow in the 3D serpentine channel
reaches the quasi-steady state at around ¢ = 2 for the case of Re = 6 and ¢t = 6 for
the case of Re = 70.

Fig. 2 displays the concentration distribution in each microchannel at ¢ = 2 for
the case of Re = 6. Due to the nature of laminar flows in the micro-scale channel,
mixing relies mainly on diffusion. As shown on the top picture of Fig. 2, two fluid
streams move forward smoothly along the 1D straight channel without any fluid
perturbation involved and mixing occurs only along the interface of the two fluids
near the middle of the channel. The situation is improved for the 2D square-wave
micromixer (the middle picture of Fig. 2), the fluids skewing at the 90 degree turn
result a larger contact surface area at the fluid interface. This induces a better
mixing. This can be seen clearly from the left column of Fig. 3, which shows the
concentration contours at different viewing windows. About 1/3 of the area of the
cross-section is the complete mixing region (green area in the middle) near the
outlet of the channel. Finally, both the bottom picture of Fig. 2 and the right
column of Fig. 3 suggest that in the 3D serpentine micromixer, chaotic advection
occurs, which greatly increases the contact surface area and shortens the mixing
path between the two fluids, in other words, the mixing performance is significantly
improved. Superior mixing performance is observed at the cross-section near the
outlet of the 3D serpentine microchannel.

Figs. 4 and 5 show a comparison of the streamlines and the pressure distribution
in the 1D straight, 2D square-wave and 3D serpentine microchannel at ¢ = 6 for
the case of Re = 70. It should be noted that the visualization of the streamlines
is useful for studying the dead volume or eddies in the microchannel. And the
pressure drop is of interests to the engineers, as it provides important information
about the pump needed to drive the flow in the micro-device.

4.2 Impact of the viscosity

We next evaluate the mixing performance of the serpentine microchannel with
respect to different values of Reynolds number, which is measured by the volumetric
flow rate @ through the channel ranging from 0.1 mL/min to 1.2 mL/min. The
mixing efficiency defined in (3) at a cross-section is used as the metric. Note that
the total number of mesh points n. on the cross-section is about 500. We show
in Fig. 6 that the computed mixing efficiency at different viewing windows for
four different values of the Reynolds number. It is clear that the mixing efficiency
increases as the fluids flow toward the downstream direction and is at least 70%
for all four cases when the fluids reach the 10th viewing window. As expected, the
higher Reynolds number implies the better mixing efficiency. Similar observation
obtained from experiments was also reported in [24].

4.3 Parallel performance of the algorithm

To achieve the optimal performance of the parallel fluid solver in terms of the com-
puting time, several parameters need to be well tuned. Particularly, in this section,
we study how the algorithmic parameters involved Krylov-Schwarz algorithms, as
well as some physical parameters, effect the overall performance of the algorithm
applied to the microchannel flows. These parameters include the number of levels
of ILU fill-ins, the degree of overlap for the additive Schwarz preconditioner, the
geometric configuration of the microchannel, and the Reynolds number. Such a
study provides a guideline that helps the users to choose appropriate parameters
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55 Figure 2. Concentration distribution in each microchannel for the case of Re = 6 at time ¢ = 2. From top
56 to bottom : 1D straight, 2D square-wave, and 3D serpentine.
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Figure 3. Concentration contours for 2D and 3D microchannels at the viewing windows 2, 4, 6, 8, and 10
at t = 2 from top to bottom. Re = 6 is considered. 2D (left) and 3D (right).
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in their numerical simulations. Note that the number of levels of ILU fill-ins and
the degree of overlap are related to the solution quality of the subdomain problem,
which affects significantly the overall performance. Since solving the subdomain
problem is the most time-consuming step in the algorithm, our goal is to reduce
the effort on the subdomain solution as much as possible but not to degrade too
much the convergence rate of the Krylov subspace method. Timing results reported
in this section are obtained by running the simulation for 10 time steps. The total
execution time, the average number of nonlinear iterations per time step (ANNI),
the average number of linear iterations per Newton iteration (ANLI) are reported
for the case of Re = 6 and Re = 70 in Table 2. As expected, the more ILU fill-ins

