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SUMMARY

We introduce a stabilized finite element method for the 3D non-Newtonian Navier-Stokes equations, and also
a parallel domain decomposition method for solving the sparse system of nonlinear equations arising from
the discretization. Non-Newtonian flow problems are, generally speaking, more challenging than Newtonian
flows because the nonlinearities are not only in the convection term but also the viscosity term which
depends on the shear-rate. Many good iterative methods and preconditioning techniques that work well for
Newtonian flows do not work well for the non-Newtonian flows. We employ a Galerkin/least squares finite
element method, with stabilization parameters adjusted to count the non-Newtonian effect, to discretize the
equations, and the resulting highly nonlinear system of equations is solved by a Newton-Krylov-Schwarz
algorithm. In this study, we apply the proposed method to some inelastic power-law fluid flows through the
eccentric annuli with inner cylinder rotation, and investigate the robustness of the method with respect to
some physical parameters, including the power-law index and the Reynolds number ratios. We then report
the superlinear speedup achieved by the domain decomposition algorithm on a computer with up to 512
processors. Copyright c© 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many fluid flows in industrial and medical applications are non-Newtonian, for examples, plastic
polymers, and blood flows in small arteries [4,5,32]. By definition, for non-Newtonian fluids, the
relationship between the shear stress and the rate-of-deformation is nonlinear. Depending on if the
flow has memory, non-Newtonian fluids can be classified into two types [5,9], time-independent
or time-dependent fluids. In this paper, we focus on the time-independent fluid. The shear rate
is determined only by the current value of shear stress. There are three major classes of time-
independent flows. One of them is the pseudoplastic fluid which exhibits the shear thinning behavior,
i.e., its viscosity decreases with increasing shear rate. Almost all polymer solutions and melts belong
to this class. Examples are molten polyethylene, polypropylene, solution of carboxymethylcellulose
in water, etc. The velocity gradient tends to stretch out the polymer chains so that the fluid particles
are able to move freely. The mathematical model commonly used for this class of fluids is the
power-law or Ostwald Waele model. Opposite to the pseudoplastic fluid is the dilatant fluid, which
possesses the shear-thickening property, i.e., its viscosity increases with the increase of the shear
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rate. Only a few polymer solutions are dilatant. The third class is the viscoplastic fluid, which does
not move unless the stress applied exceeds a critical value, such as the Bingham viscoplastic fluid.

In addition to the numerical difficulty arising from the incompressibility condition, the strong
nonlinearities due to the convection term and the shear-rate-dependent viscosity term make
numerical solution of non-Newtonian flows more challenging than Newtonian flows. There are
several research publications on the modeling and the simulation of non-Newtonian flows; see for
examples [7,11,20,28] and their references. Some of the papers are devoted to the development
on efficient iterative methods for non-Newtonian flows. To mention a few, Elias et al. [14,15]
employ a Newton-Krylov type algorithm to solve a 2D viscoplastic flow problem discretized with
a SUPG/PSPG stabilized finite element method. In the papers, they use Eisenstat and Walker’s
adaptive stopping strategy for the forcing term [13] to avoid over-solving the Jacobian system
and to enhance the robustness of inexact Newton method. Furthermore, in [15], an edge-by-edge
block type preconditioner is proposed to accelerate the convergence of a Krylov subspace method
in the 3D large-scale computation. In [30], a power-law non-Newtonian flow problem is considered.
In the finite volume discretization, a pseudo-compressibility term is added to the conservation
of mass equation, and the resulting time-dependent system is solved using a fully implicit time
marching scheme together with Newton-Krylov type algorithm to obtain the steady-state solution. In
addition, the performance of several block preconditioners, such as three-diagonal or five-diagonal
blocks, where each block is approximated by an incomplete LU decomposition is investigated.
In [37,38], the authors investigate a semi-implicit finite volume discretization of a viscoelastic fluid
in the velocity-pressure-stress formulation. To solve the resulting algebraic system, they decouple
the system as two sub-linear systems including a generalized Stokes problem corresponding to
the velocity and pressure variables, and a stress equation. To overcome the numerical difficulty
due to the zero block in the saddle point problem, the authors propose to replace it by a scaled
discrete Laplacian matrix so that ILU(0) preconditioner or multigrid preconditioner with standard
smoothers can be used. In [21], Grinevich and Olshanskii study a Stokes-type problem with variable
viscosity. A special block preconditioner based on the velocity diffusivity term and the pressure
Schur complement for fully coupled system is introduced and an analysis is also provided in the
paper. In addition, Gwynllyw and Phillips [22] consider the time dependent Stokes problem with
the shear-thinning and pressure thickening viscosity. The operator-splitting approach is employed
to obtain a semi-positive definite linear system for the pressure variable and the discrete Helmholtz-
type system for the velocity components. They investigate numerically the performance of two types
of preconditioners based on the Schur complement and the Crank-Nicolson schemes for both of the
pressure and velocity systems.

