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Abstract

We develop a parallel Jacobi-Davidson approach for finding a partial set of eigenpairs of
large sparse polynomial eigenvalue problems with application in quantum dot simulation.
A Jacobi-Davidson eigenvalue solver is implemented based on the Portable, Extensible
Toolkit for Scientific Computation (PETSc). The eigensolver thus inherits PETSc’s
efficient and various parallel operations, linear solvers, preconditioning schemes, and
easy usages. The parallel eigenvalue solver is then used to solve higher degree polyno-
mial eigenvalue problems arising in numerical simulations of three dimensional quantum
dots governed by Schrödinger’s equations. We find that the parallel restricted addi-
tive Schwarz preconditioner in conjunction with a parallel Krylov subspace method (e.g.
GMRES) can solve the correction equations, the most costly step in the Jacobi-Davidson
algorithm, very efficiently in parallel. Besides, the overall performance is quite satisfac-
tory. We have observed near perfect superlinear speedup by using up to 320 processors.
The parallel eigensolver can find all target interior eigenpairs of a quintic polynomial
eigenvalue problem with more than 32 million variables within 12 minutes by using 272
Intel 3.0 GHz processors.

Key words: Parallel computing, restricted additive Schwarz preconditioning,
Jacobi-Davidson methods, polynomial eigenvalue problems, Schrödinger’s equation,
quantum dot simulation.

1. Introduction

Polynomial eigenvalue problems (PEPs) arise in many scientific and engineering ap-
plications. A PEP can be written as

A(λ)f ≡ (
τ∑

i=0

λiAi)f = 0, (1)
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where (λ, f) is an eigenpair that λ ∈ C and f ∈ CN , τ is the degree of the matrix
polynomial, and Ai ∈ RN×N are the corresponding coefficient matrices. Solving some
PEPs can be a computational challenge, especially when the PEPs are very large and
only a small number of eigenpairs are of interest. In this article, we develop a parallel
Jacobi-Davidson approach for solving PEPs with a particular application in quantum
dot (QD) simulation.

Nanoscale semiconductor QD is a particular electronic structure in which the carriers
are confined within the dots in three dimensions. A great deal of research related to
the laboratory fabrication, theoretical investigation, and real-world applications of QDs
has been conducted. Among these studies, numerical simulations based on Schrödinger
equations play an important role in exploring properties of QDs. A computational focus
of QD simulations is to solve the eigenvalue problems that are derived from the discretized
Schrödinger equations. Various discretization schemes such as finite differences [25, 32],
finite volumes [22], finite elements [28, 45], boundary elements [15], scanning methods
[12], and pseudo-spectral methods [14, 31] have been used. Furthermore, various physical
models and numerical schemes result in different standard [19, 22], generalized [21],
polynomial [19, 49], or rational [45, 46] eigenvalue problems. Such eigenvalue problems
are then solved to find approximate energy levels (eigenvalues) and wave or envelope
functions (eigenvectors).

Many eigensolvers have been proposed to solve the eigenvalue problems associated
with the QD simulations [6, 7, 13, 19, 20, 21, 22, 27, 40, 41, 43, 44, 48, 49]. In the
literature, some sequential and parallel eigensolvers have been proposed for use in solving
standard or generalized eigenvalue problems. On the other hand, sequential Jacobi-
Davidson type methods have also been used to solve the PEPs. As an extension of these
previous efforts, we aim to develop and implement an efficient parallel Jacobi-Davidson
(JD) algorithm for solving PEPs.

Use of the JD algorithms to compute interior eigenpairs of PEPs can be justified
as follows. To solve a PEP, one can recast the original PEP as a linearized eigenvalue
problem. The linearized eigenvalue problem can be solved using Arnoldi or Lanczos type
methods. From the numerical viewpoint, however, this approach has some potential
drawbacks. For example, since the dimension of the enlarged matrix is much larger than
the original problem, the memory requirement is more demanding and the linearized
eigenvalue problem is more ill-conditioned [39]. Furthermore, in order to find selected
interior eigenvalues, Arnoldi or Lanczos type methods need to be used in conjunction with
a shift-and-invert technique, which requires to solve linear systems with a certain degree
of accuracy. The computational cost of this type of operation is quite expensive. On the
other hand, the use of a JD type algorithm is an efficient alternative. JD was proposed by
Sleijpen and Van der Vorst for solving linear eigenvalue problems [35] and later extended
for higher degree PEPs [34, 47, 49]. The JD algorithm belongs to a class of subspace
methods that consists of two key steps. One first extracts an approximate eigenpair from
a given search space using the Rayleigh-Ritz procedure. If the approximate eigenpair
is not close enough, one must enlarge the search space by adding a new basis vector,
which is the approximate solution of a large sparse linear system of equations, known
as the correction equation. The major advantages of the JD algorithm are that it deals
directly with PEPs, the interior spectrum can be found without using any shift-and-
invert technique, and an inexact correction equation solve (very often requiring only a
few linear iterations) is sufficient for rapid JD convergence.
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Parallelism is a natural choice as a method for accelerating large-scale JD eigensolvers.
Some variants of parallel JD algorithms have been studied for use in solving linear and
quadratic eigenvalue problems. In most existing parallel JD research, the focus has been
on design of appropriate parallel preconditioners for the correction equations, the most
expensive part of JD algorithms. For example, Nool and Ploeg [29, 30] first used a shift-
and-invert technique to convert a generalized magnetohydrodynamics eigenvalue problem
into a standard eigenvalue problem so that the Alfven spectrum, (which are certain in-
terior eigenvalues) is shifted to dominant one then solved it by a parallel JD methods,
in which Generalized Minimal Residual Method (GMRES) [33] with an inexact block
Cholesky’s based preconditioner was used for the correction equation. Bergamaschi et
al. [4, 5] reported some computational experiences with a parallel approximate inverse
(AINV) preconditioned JD method for solving the standard symmetric eigenvalue prob-
lem using a variety of applications in the 3D porous media flow, the 2D Richard’s equation
and the 3D Laplacian equation. The parallel efficiency of their parallel JD code achieved
ranges from 26% to 62%. Arbenz et al.[1] proposed a hybrid preconditioner combining a
hierarchical basis preconditioner and an algebraic multigrid preconditioner for the correc-
tion equation in the JD algorithm for solving symmetric generalized Maxwell eigenvalue
problem; their parallel code did not attain below 65% parallel efficiency using up to 16
processors. In addition, Gijzen [16] implemented a parallel JD method for a quadratic
acoustic with damping eigenvalue problem, in which the GMRES method is used with-
out any preconditioning for the solution of the correction equation and showed that the
method scales almost linearly up to 64 processors. Note that several state-of-the-art
parallel eigensolver packages such as PARPACK [24], PLOPEX [23], PRIMME [37, 38],
and Scalable Library for Eigenvalue Problem Computation (SLEPc) [17] are publicly
available for standard or generalized eigenvalue problems.