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com



April 20, 2011

©CoO~NOUTA,WNPE

14:37 International Journal of Computer Mathematics dd'microfluidic

International Journal of Computer Mathematics
10 F.-N. Hwang, X.-C. Cai, Y.-L. Cheng, C.-W. Tsao

0.605

0.000159

ar

N\

Figure 4. The streamlines for the 1D straight (top), the 2D square-wave (middle), and the 3D serpentine
(bottom). Note that the last two units for all cases are shown in the figures.

and more overlap the fewer GMRES iterations are required to achieve the conver-
gence. In these particular cases, ILU with a small number of fill-ins is too inexact
to make the Schwarz preconditioner efficient. The same trends for both the 1D
straight and 2D square-wave microchannels are also observed (not shown here).
Furthermore, the communication cost is high, therefore we are not able to save any
computing time by increasing the degree of overlap.

Next we summarize the timing results for three cases for Re = 6 and Re = 70 in
Table 3. This table suggests that, generally speaking, the larger the Reynolds num-
ber is the more difficult it is for GMRES to converge. Without a coarse space, which
may improve the communication between subdomains, the ANLI is usually high.
Such a problem becomes more severe in the case of a long and thin computational
domain like a microchannel even for a low Reynolds number flow with Re = 70. In
many situations, Jacobian solves reach the maximum number of iterations, which
is set to be 500. For the case of Re = 6, although the best choices for the level of
ILU fill-ins and the degree of overlaps are slightly different, for example, ovip = 5
and ILU(2) for 1D, ovlp = 2 and ILU(2) for 2D, and ovlp = 1 and ILU(3) for 3D,
the number of GMRES iterations and the number of Newton iterations are quite
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Re=7 ovlp =1 ovlp = 2 ovlp = 3 ovlp =5
LU ANNI (ANLI) | 2.1 (131.3) 2.1 (122.0) 2.1 (119.6) 2.1 (107.0)
Total time 875.4 1176.1 1447.8 2024.1
ILU(0) | ANNI (ANLI) | 4.5 (495.4) 4.6 (495.7) 4.6 (496.0) 4.7 (496.1)
Total time 931.4 991.3 1150.2 1256.6
TLU(1) | ANNI (ANLI) | 2.8 (459.9) 2.8 (460.4) 2.8 (459.4) 2.3 (435.0)
Total time 675.3 763.5 824.4 764.1
ILU(2) | ANNI (ANLI) | 2.2 (359.5) 2.1 (320.2) 2.3 (232.1) 2.1 (186.1)
Total time 574.1 581.4 553.6 510.7
ILU(3) | ANNI (ANLI) | 2.1 (187.0) 2.1 (180.5) 2.1 (173.1) 2.1 (158.0)
Total time 478.4 558.9 622.7 722.4
Re =170 ovlp =1 ovlp = 2 ovlp = 3 ovlp =5
LU ANNI (ANLI) | 3.1 (382.6) 3.1 (176.4) 3.1 (163.7) 3.1 (136.6)
Total time 2169.6 1981.0 2377.2 3200.9
TLU(0) | ANNI (ANLI) | 7.1 (475.3) 7.2 (475.7) 7.2 (A75.8) 6.9 (474.8)
Total time 1266.6 1413.6 1506.5 1635.2
TLU(1) | ANNI (ANLI) | 5.1 (461.2) 4.9 (461.4) 5.1 (460.2) 4.5 (454.3)
Total time 1332.4 1501.7 1540.9 1688.6
ILU(2) | ANNI (ANLI) | 4.0 (447.3) 4.0 (440.4) 3.9 (431.8) 3.5 (428.9)
Total time 1229.6 1419.0 1521.5 1638.5
ILU(3) | ANNI (ANLI) | 3.4 (4345) 3.4 (424.5) 3.2 (404.1) 3.1 (389.7)
Total time 1405.0 1672.2 1739.5 2040.8
Table 2. 3D serpentine micromixing. Different subdomain solves: LU and ILU(k), k = 0,1, 2,3 for varied
sizes of overlapping for Re = 6 and Re = 70. At = 0.1, 10 time steps are performed. np = 64.
independent of the geometric configurations of microchannels.
1D 2D 3D
Re=6 | ANNI (ANLI) | 2.1 (1885) 2.1 (195.0) 2.1 (187.0)
Total time 439.6 372.0 478.4
Re =70 | ANNI (ANLI) | 5.5 (500) 3.3 (424.5) 3.4 (496.0)
Total time 1361.6 1053.3 1405.0