In this paper, we introduce a finite element method for non-Newtonian fluids and a parallel
coupled solver, which doesn’t split the velocity and pressure variables, based on the Newton-
Krylov-Schwarz (NKS) algorithm. The NKS algorithm consists three key ingredients: (1) an inexact
Newton method as a nonlinear solver [12], (2) a Krylov subspace type method, such as GMRES, as
a Jacobian system solver, and (3) an overlapping Schwarz-type method [39] as a preconditioner to
accelerate the convergence of the linear solver. NKS has been successfully applied for a variety of
applications in computational sciences and engineering such as incompressible Newtonian flows,
transonic flows, fluid-structure interaction problems [2,3,41,42], flow control problems [6,25,33].
The aim of this study is to investigate the performance of NKS for non-Newtonian flows, in
particular its robustness with respect the physical parameters and its parallel scalability.

As a test case, we study numerically some inelastic flows through the eccentric annuli with
rotational inner cylinder. Although the geometry and flow condition are relatively simple, the
physical structure of the fluid in the annuli is rather complicated since it consists of the entrance
flow, the fully-developed flow, secondary flow, boundary layer, helical stream, etc. Other similar
problems have been intensively studied, e.g., concentric annuli with or without inner cylinder
rotation. Interested readers are referred to the Appendix B in [17] for a comprehensive list of related
works and Chin’s book [10] on this topic. One of the most important applications of annular flows
is the drilling of oil wells. In these operations, the mud is pumped through the hollow drill shaft
to the drill bit, where it enters the wellbore and returns under pressure as a helical flow to the well
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surface. The primary functions of the mud are to carry rock cuttings to the surface, to lubricate the
drill bit, and to control subsurface pressures. To reduce the computational cost, some simplifications
are often used by researchers in this field, for example, if the annuli is long enough and there is no
axial velocity, the 3D model can be reduced to 2D [14]. Another possible simplification is based on
the assumption that the flow is fully developed, then the pressure gradient terms in the momentum
equations can be computed with a small number of grid points in the axial direction [16–18,27,40].
However, for more general situations, to fully understand the physics of annular flows, a full 3D
model discretized on a fine 3D mesh is necessary and hence parallel computing becomes very
important. The method to be studied in this paper is highly parallel, and can be extended to other
types of non-Newtonian flows.

The organization of this paper is as follows. In Section 2, we describe a mathematical model
for 3D non-Newtonian flows, a finite element method to discretize the flow problem, and a
Newton-Krylov-Schwarz algorithm for solving the discretized problem. Some numerical results are
presented in Section 3, including a grid independence test, a numerical validation of the algorithm
using analytical solution, and a test case involving rotational eccentric annular flows. Parallel
performance results are also given in Section 3. Some concluding remarks and possible future
research directions are provided in Section 4.

2. FLOW MODELS, DISCRETIZATION, AND SOLUTION ALGORITHM

2.1. Problem statement

Consider the 3D steady-state incompressible non-Newtonian Navier-Stokes equations defined in
Ω ∈ R3 

ρ (u · ∇u)−∇ · σ = 0 in Ω,
∇ · u = 0 in Ω,
u = g on ΓD,
σ·n = 0 on ΓN ,

(1)

where u=(u1, u2, u3)T is the velocity field, ρ is the fluid density, assumed to be a constant, and σ is
the Cauchy stress tensor defined as

σ = −pI + τ ,

where p is the pressure, I is the identity tensor, and τ is the shear stress tensor. Here, we impose
two types of boundary conditions on ∂Ω = ΓD ∪ ΓN . ΓD is the Dirichlet-type boundary condition
and ΓN is the Neumann-type boundary condition. In the work, the generalized Newtonian model
is employed, where the viscosity is a function of the second invariant of the deformation rate
tensor [32,34], and unlike Newtonian flows, the relationship between the sheer stress tensor and
the deformation rate tensor is nonlinear, i.e.,