In order to develop an efficient parallel preconditioned Jacobi-Davidson algorithm for
solving PEPs arising in QD simulations, we address the following issues:

• Preconditioning for the correction equations. We propose using additive
Schwarz type preconditioners to solve the correction equations; this represents the
most expensive part of the proposed algorithm. This type of preconditioner is
efficient, widely used, and is well-understood as it applies to solving linear systems
arising in partial differential equations such as symmetric positive elliptic problems,
non-symmetric and indefinite elliptic problems, parabolic convection-diffusion, and
hyperbolic problems [36, 42]. However, its use in solving eigenvalue problems for
specific applications has not yet been studied.

• Parallel implementation. We discuss our parallel implementations on a dis-
tributed memory parallel computer in terms of a parallel correction equation solver
and parallel basic linear algebraic operations. Our implementation is mainly based
on the Portable, Extensible Toolkit for Scientific Computation (PETSc) [2] and
thus shares all the convenient features provided by PETSc.

• Parameter tuning. We identify tunable parameter combinations for achieving
best performances. The parameters include overlapping size of additive Schwarz
preconditioner, solution quality of subdomain problems, inner JD iteration (for the
correction equations) stopping criterion, and scalability with respect to number of
processors and problem sizes.

3



• Parallel performance. Numerical results exhibit superior performance in speedup
and parallel efficiency, since the additive Schwarz preconditioner in conjunction
with a Krylov subspace method (e.g. GMRES) can improve the overall conver-
gence rate of the proposed algorithm. For example, we have observed superlinear
speedup and over 100% parallel efficiency up to 320 processors.

• Performance on a large-scale problem. Our parallel eigensolver also solves a
quintic PEP with more than 32 million variables. The eigensolver computes all the
five target eigenpairs within 12 minutes by using 272 Intel 3.0 GHz processors.

The remainder of this paper is organized as follows: In Section 2, we describe the
mathematical model of QDs and the corresponding PEPs. Section 3 describes the paral-
lel additive Schwarz preconditioned JD algorithm for solving PEPs. Section 4 discusses
our implementation of the proposed algorithm using PETSc and SLEPc on a distributed
memory parallel computer. Section 5 reports parallel performance of the proposed algo-
rithms. The concluding remarks are given in Section 6.

2. Mathematical model for quantum dot and its discretization

The governing equation for three-dimensional QDs with single particle in the conduc-
tion band is the time-independent Schrödinger equation.

−∇ · ( ~2

2m(x)
∇f) + c(x)f = λf, (2)

where ~ is the reduced Planck constant; the eigenvalue λ and eigenvector f represent the
total electron energy and the corresponding wave function, respectively; m(x) represents
the electron effective mass and c(x) is the confinement potential.

Pyramid Dot

Cuboid Matrix

Figure 1: Structure schema of a pyramidal and a cylindrical quantum dot. Each of the quantum dots is
embedded in a hetero-structure matrix.

The above equation describes the hetero-structures as shown in Figure 1. In the
interface of the hetero-junction, both m(x) and c(x) are discontinuous. In cases in which
constant effective mass models are considered, m(x) is a piecewise constant function with
respect to the space variable x:

m(x) =
{

m1 in the dot,
m2 in the matrix.
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Alternatively, the nonparabolicity of the electron’s dispersion relation [11] gives the ef-
fective mass as a rational function of the energy. In particular, the effective mass model
becomes

1
m`(λ)

=
P 2

`

~2

(
2

λ + g` − c`
+

1
λ + g` − c` + δ`

)
, (3)

for ` = 1, 2. Here, P`, g`, and δ` are the momentum, main energy gap, and spin-orbit
splitting in the `th region, respectively. Similarly, the confinement potential c(x) is a
piecewise constant function that

c(x) =
{

c1 in the dot,
c2 in the matrix.

We impose the Ben Daniel-Duke interface conditions

f |D+
= f |D− ,

~2
2m2

∂f
∂n

∣∣∣
∂D+

= ~2
2m1

∂f
∂n

∣∣∣
∂D−

(or ~2
2m2(λ)

∂f
∂n

∣∣∣
∂D+

= ~2
2m1(λ)

∂f
∂n

∣∣∣
∂D−

).
(4)

By letting D be the QD domain, we use D+ and D− to denote the outward normal
derivatives of the interface for the matrix and dot, respectively. Additionally, we apply
homogeneous Dirichlet conditions on the boundary of the quantum matrix.

This QD model can be derived from the following approximations. We first take
account of the Hamiltonian acting on the envelope functions for multi-band electrons, in
which the envelope functions are equivalent to the k·p bandstructure Kane model [3, 10].
The effective mass theory is further applied to project the multi-band Hamiltonian onto
the conduction band and consequently results in the single Hamiltonian eigenvalue prob-
lem (2). Such approximations are desirable as they can reduce the intensive computa-
tional burden from more complicated yet complete models like the ab initio simulations of
many-electron Schrödinger equations. However, the simplifications also limit the appli-
cability of the model and consequently the numerical methods considered in this article.

A variety of numerical schemes for simulating QDs with different geometries have
been developed for cylinders [20, 22, 49], cones [26, 46], pyramids [12, 19, 32, 48], and
irregular shapes [21]. Based on the variants of the QD model and numerical schemes,
PEPs with different degrees are derived. Table 1 lists six representative QD eigenvalue
problems available in the literature. Numerical investigations on the comparison of our
proposed eigensolver with other state-of-the-art parallel eigensolvers for first three linear
problems in the table will be reported elsewhere. Instead, we focus on the two higher
degree PEPs: quintic and cubic eigenvalue problems, which correspond to the pyramidal
and cylindrical QD, respectively and both problems assume the nonparabolic effective
mass model. Alternatively, the QD eigenvalue problem (2) in the rational form consid-
ered in [45, 46] is solved by the nonlinear Arnoldi methods, the JD methods, and fully
approximation methods.

For the pyramidal QD case, the width of the QD base is 12.4 nm, the height of the
QD is 6.2 nm and the cuboid matrix of the dimension 24.8× 24.8× 18.6 nm is uniformly
partitioned into (L + 1), (M + 1), and (N + 1) grids in each direction so that the grid
size ∆x = 24.8/L, ∆y = 2.48/M , and ∆z = 18.6/N . Since homogeneous Dirichlet
boundary conditions are imposed, the total number of unknowns, or the dimension of
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Type QD geometry Effective mass model Discretization Reference(s)
Standard cylindrical constant FVM [22]
Standard pyramidal constant FVM [19]

Generalized irregular constant FDM [21]
Cubic cylindrical nonparabolic FDM [49]

Quintic pyramidal nonparabolic FVM [19]
Rational conical/pyramidal nonparabolic FEM/FDM [26, 45, 46]

Table 1: Some representative QD eigenvalue problems available in literature. FDM: finite differences
methods, FVM: finite volumes methods, and FEM: finite elements methods

A′is, is therefore (L−1)×(M−1)×(N−1). The resulting quintic PEPs are obtained using
a finite volumes method. For the cylindrical QD case, the cylindrical QD of diameter
15 nm and height 2.5 nm is placed in the cylindrical matrix of radius 75 nm and height
12.5 nm. The matrix is non-uniformly partitioned into (ρ + 1), η, and (ζ + 1) grids in
the radial, azimuthal, and axial directions, respectively, where the Schrödinger equation
is discretized by using finite differences schemes. By applying the periodicity in the
azimuthal direction, suitable permutations, and Fourier Transformation, η independent
2D cubic PEPs can be decoupled from a 3D eigenvalue problem. As a test case, only the
grid associated with azimuthal index 1 is considered. The derivations of these two PEPs
are quite tedious; we refer interested readers to the references given in Table 1.