Table 3. Timing results for three microchannel cases for Re = 6 and 70. At = 0.1, 10 time steps are performed

Finally, to evaluate the parallel performance of our fluid solver, we consider the

parallel efficiency defined as
16\ T;
np) Tnp

where T and T, are the computing time obtained with 16 and np processors.
From Tables 4 and 5, we observe that the parallel efficiency reaches at least 50%
with up to 128 processors but degrades slightly when 256 processors are used.

5. Conclusions
In this work, we introduced a parallel algorithm for the 3D microfluidic simulation
and the corresponding software was developed on top of PETSc and several state-

the-art open source packages. The core of the approach is based on a fully coupled
and fully implicit scalable Newton-Krylov-Schwarz method. Our studies showed
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np | ANNI | ANLI | Time (secs) | Efficiency (%)
16 2.1 158.6 1587.3 100
32 2.1 163.5 877.3 90
64 2.1 187.0 478.4 83
128 2.2 264.2 370.0 54
256 2.4 394.2 317.5 31

ditioner uses ovlp = 1 and ILU(3) as the subdomain solver.

Parallel efficiency for the 3D serpentine micromixing case with Re = 26. The additive Schwarz precon-

np | ANNI | ANLI | Time (secs) | Efficiency (%)
16 4.7 456.8 3888.3 100
32 4.4 455.7 1989.9 98
64 5.1 461.2 1224.3 79
128 5.0 460.6 734.2 66
256 5.0 464.8 505.8 48

Table 5. Parallel efficiency for the 3D serpentine micromixing case with Re = 70. The additive Schwarz precon-
ditioner uses ovlp = 1 and ILU(1) as the subdomain solver.

good qualitative agreements between numerical solutions and experimental data.
Moreover, we used the three-dimensional serpentine microchannel as an numerical
example to demonstrate the applicability of our software to the simulation of mi-
crofluidic mixing. Our solver achieved above 54% of parallel efficiency with up to
128 processors on a cluster of PCs.

References

[1] D. Ahmed, X. Mao, J. Shi, B. Juluri, and T. Huang. A millisecond micromixer via single-bubble-based
acoustic streaming. Lab Chip, 9:2738-2741, 2009. ISSN 1473-0197.

[2] S. Balay, K. Buschelman, W. Gropp, D. Kaushik, M. Knepley, L. C. McInnes, B. Smith, and H. Zhang.
PETSc Webpage, 2011. http://www.mcs.anl.gov/petsc.

[3] A. Barker and X.-C. Cai. Scalable parallel methods for monolithic coupling in fluid-structure inter-
action with application to blood flow modeling. J. Comput. Phys., 229:642-659, 2010.

[4] H. Bau, J. Zhong, and M. Yi. A minute magneto hydrodynamic (MHD) mixer. Sensor Actuator B
Chem., 79:207-215, 2001. ISSN 0925-4005.

[5] S.Beharaand S. Mittal. Parallel finite element computation of incompressible flows. Parallel Comput.,
35:195-212, 2009.