τ = 2µ(I2)D,

where µ is the viscosity and I2 = 1
2 tr(D

2) is the second invariant of the deformation tensor. Here,

D =
1

2
[(∇u) + (∇u)T ], and tr denotes the trace of a second-order tensor. More specifically, the

commonly used power-law is considered,

µ(I2) =

{
µ0I

(n−1)/2
2 , if I2 > γ0,

µ0γ
(n−1)/2
0 , if I2 6 γ0,

(2)

where n is the power-law index. When n < 1, the flow is pseudoplastic. For example, nail polish,
whipped cream and ketchup are classified as this type of flows; on the other hand, when n > 1, the
flow is called dilatant. Corn starch and sand in water belong to this type of fluids. Note that when
n = 1, the power-law model reduces to be Newtonian. Other constants are: µ0, the consistency index
and γ0 > 0, the cutoff value for I2. For the situation that I2 is closed to zero, it is replaced by the
cutoff value.
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2.2. Galerkin/least squares finite element formulation

To discretize the incompressible generalized Newtonian Navier-Stokes equations (1), we employ the
Galerkin/least squares (GLS) finite element method, which belongs to the class of stabilized finite
element methods, which is popular for solving incompressible flow problems mainly due to the
flexibility in choosing finite element basis functions for each variable (which does not need to satisfy
the Ladyzhenskaya-Babuška-Breezi (LBB) condition [23]) and more stable and accurate solution
can be obtained for high-Reynolds number flows. GLS is formulated as the traditional Galerkin
finite element method plus the element-wise least-squares of the residual term. The associated
stabilization scheme is originally designed for Newtonian flows and, in this work, we extend it
to generalized Newtonian flows using the power-law model in a straightforward manner. Since
stabilized finite element methods are not commonly used for non-Newtonian flows, we conduct a
series of numerical experiments to validate our method in the numerical result section. We mention
that a different stabilized finite element method based on PSPG/SUPG is available in the literature
for non-Newtonian flows [14].

Let T h = {K} be a conformal, quasi-uniform tetrahedron finite element mesh with the element
diameter, hK . Let Vh and Ph be a pair of piecewise linear continuous finite element spaces for the
velocity and pressure, respectively

Vh = {v ∈ (C0(Ω) ∩H1(Ω))3 : v|K ∈ P1(K)3, K ∈ T h }

and
Ph = {p ∈ C0(Ω) ∩ L2(Ω) : p|K ∈ P1(K), K ∈ T h}.

Here, C0(Ω) is the set of all continuous functions defined on Ω, L2(Ω), and H1(Ω) are the standard
notations with the usual meanings in the finite element literature [19,23,34]. The weighting and trial
velocity function spaces V 0

h and V gh are

V 0
h = {v ∈ Vh : v = 0 on ΓD}

and
V gh = {v ∈ Vh : v = g on ΓN}.

Similarly, Ph is used for both the weighting and trial pressure function spaces. The Galerkin/least
squares finite element formulation for the incompressible generalized Newtonian Navier-Stokes
equations (1) takes the form: Find uh ∈ V gh and ph ∈ Ph, such that

B(uh, ph; v, q) = 0 ∀(v, q) ∈ V 0
h × Ph (3)

with

B(u, p; v, q) = ((ρ∇u) · u, v) + (2µ(I2(u))D(u),D(v))− (∇ · v, p)− (∇ · u, q)+∑
K∈T h

((∇u) · u +∇p− 2µ(I2(u))∇ ·D(u), τGLS((∇v) · v +∇q − 2µ(I2(v))∇ ·D(v)))K

+(∇ · u, δGLS∇ · v).

We use the stabilization parameters τGLS and δGLS suggested in [19] with a modification of the
element Reynolds number as

τGLS(x, ReK(x)) =
hK

2|u(x)|2
ξ(ReK(x)).

δGLS(x, ReK(x)) = λ|u(x)|2hKξ(ReK(x)), where λ > 0.

Here, ReK is an element Reynolds number defined as follows:

ReK(x) =
|u(x)|2hK

12µ(I2(u(x)))
,
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(For Newtonian flows, i.e., n = 1, µ is a constant), and the function ξ is defined as

ξ(ReK(x)) =

{
ReK(x), 0 ≤ ReK(x) < 1,
1, ReK(x) ≥ 1,

which distinguishes the locally convection-dominated flow asReK(x) ≥ 1 and the locally diffusion-
dominated flow as 0 ≤ ReK(x) < 1. Or, equivalently, the GLS formulation (3) can be written as a
large, sparse, nonlinear algebraic system

F (x) = 0, (4)

where the vector x corresponds to both the nodal velocity uh and pressure ph. Note that the sources
of nonlinearity are from the convection term and the nonlinear viscosity. These two terms are treated
nonlinearly in this paper. This is different from the so-called semi-linear approach in which the
nonlinear terms are linearized using the approximate solution obtained from the previous iteration.