3. A parallel additive Schwarz preconditioned Jacobi-Davidson Algorithm

We propose a parallel additive Schwarz preconditioned Jacobi-Davidson algorithm
(ASPJD) for solving the PEP (1) as shown in Algorithm 1. The ASPJD shares a similar
framework to that of other polynomial Jacobi-Davidson type algorithms such as [19].
Here, we focus on the efficiency of the algorithm on parallel computers. Its parallel im-
plementation will be discussed in the next section. The algorithm contains two loops. In
the inner while-loop between line 4 and 12, we compute the Ritz pair that approximates
the jth desired eigenpair of (1). In the outer for-loop between line 2 and 16, we compute
the k desired eigenpairs one-by-one using a locking technique.

3.1. Inner loop
The inner loop contains the following components:

• Small size projected eigenvalue problems.

In the while-loop starting from line 4, we compute the eigenpair (θ, s), where
‖s‖2 = 1 of the projected eigenvalue problem, (

∑τ
i=0 θiMi)s = 0, by solving the

corresponding linearized projected eigenvalue problem,

MAz = θMBz, (5)
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Algorithm 1 Parallel Additive Schwarz Preconditioned Jacobi-Davidson Algorithm
(ASPJD) for Polynomial Eigenvalue Problems
Input: Coefficient matrices Ai for i = 0, . . . , τ , the number of desired eigenvalues k, an initial orthonor-

mal vector Vini

Output: the desired eigenpairs (λj , fj) for j = 1, . . . , k
1: Set V = [Vint], VF = [ ], and Λ = ∅
2: for j = 1 to k do
3: Compute Wi = AiV and Mi = V ∗Wi for i = 0, . . . , τ
4: while (user-defined stopping criteria are not satisfied) do
5: Compute the eigenpairs (θ, s) of (

∑τ
i=0 θiMi)s = 0

6: Select the desired eigenpair (θ, s) with ‖s‖2 = 1 and θ /∈ Λ
7: Compute u = V s, p = A′(θ)u, r = A(θ)u
8: Solve the correction equation

(
I − pu∗

u∗p

)
A(θ)(I − uu∗)t = −r

approximately for t ⊥ u by a Krylov subspace method with an additive Schwarz type precon-
ditioner

9: Orthogonalize t against V , v = t/‖t‖2.
10: Compute wi = Aiv,

Mi =

[
Mi V ∗wi

v∗Wi v∗wi

]

for i = 0, . . . , τ .
11: Expand V = [V, v] and Wi = [Wi, wi]
12: end while
13: Set λj = θ, fj = u, Λ = Λ ∪ {λj}
14: Perform locking by orthogonalizing fj against VF ; Compute fj = fj/‖fj‖2; Update VF = [VF , fj ]

15: Choose an orthonormal matrix Vini ⊥ VF ; Set V = [VF , Vini]
16: end for
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where

MA =




0 I 0 . . . 0
0 0 I . . . 0
...

...
...

. . .
...

0 0 0 . . . I
M0 M1 M2 . . . Mτ−1




,

MB =




I 0 0 . . . 0
0 I 0 . . . 0
0 0 I . . . 0
...

...
...

. . .
...

0 0 0 . . . −Mτ




, z =




s
θs
θ2s
...

θτ−1s




.

Let Θ be the set of the eigenvalues θ. For a given target value, µ, which is near the
desired eigenvalue, we select one of eigenvalues, say θj , from the set Θ\Λ so that

|µ− θj | = min
θ∈Θ\Λ

|µ− θ|. (6)

(θj , sj) refers to the desired eigenpair in line 6 of Algorithm 1. Depending on the
application some additional condition for (6) may need to be imposed. For example,
we typically select µ = 0 and require θ to be positive for our QD simulation. Note
that the dimension of V TA(θ)V is usually small and not larger than a user-defined
restarting number.

• Restarting. To avoid loss of numerical orthogonality in V and to keep a manage-
able size of the generalized eigenvalue problem being solved in (5), we restart the
eigenpair search and choose a new orthogonal V after a certain number of inner
iterations.

• Correction vector. The main purpose of the inner loop is to keep searching a
Ritz pair with small residual over the space V that is gradually expanded. As
shown in line 7 and 8 of Algorithm 1, we compute

p = A′(θ)u, (7)

where A′(θ) =
τ∑

i=1

iθi−1Ai and then solve the correction equation

(
I − pu∗

u∗p

)
A(θ)(I − uu∗)t = −r (8)

for a correction vector t in each inner while-loop and then append the normalized
correction vector to V . The derivation of Eq. (8) is based on Taylor’s expansion
and the fact that we can find the orthogonal complement t ⊥ u to correct the error
of the current approximation u such that

A(λ)(u + t) = 0. (9)
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See [18] for a detailed explanation regarding the correction vector.

Here, the correction equation (8) is solved approximately by a Krylov subspace
method (e.g. GMRES) with the preconditioning operator, B−1

d , where

Bd =
(

I − pu∗

u∗p

)
B(I − uu∗) ≈

(
I − pu∗

u∗p

)
A(θ)(I − uu∗) (10)

and B is an approximation of A(θ). In practice, there is no need to explicitly form
Bd to solve Bdz = y with z ⊥ u for a given y, as it can be done equivalently by
computing

z = B−1y − ηB−1p, with η =
u∗B−1y

u∗B−1p
. (11)

Note that the preconditioning operation B−1p and inner product u∗B−1p need be
computed only once for solving each correction equation; there is no need to re-
compute them in the Krylov subspace iteration. Consequently, the Krylov subspace
iteration in line 8 needs only preconditioning operations in the form of B−1y.

While some sequential preconditioners such as SSOR were studied in [19, 20], we
consider next a parallel domain-decomposed preconditioner B−1 based on an ad-
ditive Schwarz framework.

• Construction of the additive Schwarz preconditioner B−1.

To define parallel Schwarz-type preconditioners, we begin by partitioning the com-
putational quantum dot domain D into Ns disjoint subdomains {D0

i , i = 1, ...., Ns},
whose union covers the entire domain. Then, overlapping subdomains can be ob-
tained by expanding each subdomain D0

i to a larger subdomain Dδ
i with the bound-

ary ∂Dδ
i . Here δ is a nonnegative integer indicating the level of overlap. Let nδ

i and
n be the total number of interior grid points on Dδ

i and D, respectively. We define
Rδ

i as a nδ
i × n restriction matrix with a value of either 0 or 1. The interpolation

operator (Rδ
i )

T can then be defined as the transpose of Rδ
i . The multiplication

of Rδ
i (and (Rδ

i )
T ) with a vector does not involve any arithmetic operations, but

does involve some communication in a distributed memory implementation, i.e., the
global-to-local restriction operator Rδ

i , which collects data from neighboring sub-
domains, and the local-to-global interpolation operator (Rδ

i )
T , which sends partial

solutions to neighboring subdomains.