[6] P. Brown, D. Shumaker, and C. Woodward. Fully implicit solution of large-scale non-equilibrium
radiation diffusion with high order time integration. J. Comput. Phys., 204:760-783, 2005.

[7] X.-C.Cai, W. Gropp, D. Keyes, R. Melvin, and D. Young. Parallel Newton-Krylov-Schwarz algorithms
for the transonic full potential equation. SIAM J. Sci. Comput., 19, 1998.

[8] R. Choudhary, T. Bhakat, R. Singh, A. Ghubade, S. Mandal, A. Ghosh, A. Rammohan, A. Sharma,
and S. Bhattacharya. Bilayer staggered herringbone micro-mixers with symmetric and asymmetric
geometries. Microfluid. Nanofluid., in press, 2011. ISSN 1613-4982.

[9] Cubit. Online CUBIT user’s manual, 2011. http://cubit.sandia.gov/documentation.html.

[10] J. Dennis and R. Schnabel. Numerical methods for unconstrained optimization and nonlinear equa-
tions. STAM, 1996.

[11] W. Dettmer and D. Peri¢. An analysis of the time integration algorithms for the finite element
solutions of incompressible Navier—Stokes equations based on a stabilised formulation. Comput.
Methods Appl. Mech. Engrg., 192:1177-1226, 2003.

[12] Y. Du, Z. Zhang, C. Yim, M. Lin, and X. Cao. A simplified design of the staggered herringbone
micromixer for practical applications. Biomicrofluidics, 4:024105, 2010.

[13] L. Franca and S. Frey. Stabilized finite element methods. II: The incompressible Navier-Stokes equa-
tions. Comput. Methods Appl. Mech. Engrg., 99:209-233, 1992.

[14] L. Franca, T. Hughes, and S. Frey. Stabilized finite element methods: I. Application to the advective-
diffusive model. Comput. Methods Appl. Mech. Engrg., 95:253-276, 1992.

[15] T. Glatzel, C. Litterst, C. Cupelli, T. Lindemann, C. Moosmann, R. Niekrawietz, W. Streule,
R. Zengerle, and P. Koltay. Computational fluid dynamics (CFD) software tools for microfluidic
applications-A case study. Comput. Fluid., 37:218-235, 2008. ISSN 0045-7930.

[16] V. Hessel, H. Lowe, and F. Schonfeld. Micromixers—a review on passive and active mixing principles.
Chem. Eng. Sci., 60:2479-2501, 2005.

[17] S. Hossain, A. Husain, and K. Kim. Shape optimization of a micromixer with staggered-herringbone
grooves patterned on opposite walls. Chem. Eng. J., 162:730-737, 2010. ISSN 1385-8947.

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com



April 20, 2011

P OO~NOUILAWNPE

U OTUu U OITON OO DMBEMDIAMDIMBAEADIAMDIMDNWOWWWWWWWWWWNDNNNNNNMNNNNRERPRPRPERPRERPERRERE
QOO NOUPRRWNRPOOO~NOUOPRRWNPRPOOONOOOPRARWNRPFPOOONOODURAWNPOOO~NOOUUDMWNEO

14:37

14

18]

International Journal of Computer Mathematics dd'microfluidic
International Journal of Computer Mathematics

REFERENCES

F.-N. Hwang and X.-C. Cai. Parallel fully coupled Schwarz preconditioners for saddle point problems.
Electron. Trans. Numer. Anal., 22:146-162, 2006.

F.-N. Hwang, C.-Y. Wu, and X.-C. Cai. Numerical simulation of three-dimensional blood flows using
domain decomposition method on parallel computer. J. Chin. Soc. Mech. Eng., 31:199-208, 2010.
T. Kang, M. Singh, T. Kwon, and P. Anderson. Chaotic mixing using periodic and aperiodic sequences
of mixing protocols in a micromixer. Microfluid. Nanofluid., 4:589-599, 2008.