2.3. Newton-Krylov-Schwarz algorithm

We employ a NKS algorithm for solving large nonlinear systems of equations (4), which is described
as follows. Let x(0) be a given initial guess and assume x(k) is the current approximation of x. Then
a new approximation x(k+1) can be computed by the following steps:

Step 1: Find a Newton direction s(k) by solving the following preconditioned Jacobian system
approximately by a Krylov subspace method, such as GMRES [36],

Jks
(k) = −F (x(k)), with s(k) = M−1k y, (5)

where Jk is Jacobian of F evaluated at x(k) and M−1k is the right additive Schwarz
preconditioner.
Step 2: Obtain the new approximation x(k+1) = x(k) + λ(k)s(k), where λ(k) ∈ (0, 1] is a
damping parameter.

In NKS, the accuracy of the solution to the Jacobian systems (5) is controlled by the parameter,
ηk, to force the condition

‖F (x(k)) + F ′(x(k))s(k)‖2 ≤ ηk‖F (x(k))‖2

to be satisfied. ηk is often referred to as the forcing term. If ηk is small enough, the algorithm
reduces to the exact Newton algorithm. In our implementation, the Jacobian matrix is constructed
approximately, more precisely speaking, the components corresponding to the pressure gradient,
diffusive and the convective terms in the Galerkin formulation are evaluated analytically. The terms
corresponding to the partial derivatives of the nonlinear viscosity in the diffusive term with respect
to the spatial variables are ignored since they are small relative to the other terms. All other terms
involving the stabilization parameters are computed approximately by using a multicolored first-
order forward finite difference scheme [1,31]. The step length, λ(k) ∈ [λmin, λmax] ⊂ (0, 1], in Step
2 is selected so that

f(x(k) + λ(k)s(k)) ≤ f(x(k)) + αλ(k)∇f(x(k))T s(k),

where the two parameters λmin and λmax act as safeguards, which are required for strong global
convergence, the merit function f is defined as ‖F (x)‖22/2, and the parameter α is used to assure
that the reduction of f is sufficient. Here, a cubic linesearch technique [12] is employed to determine
the step length, λ(k).

To define a parallel Schwarz preconditioner, we partition the finite element mesh T h introduced in
the previous section. Let {Ωhi , i = 1, ...., N} be a non-overlapping subdomain partition whose union
covers the entire domain Ω and its mesh T h. See Figs. 4 and 5 for a sample 3D finite element mesh
and its partition into non-overlapping submeshes. We denote by T hi as the collection of mesh points
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in Ωhi . To obtain overlapping subdomains, we expand each subdomain Ωhi to a larger subdomain
Ωh,δi with the boundary ∂Ωh,δi . Here δ is an integer indicating the level of overlap. We assume that
∂Ωh,δi does not cut any elements of T h. Similarly, we denote by T h,δi as the collection of mesh
points in Ωh,δi .

Now, we define the subdomain velocity space as

V ih = {vh ∈ Vh ∩ (H1(Ωh,δi ))
3

: vh = 0 on ∂Ωh,δi }

and the subdomain pressure space as

P ih = {ph ∈ Ph ∩ L2(Ωh,δi ) : ph = 0 on ∂Ωh,δi \ΓD},

On the physical boundaries, we impose Dirichlet conditions according to the original equations
(1). On the artificial subdomain boundaries, we assume both u = 0 and p = 0. Similar boundary
conditions were used in [26].

LetRhi : Vh × Ph → V ih × P ih be a restriction operator, which returns all degrees of freedom (both
velocity and pressure) associated with the subspace V ih × P ih. Rhi is an 4ni × 4n matrix with values
of either 0 or 1, where n and ni are the total number of mesh points in T h and T h,δi , respectively,
and

∑N
i=1 4ni ≥ 4n. Note that for P1 − P1 elements, we have four variables per mesh point, three

for the velocity and one for the pressure. Then, the extension operator (Rhi )T can be defined as the
transpose ofRhi . The multiplication ofRhi (and (Rhi )T ) with a vector does not involve any arithmetic
operation, but does involve communication in a distributed memory parallel implementation. Using
the restriction matrix, we write the additive Schwarz preconditioner in the matrix form as

M−1k =

N∑
i=1

(Rhi )TJ−1i Rhi ,

where J−1i is subspace inverse of Ji = Rhi J(Rhi )T . We remark that the global-to-local restriction
operator Rhi collects the data from neighboring subdomains, and the local-to-global prolongation
operator (Rhi )T sends partial solution to neighboring subdomains. J−1i in M−1k often are solved
by a sparse LU decomposition or an incomplete decomposition such as ILU with some levels of
fill-ins [35].