Using the restriction and interpolation matrices, we write the one-level restricted
additive Schwarz preconditioner (RAS) [9] in matrix form as

B−1 =
Ns∑

i=1

(R0
i )

T
B−1

i Rδ
i , (12)

where B−1
i is the subspace inverse of Bi and Bi = Rδ

iA(θ)(Rδ
i )

T . Note that when
δ = 0, the RAS preconditioner in (12) is reduced to the block Jacobi preconditioner.

Although the theoretical analysis for the convergence of RAS is still incomplete,
much numerical evidence suggests that using RAS to solve a variety of linear sys-
tems can not only reduce by half the communication time needed when the classical
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additive Schwarz preconditioner is used, but can also accelerate the convergence of
iterative methods.

3.2. Outer loop
In the outer loop, k desired eigenpairs are computed successively. To compute the (j+

1)th eigenpair, we apply the following locking technique with suitably chosen orthonormal
searching space V . Such technique is incorporated in Algorithm 1 as follows:

• In line 13, we take a Ritz pair (θj , fj), where fj = V sj , with small residual
‖A(θj)fj‖2 as the jth approximate eigenpair and append θj into Λ.

• In line 14, the approximate eigenvector fj is normalized and then appended into
VF. Consequently, the columns of VF form an orthonormal basis of the eigenspace
spanned by f1, . . . , fj .

• In line 15, we choose an orthonormal matrix Vini and set V = [VF, Vini] such that
V T V = I.

In so doing, the first desired j eigenpairs will be included (or locked) in the eigenpairs
corresponding to the projected eigenvalue problem in line 3 of Algorithm 1. On the other
hand, these j eigenvalues will not be chosen in line 6, as we search the (j+1)th eigenvector
over the space that is orthogonal to the V defined in line 15 of the jth iteration.

4. Detailed parallel implementations using PETSc and SLEPc

In this section, we describe the parallel implementation of the ASPJD algorithm based
on two powerful scientific software libraries, namely the PETSc [2] and the SLEPc [17].
As shown in Figure 2, the design of PETSc adopts the principle of software layering. As
an application code of PETSc, the major component in our ASPJD eigensolver, the JD
object, is built on top of the KSP, a Linear Equation Solver. All PETSc libraries are based
on Message Passing Interface (MPI) and two modules of linear algebra libraries: Basic
Linear Algebra Subproblems (BLAS) and Linear Algebra Packages (LAPACK) library.
The vector (Vec) and matrix (Mat) are two basic objects in PETSc. The eigenvector xl

and other working vectors are created as parallel vectors in the Vec object. The column
vectors of V and Wi in line 3 and 11 of Algorithm 1 are stored as an array of parallel
vectors. The coefficient matrices Ai and the matrix A(θ) are created in a parallel sparse
matrix format. We do explicitly form A(θ) using parallel matrix-matrix addition and it
is used in the construction of a preconditioner.

We discuss parallel implementations of the ASPJD algorithm in detail, as follows, by
classifying the algorithm into three main parts: (1) linearized projected eigenvalue solve,
(2) correction equation solve, and (3) a sequence of basic linear algebraic operations.

• Redundant linearized projected eigenvalue solve. As mentioned in the pre-
vious section, the linearized projected eigenvalue problem (5) is typically quite
small. Solving such small problems in parallel, especially in cases where large
numbers of processors are used, may result in large computational cost in data
communications compared to floating-point operations. Therefore, we adopts an-
other approach. On each processor, the sequential QZ routine, called ZGGEVX in
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MPI LAPACK BLAS

Linear Solver
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Eigenvalue Solver
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Mat Vec DA AO IS

Figure 2: The organization of PETSc, SLEPc, and the ASPJD Eigensolver

LAPACK, is employed to redundantly solve the same linearized projected eigen-
value problem, MAz = θMBz, through an interface provided by SLEPc [17]. Here,
the matrices MA and MB , as well as Mi, are stored in the sequential dense ma-
trix format and their sizes increase as ASPJD iterates. Additional blocks V ∗wi (or
v∗Wi) and v∗wi to be inserted into new Mi are computed in parallel; the results are
then distributed to each processor via the vector multiple and single inner product,
VecMDot and VecDot, respectively.

• Parallel correction equation solve.

We use a Krylov subspace method (e.g., GMRES) in conjunction with precon-
ditioner (10) and the RAS preconditioner B−1 in (12) to approximately solve the
correction equation (8). We implement the parallel correction equation solve mainly
by using the following three PETSc objects. First, a Krylov subspace type method,
such as parallel GMRES, can be chosen from the KSP object at runtime. Second,
the preconditioning operation defined in (10) is implemented by a PETSc user-
defined preconditioner named PCSHELL, as described in Algorithm 2. Third, the
RAS preconditioner, B−1, as described in (12), is a built-in PC object of PETSc
named PCASM.

We remark that the multiplication of B−1 with a given vector, v = B−1w, consists
of three steps. On each subdomain, (i) collects the data from the subdomain and
the neighboring subdomains, wi = Rδ

i w; (ii) solves the subdomain problem,

Bivi = wi; (13)
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(iii) computes the sum, v =
Ns∑

i=1

(R0
i )

T
vi by ignoring the computed value in the

overlapping region. Furthermore, to save computational cost and memory use in
practice, local subdomain problems (13) are solved by an inexact solver incomplete
LU (ILU). The ILU solver performs an incomplete LU decomposition and then
performs a forward and backward substitution using the incomplete factors.

Algorithm 2 Preconditioning operation: Bdz = y

Input: y, z2 = B−1p, and µ2 = u∗z2

Output: z
1: Apply the preconditioning: z1 = B−1y
2: Compute the vector dot product: µ1 = u∗z1

3: Compute η = −µ1/µ2

4: Compute z = z1 + ηz2

• Parallel basic linear algebraic operations.

PETSc provides a numerous of Vec and Mat commends for performing basic vector
and matrix operations in parallel. Some of these are used in the implementation
of the ASPJD eigensolver, as follows: (i) Matrix-by-vector product (MatMult):
Wi = AiV (line 3), r = A(θ)u (line 7), and wi = Aiv (line 10) in Algorithm 1. (ii)
Dot product (VecDot or VecMDot for multiple vectors cases): Mi = V ∗Wi (line 3),
v∗Wi, V ∗wi, and v∗wi (line 10) in Algorithm 1; µ1 = u∗z1 (line 2 of Algorithm 2).
(iii) Vector updates (VecWAXPY or VecMAXPY for the multiple vectors cases):
u = V s and p = A′(θ)u after performing the matrix-vector products Aiu in line 7 of
Algorithm 1; z = z1 + ηz2 (line 4 of Algorithm 2). In addition, IPOrthogonalize is
used in SLEPc to perform the process of orthogonalization in line 9 of Algorithm 1.