G. Karniadakis, A. Beskok, and N. Aluru. Microflows and Nanoflows: Fundamentals and Simulation.
Springer Verlag, 2005.

G. Karypis. METIS homepage, 2011. http://cubit.sandia.gov/documentation.html.

L. Li, L. Lee, J. Castro, and A. Yi. Improving mixing efficiency of a polymer micromixer by use of a
plastic shim divider. J. Micromech. Microeng., 20:035012, 2010.

R. Liu, M. Stremler, K. Sharp, M. Olsen, J. Santiago, R. Adrian, H. Aref, and D. Beebe. Passive
mixing in a three-dimensional serpentine microchannel. IEEE ASME J. Microelectromech. Syst., 9:
190-197, 2002.

S. Miiller, I. Mezi, J. Walther, and P. Koumoutsakos. Transverse momentum micromixer optimization
with evolution strategies. Comput. Fluid., 33:521-531, 2004.

M. Murillo and X.-C. Cai. A fully implicit parallel algorithm for simulating the non-linear electrical
activity of the heart. Numer. Linear Algebra Appl., 11:261-277, 2004. ISSN 1099-1506.

N.-T. Nguyen and Z. Wu. Micromixers—a review. J. Micromech. Microeng., 15:R1-R16, 2005.

S. Ovtchinnikov, F. Dobrian, X.-C. Cai, and D. Keyes. Additive Schwarz-based fully coupled implicit
methods for resistive Hall magnetohydrodynamic problems. J. Comput. Phys., 225:1919-1936, 2007.
ISSN 0021-9991.

ParaView. ParaView homepage, 2011. http://www.paraview.org.

J. Park, K. Seo, and T. Kwon. A chaotic micromixer using obstruction-pairs. J. Micromech. Micro-
eng., 20:015023, 2010.

Y. Saad. Iterative methods for sparse linear systems. SIAM, 2003. ISBN 0898715342.

Y. Saad and M. Schultz. GMRES: A generalized minimal residual algorithm for solving nonsymmetric
linear systems. SIAM J. Sci. Stat. Comput., 7:856-869, 1986.

T.-R. Shih and C.-K. Chung. A high-efficiency planar micromixer with convection and diffusion
mixing over a wide Reynolds number range. Microfluid. Nanofluid., 5:175-183, 2008.

B. Smith, P. Bjgrstad, and W. Gropp. Domain Decomposition: Parallel Multilevel Methods for Elliptic
Partial Differential Equations. Cambridge University Press, 1996.

A. Stroock, S. Dertinger, A. Ajdari, I. Mezic, H. Stone, and G. Whitesides. Chaotic mixer for
microchannels. Science, 295:647-651, 2002.

A. Tabak and S. Yesilyurt. Simulation-based analysis of flow due to traveling-plane-wave deformations
on elastic thin-film actuators in micropumps. Microfiuid. Nanofluid., 4:489-500, 2008. ISSN 1613-
4982.

E. Tafti, R. Kumar, and H. Cho. Effect of laminar velocity profile variation on mixing in microfluidic
devices: The sigma micromixer. Appl. Phys. Lett., 93:143504, 2008.

A. Toselli and O. Widlund. Domain Decomposition Methods-Algorithms and Theory. Springer, 2005.
K.-Y. Tung and J.-T. Yang. Analysis of a chaotic micromixer by novel methods of particle tracking
and FRET. Microfluid. Nanofluid., 5:749-759, 2008.

C. Yang, J. Cao, and X.-C. Cai. A fully implicit domain decomposition algorithm for shallow water
equations on the cubed-sphere. SIAM J. Sci. Comput., 32:418-438, 2010.

Z. Yang, S. Matsumoto, H. Goto, M. Matsumoto, and R. Maeda. Ultrasonic micromixer for microflu-
idic systems. Sensor Actuator Phys., 93:266-272, 2001. ISSN 0924-4247.

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

Page 14 of 14