3. NUMERICAL RESULTS AND DISCUSSION

In this section we first provide a validation of the proposed discretization and solver using a test
problem that has an analytic solution, and then we consider a non-Newtonian rotational eccentric
annular flow problem to investigate the robustness and the parallel performance of the NKS
algorithm. In addition, we discuss some interesting behavior of the flow based on the numerical
experiments. In the last subsection, we study the non-Newtonian effect on the entrance length.

3.1. Validation of the proposed discretization method

To validate the proposed stabilized finite element method for non-Newtonian flows, we consider a
simple test case that has an analytical solution. This is a steady-state non-Newtonian power-law flow
passing through a circular tube [8]. Specifically, a 3D cylindrical domain of length L = 5 and radius
R = 0.5 is used. The unit uniform inlet velocity, the outlet stress-free, and the no-slip wall boundary
conditions are imposed. The Reynolds number is defined as Re = ρVinR

µ based on the inlet velocity
and the radius as the characteristics of the velocity and the length, respectively. Here, the parameters
in Eq. (2) are used for nonlinear viscosity: the density ρ = 1 and the consistency index µ0 = 0.01,
and the cutoff value γ0 = 10−6. The velocity profile near the inlet region is uniform and the shape
of the velocity profile is varied with respect to the axial axis (the flow is slower near the wall due to
the viscous effect) until it is fully developed to be a parabolic type velocity. The analytical solution
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for the axial velocity profile in the cylindrical coordinates at some particular cross-section within
the fully-developed region takes the following form,

Vz(r)

Vin
=

3n+ 1

n+ 1

(
1−

( r
R

)(n+1
n )
)
.

The detailed derivation of the analytical solution can be found in [9]. A sequence of uniform meshes
ranging from about 30,000 elements for the coarsest mesh to 1,800,000 elements. To perform the
mesh convergence analysis, we compute the discrete two-norm errors for different values of n and
Re = 25 with different mesh sizes, where the difference between the analytical and the numerical
solutions are evaluated at the 100 equally-spaced grid points along the diameter. As shown in Table
I, quadratic or better convergence is achieved for all values of n.

Meshes hK
# of nodes ‖errorn=1.0‖2 ‖errorn=0.5‖2 ‖errorn=1.5‖2# of elements

Mesh A 0.1 5797 0.13424 0.26187 0.1939728780

Mesh B 0.08 10577 0.08820 0.13581 0.1338454211

Mesh C 0.05 36952 0.03128 0.03998 0.05624198218

Mesh D 0.02 323394 0.00528 0.00398 0.008111800859
Convergence rate 2.0 2.6 2.0

Table I. The discrete 2-norm error of the GLS finite element solutions with respect to the mesh size and their
convergence rates for n = 0.5, 1.0, and 1.5.

From the analytical solution, we know that the velocity profile is independent of the values of
Reynolds number, which is confirmed by the numerical results in Fig. 1. For a fixed n, all the
velocity profile curves corresponding to different Re coincide. Also as shown in the same figure,
the maximum of the outlet velocity profile is located at the center and its value increases as the
power-law index, n, increases.

Figure 1. The velocity profile with different n and Re.
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3.2. A rotational eccentric annular flow problem

To further study the numerical performance of the proposed algorithm, we consider a non-
Newtonian rotational eccentric annular flow problem, which is described mathematically by Eq.
(1) defined in the computational domain Ω; see Fig. 2 for the geometrical configuration of the
flow problem and associate boundary conditions. The boundary consists of four segments, Γ =
Γin ∪ Γout ∪ Γwall in ∪ Γwall out. We apply a uniform velocity, uin, on Γin, a stress-free boundary
condition on Γout, a no-slip boundary condition on the walls, a stationary condition, u = 0, on
Γwall out, and a rotational condition, u = urot, on Γwall in. Fig. 3 shows the geometric configuration

0 10

z

y

x

Ω

Γwall_out

Γout

Γin Γwall_in

rotu

inu

Figure 2. 3D rotational eccentric annulus geometry.
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Figure 3. Schematic view of 3D rotational eccentric annulus cross section.

for the circular cross-section of the eccentric annulus. RI and RO are the radii of these two
cross-sections. The ratio of two radii is given by κ = RI/RO and the eccentricity is defined as
ε = e/(RO −RI). In addition, the non-dimensional flow parameters are defined as follows.

Axial Reynolds number: Rez ≡
ρuinDh

µF
,

Azimuthal Reynolds number: Rer ≡
ρurotDh

µF
,

Reynolds number ratio: rRe ≡
Rez
Rer

,

where Dh = 2(RO −RI) is the hydraulic diameter of eccentric annuli and µF is the characteristic
viscosity for the flow, defined as µ0(urot

Dh
)n−1.