5. Numerical results

To validate our parallel ASPJD eigensolver and to evaluate the parallel performance
of our proposed algorithm, we consider the test cases listed in Table 2. These cases arise
in the discretization of two QD models described in Section 2 by using different grid
sizes. Physical parameters used in the numerical simulations are summarized in Table 3.

Problem PEP type QD model Grid (L, M, N)/(ρ,ζ) Matrix size
Q1 Quintic pyramidal uniform (64, 64, 48) 186, 543
Q2 Quintic pyramidal uniform (128, 128, 96) 1, 532, 255
Q3 Quintic pyramidal uniform (352, 352, 264) 32, 401, 863
C1 Cubic cylindrical non-uniform (535, 190) 101, 650
C2 Cubic cylindrical non-uniform (1720, 585) 1, 006, 200
C3 Cubic cylindrical uniform (1742, 579) 1, 008, 618

Table 2: Test problems and their statistics. The notations L, M , and N represent for the number of
grid points in the x-, y-, and z-coordinates, respectively. The notations ρ and ζ represent the number
of grid points in the radial and height coordinates, respectively.

The ASPJD eigensolver has been implemented by using C language and several com-
ponents in PETSc and SLEPc. The Intel C compiler version 9.1 with -O2 optimization
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QD model Hetero-structure c` g` δ` P`

Pyramidal
Dot (` = 1) 0.000 0.420 0.48 0.8503

Matrix (` = 2) 0.770 1.520 0.34 0.8878

Cylindrical
Dot (` = 1) 0.000 0.235 0.81 0.2875

Matrix (` = 2) 0.350 1.590 0.80 0.1993

Table 3: Physical parameters used the for non-parabolic effective mass models described in (3). These
parameters are taken from [19, 49].

flag is used to compile the codes. The numerical experiments were performed on the
Vger cluster at the National Central University in Taiwan.

The Vger consists of 108 computing nodes; each node has two Intel Xeon 3.0GHz
Dual-Core processors with 4 GB of memory. The computing nodes are interconnected by
InfiniBand switches of 2 GB/s bandwidth with a peak performance rate of 5184 Gflop/s.
All computations were done in double precision complex arithmetic. The execution
timings are reported in seconds and exclude the time spent on coefficient matrix loading
and construction of the working vectors.

We declare the JD iterations, i.e. the while-loop starting from line 4 of Algorithm 1,
converge to an eigenpair, if absolute or relative residual of equation (1) is less than 10−10.
Vini = (1, 1, . . . , 1)T is set to be in the initial search space. The maximum number of
ASPJD restarts is set at 30.

A left restricted additive Schwarz preconditioned GMRES with a zero initial guess is
used for solving the correction equation (8). The GMRES iterations are referred to the
iterations used by GMRES to solve the correction equation. The subdomain problems
(13) are solved by an incomplete LU decomposition. For simplicity of implementation,
the actual partitioning and overlapping size are determined internally by PETSc. Except
when explicitly stated otherwise, the target eigenvalue is the smallest positive eigenvalue.

Computed eigenvalues Reference values Relative differences

Problem Q2

λ1 0.4164706472791792 0.416470647281298 2.11880e-12
λ2 0.5992679796464911 0.599267979636767 9.72411e-12
λ3 0.5992679796452610 0.599267979636393 8.86801e-12
λ4 0.7179076438816558 0.717907643900873 1.92171e-11
λ5 0.7296997979449217 0.729699797946620 1.69830e-12
λ6 0.7924924167774992 0.792492416781907 4.40780e-12

Problem C2

λ1 0.087344809377190 0.087344809345140 3.20501e-11
λ2 0.150294727564833 0.150294727561288 3.54500e-12
λ3 0.245994432693207 0.245994432699191 5.98435e-12
λ4 0.330502438790559 0.330502438793776 3.21687e-12
λ5 0.350930026609811 0.350930026592148 1.76629e-11

Table 4: Comparison of a few computed and reference eigenvalues of Problems Q2 and C2. Note that only
the real parts of the eigenvalues are shown in this table and that the imaginary parts of the eigenvalues
are all less than 1.0e-12.

5.1. Parallel code validation
To check the correctness of our parallel implementation, we compute the target pos-

itive eigenvalues of Problem Q2 and Problem C2 using 64 processors. In these cases,
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the target eigenvalues for the pyramidal QD and cylindrical QD model are within the
confinement potential intervals I1 ≡ [0, 0.77] and I2 ≡ [0, 0.35], respectively. For both
cases, we use a 10 fixed-step block Jacobi preconditioned GMRES and ILU with zero
level fill-ins is selected to be a subdomain solver. As presented in Table 4, our computed
results are compared with the reference results obtained by a sequential Fortran JD code
[19, 49]. The table shows that the relative differences in 2-norm are all less than 10−10.
Note that the sixth positive eigenvalue of Problem Q2 and the fifth positive eigenvalue
of Problem C2 listed in the table are beyond the intervals I1 and I2.

5.2. Algorithmic parameter tuning for the parallel ASPJD solver
We study how the following factors affect the number of JD iterations and the overall

execution time:

1. The overlapping size: Let RAS(δ) denote the restricted additive Schwarz precondi-
tioner (12) with overlapping size δ = 0, 1, 2, 3.

2. The quality of subdomain solve: Let µ be the level of fill-ins in ILU(µ), which is
used to solve the subdomain problems (13). We choose µ = 0, 1, 2, or 3.

3. The stopping strategies for GMRES: Let s be the iteration number performed by
GMRES(s) while solving the correction equation in line 8 of Algorithm 1. We choose
s = 10, 15, or 20.

Numerical results of JD iterations and execution time are summarized in terms of
RAS(δ), ILU(µ), and GMRES(s) in Table 5. Here, we compute only the first positive
eigenpair. In the tables, we also include results obtained by setting the GMRES iteration
tolerance for relative residual reduction gtol = 10−3. Additionally, results of JD iterations
and execution time in terms of GMRES(s) with respect to the number of processors are
summarized in Tables 6 and 7. We highlight the observations regarding parameter tuning
as follows:

To avoid over-solving in the correction equations. One advantage of the ASPJD
algorithm is that the convergence of the algorithm can be achieved by solving
the correction equations with modest accuracy and usually without downgrading
overall performance. Such behavior has been observed for linear eigenvalue prob-
lems [35]. We present similar observations for high degree PEPs here.

Table 5 suggests that the correction equations are solved to a precision beyond
what is needed for GMRES with gtol = 10−3, which is commonly used in an inner-
outer iterative algorithm such as an inexact Newton method. Although in this case
the ASPJD algorithm takes fewer outer iterations in general, the corresponding
GMRES iterations are excessively large. Consequently, all timing results are much
slower than those observed using fixed-step GMRES.

Note that the actual relative residual reductions corresponding to GMRES(10),
GMRES(15), and GMRES(20) for Problem Q2 (C2) are roughly equal to 0.2870,
0.2620, and 0.1912 (0.3254, 0.2715, and 0.2306), respectively.

Recommended parameter combinations of RAS(δ) and ILU(µ). For Problem Q2,
as shown in part(a) of Table 5, we find that there is no obvious benefit from in-
creasing overlapping size for RAS or using more levels of fill-ins in ILU.
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(a) Problem Q2
GMRES(s) ILU(µ) RAS(0) RAS(1) RAS(2)

ILU(0) 12 (31.9); 87∗ 12 (45.3); 86∗ 13 (63.9); 80∗
GMRES with ILU(1) 12 (34.3); 86∗ 14 (62.3); 84∗ 12 (67.3); 74∗
gtol = 10−3 ILU(2) 11 (35.8); 88∗ 11 (54.6); 76∗ 19 (142.6); 77∗

ILU(3) 12 (42.1); 86∗ 12 (77.5); 72∗ 15 (159.3); 76∗

GMRES(10)

ILU(0) 21 (7.6) 25 (16.9) 28 (26.6)
ILU(1) 20 (7.8) 28 (21.8) 16 (16.7)
ILU(2) 19 (8.4) 19 (17.5) 13 (17.5)
ILU(3) 19 (9.9) 18 (23.4) 13 (25.8)

GMRES(15)

ILU(0) 22 (11.7) 13 (11.1) 13 (15.3)
ILU(1) 26 (14.7) 12 (11.3) 14 (19.4)
ILU(2) 21 (12.6) 12 (14.4) 16 (28.6)
ILU(3) 24 (18.0) 16 (26.7) 17 (44.9)

GMRES(20)

ILU(0) 19 (12.3) 15 (17.0) 13 (19.2)
ILU(1) 15 (10.2) 14 (16.8) 13† (22.7)
ILU(2) 15 (11.9) 12 (18.2) 15 (33.9)
ILU(3) 14 (12.6) 12 (24.9) 14 (46.1)

(b) Problem C2
GMRES(s) ILU(µ) RAS(0) RAS(1) RAS(2)

ILU(0) 11 (15.0); 100∗ 11 (17.3); 100∗ 11 (18.9); 100∗
GMRES with ILU(1) 12 (17.4); 100∗ 12 (20.6); 100∗ 16 (29.8); 100∗
gtol = 10−3 ILU(2) 11 (18.2); 100∗ 14 (27.7); 100∗ 12 (26.0); 100∗

ILU(3) 11 (18.6); 100∗ 15 (30.4); 100∗ 15 (36.6); 100∗

GMRES(10)

ILU(0) 67 (11.1) 58 (12.7) 57 (18.2)
ILU(1) 53 (9.3) 41 (9.1) 38 (9.4)
ILU(2) 48 (9.0) 36 (8.6) 30 (8.1)
ILU(3) 44 (9.1) 29 (7.9) 27 (8.0)

GMRES(15)

ILU(0) 44 (9.6) 41 (11.5) 41 (12.5)
ILU(1) 33 (8.0) 27 (8.1) 26 (8.5)
ILU(2) 30 (7.8) 23 (7.2) 22 (7.6)
ILU(3) 28 (8.0) 22 (7.7) 19 (7.4)

GMRES(20)

ILU(0) 31 (9.9) 27 (9.9) 27 (10.7)
ILU(1) 25 (7.9) 21 (8.0) 20 (8.3)
ILU(2) 24 (8.0) 19 (7.7) 18 (8.0)
ILU(3) 25 (9.3) 17 (7.6) 27 (13.9)

Table 5: JD iterations and execution time in seconds (shown within parentheses) for Problems Q2 and
C2. Various combinations of RAS(δ), ILU(µ), and GMRES(s) are applied. The number of processors is
64. The mark ∗ indicates average number of GMRES iterations while setting gtol = 10−3. The mark †
indicates that the eigensolver converges to an undesired eigenpair.
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Problem Q1 Problem Q2
np s = 5 s = 10 s = 15 s = 20 s = 5 s = 10 s = 15 s = 20
4 27 (13.9) 16 (10.2) 16 (13.9) 13 (14.7) - - - -
8 28 (6.9) 16 (4.6) 21 (8.6) 17 (8.9) 28 (89.9) 23 (96.5) 18 (98.4) 11 (75.5)
16 27 (3.3) 16 (2.0) 13 (2.2) 14 (3.1) 30 (38.1) 22 (35.7) 19 (40.5) 14 (37.6)
32 22 (1.4) 17 (1.1) 15 (1.1) 21 (5.4) 33 (19.9) 21 (16.4) 22 (23.4) 13 (17.1)
64 24 (1.1) 22 (0.9) 17 (0.7) 21 (1.2) 38 (11.2) 21 (7.6) 22 (11.7) 19 (12.3)
128 - - - - 41 (5.9) 21 (3.8) 20 (4.5) 17 (6.5)
256 - - - - 41 (3.6) 21 (2.1) 20 (2.5) 17 (2.7)
320 - - - - 41 (3.2) 21 (1.7) 21 (2.2) 17 (2.0)

Table 6: Effects of GMRES(s) on JD iterations and timing (shown within parentheses) for Problem Q1
and Q2. The shortest execution time for each number of processors (np) is shown in boldface. Note that
Problems Q1 (186, 543) is too small to be solved efficiently using more than 64 processors. Problem Q2
(1, 532, 255) is too large to be solved by using 4 processors due to memory constraints.

The situation for Problem C2 as shown in part (b) of Table 5 is slightly different.
An overlapping RAS with a more accurate inexact subdomain solve enables us to
reduce both the number of JD iterations and execution time.

Based on the numerical results, we used the following parameters for the rest of
the experiments: (i) RAS(0) and ILU(0) for quintic pyramidal QD problems, and
(ii) RAS(1) and ILU(2) for cubic cylindrical QD problems.

Effects of GMRES(s) on JD iterations and timing. As shown in Table 6 for Prob-
lem Q1 and Q2, we observed that the choice of GMRES(10) results in the best
timing results in almost all cases. Two exceptions are np = 64 for Problem Q1
and np = 8 for Problem Q2. Furthermore, the number of JD iterations for each np
corresponding to the least execution time is nearly independent of np and is mildly
dependant of problem size.

For Problems C1 and C2, Table 7 shows different convergence behaviors. There
is no single s achieves the best JD iterations and timing results overall. However,
roughly speaking, more GMRES iterations are needed as np increase to achieve the
best timing results. Unlike Problems Q1 and Q2, the number of JD iterations for
Problem C1 and C2 corresponding to the least execution time are more sensitive
to np. Learnt from numerical experiences for solving linear systems, the RAS
preconditioner for these two problems may need to add a coarse space when the
number of processors increases. Without a coarse space, the increase of overlap is
required to improve global communications, and smaller tolerance for the GMRES
and more exact local problems are necessary.