Robustness and parallel performance of NKS. We study the robustness and the efficiency of
the NKS algorithm with respect to the power-law index, n, and the Reynolds number ratio, rRe.
Detailed parameter settings for the numerical experiments are listed in Table II. A zero initial guess
is employed, when possible, and a power-law index based continuation method is used to generate
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Figure 4. A sample 3D tetrahedron mesh.

Figure 5. A sample domain decomposition with 16 subdomains; the elements with the same color belong to
the same subdomain.

the initial guess for other test cases. We claim the convergence of the NKS algorithm when the
absolute tolerance ‖F (x(k))‖2 < 10−10 or the relative tolerance ‖F (x(k))‖2 < 10−6‖F (x(0))‖2 is
satisfied. The Jacobian system is solved inexactly by using an additive Schwarz preconditioned
GMRES with forcing term, ηk = 10−4. In the parallel implementation, each subdomain problem is
assigned to a core and the subdomain linear system is solved by a sparse LU decomposition method.
The overlapping size for the Schwarz preconditioner is set to be 1.

uin Rez urot Rer rRe

0.0 0 1.0 100 0.0
0.1 10 1.0 100 0.1
1.0 100 1.0 100 1.0
2.0 200 1.0 100 2.0

Table II. Parametric settings for four test cases.
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Table III shows the number of Newton iterations, the average number of GMRES iterations, and
the timing results for each case. We summarize some of the observations as follows.

• For fixed rRe, compared to the Newtonian case n = 1, the number of Newton iterations
increases as the power-law index n increases (> n) or decreases (< n), in which the non-
Newtonian effect is more significant. As shown in Fig. 6, NKS converges quadratically for
Newtonian flows, while for the cases of non-Newtonian flows the rate of convergence of NKS
degrades to linear.

• For fixed n ranging within [0.75,1.4], the number of Newton iterations decreases then
increases as rRe increases. At the beginning (rRe = 0.0), the flow is dominated by the
nonlinear viscosity, and at the end (rRe = 2.0), the flow is dominated by the nonlinear
convection.

• When both the nonlinear viscosity and convection effect are strong (e.g., n is close to 0.5 and
rRe is close to 2.0), NKS fails to converge when zero initial guess is used. Hence, in addition to
the globalization linesearch technique, we use a power-law index based continuation method
to generate the initial guess. More precisely speaking, we first solve the flow problem with
n = 0.75, then its converged solution is used as an initial guess for the cases of n = 0.5 and
0.6.

n
rRe = 0.0 rRe = 0.1 rRe = 1.0 rRe = 2.0

nNew(nGMRES) time(sec) nNew(nGMRES) time(sec) nNew(nGMRES) time(sec) nNew(nGMRES) time(sec)
0.5 25(70.1) 6778.5 18(73.3) 4815.5 17(82.4) 4608.8 15(92.9)* 4192.3*
0.6 21(72.1) 6810.9 17(72.2) 4391.6 14(83.3) 3463.1 12(86.7)* 2920.3*
0.75 19(72.4) 4951.2 15(71.9) 3707.3 10(83.0) 2583.1 11(84.2) 2836.5
0.8 17(71.3) 4306.8 15(71.7) 3829.2 9(80.3) 2381.3 10(83.9) 2513.9
1.0 7(63.3) 1595.9 6(67.8) 1313.8 5(81.0) 1332.0 8(78.1) 2101.8
1.2 15(72.3) 3849.4 13(71.2) 3214.3 9(76.8) 2345.5 10(78.3) 2460.8
1.25 15(72.3) 4137.7 13(71.5) 3054.9 10(75.2) 2443.9 10(81.7) 2640.2
1.4 15(71.7) 4512.8 13(70.8) 3256.0 14(67.6) 3407.3 15(76.7) 3856.6
1.5 17(72.8) 4545.9 22(40.9) 5666.5 32(42.8) 7845.4 19(79.9) 4945.1

Table III. Nonlinear and linear iteration counts and timing results. “nNew” denotes the number of Newton
iterations and “nGMRES” denotes the average number of GMRES iterations per Newton iteration. The mark
“*” indicates that the parameter continuation method is used, where the converged solution with n = 0.75 is

used as an initial guess.