5.3. Parallel performance
To evaluate the parallel performance of the eigensolvers, we consider speedup and

parallel efficiency. Speedup and parallel efficiency are defined as

Tnp1

Tnp2

and
np1 × Tnp1

np2 × Tnp2

,
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Problem C1 Problem C2
np s = 5 s = 10 s = 15 s = 20 s = 5 s = 10 s = 15 s = 20
4 21 (4.9) 16 (5.3) 19 (8.9) 15 (9.1) - - - -
8 35 (4.0) 17 (2.4) 18 (3.6) 19 (5.1) 50 (79.2) 25 (54.5) 19 (54.5) 21 (79.3)
16 37 (2.0) 22 (1.5) 15 (1.3) 18 (2.0) 51 (37.3) 24 (24.3) 19 (25.7) 20 (35.4)
32 40 (1.3) 23 (0.8) 17 (0.6) 22 (1.1) 55 (19.6) 29 (14.6) 21 (13.8) 18 (15.2)
64 47 (1.0) 22 (0.5) 21 (0.5) 17 (0.4) 74 (14.2) 36 (8.6) 23 (7.2) 19 (7.7)
128 - - - - 102 (10.2) 48 (6.2) 29 (5.0) 24 (4.9)
192 - - - - 119 (9.8) 52 (5.3) 32 (4.0) 25 (3.7)

Table 7: Effects of GMRES(s) on JD iterations and timing (shown within parentheses) for Problems C1
and C2. The shortest execution time for each number of processors (np) is shown in boldface. Note that
Problems C1 (101, 650) is too small to be solved efficiently by using more than 64 processors. Problem
C2 (1, 006, 200) is too large to be solved by using 4 processors due to memory constraints.

respectively. Speedup indicates how much faster a parallel program with np2 is than a
corresponding parallel program with np1. Parallel efficiency shows how much we can gain
from parallelization and the percentage of the execution time spent on communication
and synchronization. Figure 3 presents the speedup and parallel efficiency plots for
Problem Q2 and C2. We choose the results obtained by using np1 = 16 (np1 = 4) for
Problem Q2 (C2) as the reference timings. All data presented in the figures is based on
the best timing for each np excerpted from Tables 6 and 7.
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(b) Problem C2

Figure 3: Parallel efficiency and speedup for Problem Q2 and C2. Algorithmic parameters used: (a)
RAS(0) and ILU(0), (b) RAS(1) and ILU(2).

Observing from Figure 3, we highlight the following.

• For Problem Q2, the ASPJD eigensolver exhibits very impressive parallel perfor-
mance: superlinear speedup and over 100% parallel efficiency up to 320 processors.

• For Problem C2, the eigensolver achieves nearly linear speedup for np2 < 64. The
performance of the eigensolver is degraded somewhat, but it still maintains 70%
parallel efficiency up to np2 = 192.
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np = 8 np = 256
µ λ JD ites (Time) JD ites (Time) Parallel efficiency (%)

-0.1 -0.4199999999844743 54 (250.6) 56 (7.7) 101
0.1 0.4164706473388473 30 (136.9) 28 (3.7) 117
0.4 0.4164706473196381 23 (96.0) 21 (2.2) 138
0.6 0.5992679796328200 31 (138.1) 42 (5.1) 84
0.7 0.7179076438971341 47 (205.5) 52 (6.7) 95
0.75 0.7296997979519239 54 (226.6) 77 (9.5) 75
0.8 0.8064207692754761 72 (320.6) 99 (13.2) 76

Table 8: The robustness and scalability test of the ASPJD algorithm for finding a variety of target
eigenvalues. Problem Q2 is considered. The notations µ and λ stand for target value and computed
eigenvalue, respectively.

Additionally, to verify the robustness and scalability of the ASPJD algorithm numer-
ically, we also include the results of the ASPJD eigensolver for finding eigenvalues other
than the smallest positive eigenvalues. As shown in Table 8, the ASPJD algorithm is
quite robust and scalable. In the numerical experiments, we employ GMRES(10) with
RAS(0), where the subdomain problem is solved by ILU(0) for np = 8 and np = 256.
Problem Q2 is considered. The ASPJD eigensolver successfully converges to the eigen-
values close to the given target values, µ and retains good parallel efficiency that range
from 75% to 138%. Note that the ASPJD eigensolver take longer time (greater 200 and
6 seconds for np = 8 and np = 256, respectively) to solve the eigenvalue problems for
µ = −0.1, 0.7, 0.75, and 0.8. It is because the eigenvalues are clustered and the corre-
sponding eigenvectors are more oscillatory for these µ’s. Actually, these particular µ’s
are close or beyond the boundary of the confinement potential interval [c1, c2] = [0, 0.77].
The mathematical QD model is invalid if the energy levels (i.e. eigenvalues) are out of
the interval.

5.4. Performance analysis
We further analyze parallel performance of the ASPJD eigensolver (Figure 3) by

answering the following questions: Why does the ASPJD eigensolver perform remarkably
for Problem Q2? Why does the parallel efficiency of Problem C2 degrade as the number
of processors increases? We believe such phenomena are caused by a mixture effect due
to the preconditioning strategy, and the characteristics of the QD eigenvalue problem
and the structure of its corresponding the coefficient matrices, as discussed below.

• The no-communication preconditioner with RAS(0) leads to superlinear scale-up
for correction equation solve and overall execution time.

We begin the study by presenting a scaling analysis for each key component in the
ASPJD algorithm in Table 9. Part (a) of the table shows that all components scale
very well for Problem Q2, with the exception of a relatively inexpensive linearized
projected eigenvalue problem solve. In particular, ASPJD achieves a superlinear
time scaling behavior for the most expensive component, i.e., correction equation
solve. We believe that the cause of the superlinear speedup is interplay among the
following factors: First, the preconditioner used for this particular problem, i.e.,
RAS(0), does not involve any data communications between processors. Second,
the number of GMRES iterations is fixed to 10 and the number of JD iterations (as
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(a) Problem Q2
Component np = 16 np = 32 np = 64 np = 128 np = 256
LPEP solve 0.3 (0.9%) 0.3 (1.7%) 0.3 (3.5%) 0.3 (7.0%) 0.3 (13.0%)
CorrEq solve 22.3 (62.5%) 10.3 (62.7%) 4.7 (60.8%) 2.1 (55.5%) 1.0 (46.6%)

Form Mi 7.1 (19.8%) 3.2 (19.2%) 1.5 (19.4%) 0.8 (21.5%) 0.5 (25.3%)
Compute u, p, r 2.3 (6.4%) 1.1 (6.4%) 0.5 (7.1%) 0.3 (8.3%) 0.2 (8.6%)

Orthogonalization 1.3 (3.5%) 0.3 (2.0%) 0.1 (1.8%) 0.1 (1.9%) 0.1 (2.5%)
Form A(θ) 2.4 (6.7%) 1.3 (7.8%) 0.6 (7.3%) 0.2 (5.6%) 0.1 (3.9%)
Total time 35.7 16.5 7.7 3.8 2.2

(b) Problem C2
Component np = 16 np = 32 np = 64 np = 128
LPEP solve 0.2 (0.6%) 0.1 (0.7%) 0.1 (1.7%) 0.1 (2.9%)
CorrEq solve 17.7 (72.9%) 11.0 (81.4%) 5.9 (81.5%) 4.1 (84.1%)

Form Mi 3.3 (13.5%) 1.2 (8.5%) 0.7 (9.3%) 0.4 (7.5%)
Compute u, p, r 1.2 (4.7%) 0.4 (3.2%) 0.2 (3.0%) 0.1 (2.2%)

Orthogonalization 0.7 (2.7%) 0.3 (2.0%) 0.1 (1.3%) 0.1 (1.6%)
Form A(θ) 1.3 (5.4%) 0.6 (4.1%) 0.2 (3.1%) 0.1 (1.7%)

Total 24.4 13.6 7.2 4.9

Table 9: Timing and the corresponding percentage (shown within parentheses) breakdown of each key
component in the ASPJD algorithm for Problems Q2 and C2. The components include (a) LPEP solve:
linearized projected eigenvalue problem solve; (b) CorrEq solve: correction equation solve; (c) Form Mi:
Mi calculation; (d) Compute u,p,r : the vectors u, p, and r calculation; (e) Form A(θ): A(θ) calculation.

shown in Table 6) remains nearly the same with respect to the number of processors.
Third, the CPU cache memories further accelerate the data movements.