The parallel performance of 3D rotational eccentric annular flows for the cases with different
rRe are shown in Table IV. It is clear that, for fixed rRe, our fluid solver is nonlinearly scalable
and the average number of GMRES iterations increases mildly as the number of processors grows.
In terms of the total computing time, our parallel fluid solver achieves a good scalability with up
to 512 processors. Generally speaking, the computational cost for the pseudoplastic and dilatant
cases is two to three times more expensive than the Newtonian case mainly due to the fact that more
Newton iterations is needed. This is an indication that non-Newtonian flows are more nonlinear than
Newtonian flows.

Some quantitative analysis the flows. Figs 7 and 8 show the viscosity distribution and shear
stress distribution for the cases of pseudoplastic (n = 0.5) and dilatant (n = 1.5) flows. The
relationship between viscosity and shear stress is as expected. The shear stress for the pseudoplastic
case decreases as the viscosity increases, and the shear stress for the dilatant case increases as the
viscosity increases. We also present plots of some other physical quantities of the flows, including
the pressure distribution (Fig. 9), the velocity distribution (Fig. 10), the streamlines (Fig. 11). For
each case, we compare the effect on the values of different power-law index n under the same flow
boundary conditions. Some observations are made as follows.

• The distributions of the pressure gradient of all cases are similar, and the only significant
difference appears at the inlet near the inner cylinder for the dilatant cases (n = 1.25 and 1.5).

• For the velocity distribution, as the power-law index decreases, the corresponding flow
becomes slower when fully developed.
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Figure 6. Histories of nonlinear residuals for different rRe. Here “New.” is for Newtonian flows, “Pse.” is
for n = 0.75 case, and “Dil.” is for n = 1.25 case.

rRe np
Newtonian pseudoplastic dilatant

nNew(nGMRES) time(sec) nNew(nGMRES) time(sec) nNew(nGMRES) time(sec)

0.0

64 7(63.3) 1595.9 19(72.4) 4951.2 15(72.3) 4137.7
128 7(78.9) 622.0 19(92.2) 2259.9 15(90.5) 1680.3
256 7(105.0) 249.5 19(122.1) 825.4 15(121.1) 626.3
512 7(132.2) 101.2 19(150.9) 316.3 15(150.5) 261.5

0.1

64 6(67.8) 1313.8 15(71.9) 3707.3 13(71.5) 3054.9
128 6(84.1) 617.3 16(89.9) 1855.0 13(89.7) 1445.9
256 6(113.7) 193.5 16(120.1) 620.1 13(119.2) 547.0
512 6(139.5) 96.1 16(149.4) 252.1 13(148.6) 210.9

1.0

64 5(81.0) 1332 10(83.0) 2583.1 10(75.2) 2443.9
128 5(102.4) 448.8 10(103.3) 1045.5 10(95.2) 1021.9
256 5(134.8) 207.5 10(136.7) 402.0 10(122.8) 382.6
512 5(165.6) 81.5 10(168.8) 177.1 10(153.4) 164.4

2.0

64 8(78.1) 2101.8 11(84.2) 2836.5 10(81.7) 2640.2
128 8(99.0) 725.7 11(107.2) 1196.9 10(103.4) 921.0
256 8(129.9) 267.8 11(137.8) 515.8 10(135.8) 434.8
512 8(162.5) 125.1 11(175.1) 199.1 10(167.2) 170.6

Table IV. Parallel performance of NKS.“nNew” denotes the number of Newton iterations and “nGMRES”
denotes the average number of GMRES iterations per Newton iteration.

• All cases have three similar major patterns in the streamlines: straight streamlines in the top
gap, rotational streamlines near the inner-cylinder, and helical streamlines between the inner
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and outer cylinders. However, as the value of n becomes smaller, the helical streamlines near
the sides disappear.

Figure 7. A comparison of viscosity (top) and shear stress in the logarithmic scale (bottom) for the case of
pseudoplastic (n = 0.5).

Figure 8. A comparison of viscosity (top) and shear stress in the logarithmic scale (bottom) for the case of
dilatant (n = 1.5).

Non-Newtonian effect on the entrance length. The flow is referred to as fully developed when
the velocity profile remains unchanged at any cross section of the flow domain. As the fluid enters
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Figure 9. Pressure distributions for the cases with different values of the power-law index in the order of
n = 0.50, 0.75, 1.0, 1.25, and 1.50.
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Figure 10. Velocity distributions for the cases with different values of the power-law index in the order of
n = 0.50, 0.75, 1.0, 1.25, and 1.50.

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2014)
Prepared using fldauth.cls DOI: 10.1002/fld



PARALLEL DD METHOD FOR FE APPROXIMATION OF 3D NON-NEWTONIAN FLUIDS 15

Figure 11. Streamlines for the cases with different values of the power-law index in the order of n =
0.50, 0.75, 1.0, 1.25, and 1.50.

and flows through the annulus, the viscosity causes the fluid to stick to the walls (the no-slip
boundary condition). Due to the viscous effect, the boundary layer starts to grow such that the initial
velocity profile changes along the annulus until the fluid reaches certain points where the velocity
profile does not vary with axial position. The distance from the entrance to that point is called the
entrance length, le/Dh. Here the distance le is normalized by the hydraulic diameter of the eccentric
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annuli Dh. We are interested in finding the relationship between the entrance length le/Dh [29], the
power-law index n and the Reynolds number ratio rRe for rotational eccentric annulus flows.

We first consider four different axial velocities or four different Reynolds number ratios as listed
in Table II for the pseudoplastic fluid with n = 0.75 and the dilatant fluid with n = 1.25. Figs.12–15
show the comparison of velocity contour plots on the yz-plane with different inflow axial velocities
for Newtonian, pseudoplastic, and dilatant fluids. For the case of rRe = 0.0 and rRe = 0.1, since the
rotational force is much stronger than the pressure gradient, the fluid flows are never fully developed
and on the other hand, for the case of rRe = 1.0 and rRe = 2.0, three types of fluids are all fully
developed at certain points.

The entrance lengths for different kinds of fluids and Reynolds number ratios are summarized in
Table V. For the case of rRe = 1.0 fully developed conditions occur at about z = 7.4, z = 6.6 and
z = 5.8 for pseudoplastic fluid, Newtonian fluid and dilatant fluid, respectively. And for the case of
rRe = 2.0 fully developed conditions occur at about z = 8.2, z = 7.8 and z = 6.8 for pseudoplastic
fluid, Newtonian fluid and dilatant fluid, respectively. Therefore, the entrance length of the dilatant
fluid (n > 1) is shorter than that of the Newtonian fluid, and the pseudoplastic fluid (n < 1) has
the shortest entrance length. Moreover, the smaller the Reynolds number ratio is, the shorter the
entrance length is.

rRe pseudoplastic Newtonian dilatant
1.0 7.4 6.6 5.8
2.0 8.2 7.8 6.8

Table V. The entrance length le/Dh.

4. CONCLUSIONS

We introduced a stabilized finite element method for 3D non-Newtonian fluids and a corresponding
parallel Newton-Krylov-Schwarz algorithm for solving the large, sparse, highly nonlinear system
of equations arising from the finite element discretization. The finite element method was carefully
validated by comparing its solution with an analytical solution that is available for a special test
problem. We observed that NKS works well, in most cases, for different power-law index and
the Reynolds number ratio, more precisely, NKS converges quadratically for Newtonian flows,
but as the power-law index moves away from 1.0 (i.e., the non-Newtonian effect increases) the
convergence changes toward linear. When both the nonlinear viscosity and the nonlinear convection
are strong, standard NKS with zero initial guess fails to converge. For such situations, we introduced
a power-law index based continuation method that generates an initial guess for NKS using the
solution of a flow problem corresponding to a power-law index closer to 1.0. With this technique,
we are able to solve problems with a wide range of power-law index values and Reynolds number
ratios. Moreover, using the computational results we provided some quantitative analysis of the
3D flows in terms of streamlines, pressure distributions, and shear stress distributions. We also
demonstrated that the domain decomposition based preconditioning algorithm is quite effective for
these rather difficult, highly ill-conditioned, systems of algebraic equations. Superlinear speedup is
obtained with up to 512 processors. In this work, we focused on how the performance of NKS is
affected by the physical parameters, including the Reynolds number and the power-law indices, etc.
The convergence rate of the linear iterative solver may be further improved by tuning some of the
parameters in the Schwarz preconditioners, some of parametric studies for several closely related
problems can be found in [24,25]. In the future, we plan to continue to work on more complicated
non-Newtonian fluids such as Bingham fluid and time-dependent fluids. Finally, our algorithmic
framework is quite general and can be extended to other cases with complex geometry and fluid
conditions.
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Figure 12. rRe = 0.0 velocity profiles of (a) Newtonian fluid, (b) pseudoplastic fluid, and (c) dilatant fluid.

Figure 13. rRe = 0.1 velocity profiles of (a) Newtonian fluid, (b) pseudoplastic fluid, and (c) dilatant fluid.
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Figure 14. rRe = 1.0 velocity profiles of (a) Newtonian fluid, (b) pseudoplastic fluid, and (c) dilatant fluid.

Figure 15. rRe = 2.0 velocity profiles of (a) Newtonian fluid, (b) pseudoplastic fluid, and (c) dilatant fluid.
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