In contrast, Table 9-(b) shows that ASPJD does not achieve superlinear scale-up
in CorrEq solve for Problem C2, while scaling behaviors for all other components
are similar to those for Problem Q2. Recall that, in order to keep the JD iteration
under control, we use RAS(1) for preconditioning Problem C2. This is the price
needed in order to use RAS with some size of overlapping, which at least minimally
involves some sort of communications. Consequently, scalability for CorrEq solve is
not as good as in Problem Q2. Overall efficiency for Problem C2 is thus degraded.

It should be noted that the QD eigenvalue problem has a special structure that the
eigenvectors corresponding to the eigenvalues of interest are localized to the dot.
That is, the components of the eigenvector corresponding to the matrix (outside
of the QD) are mostly zero. In our simulations, the ratio of the cuboid matrix
to the pyramidal dot in the computational domain is roughly 35 : 1, compared to
the ratio which is roughly 10 : 1 for the cylindrical QD problem. Consequently,
we are able to decouple the original pyramidal QD eigenvalue problem into many
subproblems using RAS(0) for the without penalty in terms of increased number of
the JD iterations, as the cuboid matrix problem (Q2) has fewer non-zero elements
relatively in the eigenvectors than the cylindrical matrix problem (C2). We believe
this is at least partially responsible for the different behaviors between the Q2 and
C2 problems illustrated in Table 5.

• The discretization based on non-uniform grid may lead to lower parallel
efficiency.
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As shown in Table 2, Problem Q2 is formulated by a (finite volumes) discretiza-
tion with a uniform grid and Problem C2 is formulated by a (finite differences)
discretization with a non-uniform grid. In a non-uniform grid, grid points around
the hetero-structure are chosen with fine grid and other grid points are chosen with
rough grid. Such non-uniform grids are essential for efficiently computing eigenpairs
with higher accuracy [49]. However, the non-uniform grid also introduces more un-
balanced entry magnitude in Ai’s that can result in lower computational accuracy
while solving the corresponding correction equation [8]. We conjecture that these
coefficient matrices due to the non-uniform grids further affect the parallel effi-
ciency of the ASPJD eigensolver. This conjecture is supported by the following
numerical experiments.
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(a) Problem C3 preconditioned by RAS(1)

0 40 80 120 160 200
0

25

50

75

100

125

Number of processors

P
ar

al
le

l e
ffi

ci
en

cy
 (

%
)

 

 

0

10

20

30

40

50

S
pe

ed
up

Parallel efficiency

Speedup

Ideal Speedup

(b) Problem C3 preconditioned by RAS(0)

Figure 4: Parallel efficiency and speedup for Problem C3 formulated by a uniform grid. Preconditioning
strategy used in (a) is RAS(1) and in (b) is RAS(0). Note that ILU(2) are applied in both cases.

To verify the above claims regarding how RAS(δ) and the matrix structures can
affect parallel performance, we present performance plots of Problem C3 in Figure 4.
Both Problem C3 and Problem C2 are derived by modeling the same nano-structure
and using the same discretization scheme. The only difference is that Problem C3 is
formulated by a uniform grid, while Problem C2 is formulated by a non-uniform grid.
Comparing Figure 3-(b) (associated with non-uniform grid, RAS(1), and ILU(2)) with
Figure 4-(a) (associated with uniform grid, RAS(1), and ILU(2)), we can see that the
parallel efficiency for Problem C3 (with uniform grid) has been improved. By further
switching to the RAS(0) preconditioner, we can gain even better speedup results for
Problem C3, as shown in Figure 4-(b).

5.5. A large-scale problem
To show applicability of our parallel eigensolver for large-scale PEPs, we report nu-

merical results in Table 10 for Problem Q3 with np = 272. Problem Q3 is a very large
problem with a dimension of more than 32 million. As we learned from previous numeri-
cal experience, an appropriate stopping strategy for GMRES depends mildly on problem
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size. Therefore, for this case, GMRES(20) is used for solving the correction equation and
the other ASPJD parameters are set to be the same as in the previous test cases. For
such large PEP, it requires only 694.3 seconds to compute all five target eigenpairs. The
convergence history for computation of these five eigenpairs is shown in Figure 5.

By way of reference, we replace the RAS preconditioner for the correction equation
with a Jacobi preconditioner and compare them. As a result, the JD algorithm with the
Jacobi preconditioner first finds λ1 and λ2, followed by λ4, λ3, and λ5 and takes 175.8
(42), 438.4 (101), 1.5 (1), 287.9 (66), and 416.1 (93) seconds (JD iterations) (1319.7
seconds and 303 JD iterations in total) to find all eigenvalues. Obviously, the ASPJD is
much better than JD with the Jacobi preconditioner in terms of the total number of JD
iterations and execution time. Although the eigenvector is smooth and is almost zero
outside the dot, the Jacobi preconditioner seems to throw away too much information
needed from neighboring girds, especially in the dot.

λi JD ites Time
0.4162332868108254 27 122.6
0.5990929682408994 26 121.6
0.5990929681591901 24 112.6
0.7179672367710944 44 207.8
0.7295413375156179 27 129.7

Total JD ites & total time 148 694.3

Table 10: A list of JD iterations and time spent for computing each of the five smallest positive eigen-
values of Problem Q3 with matrix size 32,401,863.
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Figure 5: JD convergence history for computing the five smallest positive eigenvalues of Problem Q3.

6. Conclusion

Aiming at the higher degree PEPs arising in nanoscale quantum dot simulations, we
have proposed a new parallel Jacobi-Davidson approach. We have presented a method
by which we can efficiently parallelize the GMRES-based correction equation solver by
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using restricted additive Schwarz preconditioning with incomplete LU as the subdomain
solver. We have implemented the algorithm by using several components provided by the
PETSc and SLEPc packages. The parallel codes have been tested on a computer cluster,
using up to 320 computing cores to investigate the parallel performance. The numerical
experiments have demonstrated impressive speedup and parallel efficiency results for
large-scale quintic and cubic PEPs.

The potential exists for further improvement of the algorithm and its implementation.
First, better grid partitioning may result in faster ASPJD convergence, as suggested in
[33]. Second, we believe an efficient parallel deflation scheme for successively computing
eigenpairs may further enhance the parallel ASPJD eigensolver. On the other hand,
we think it interesting to compare the performance of the ASPJD eigensolver with other
existing parallel eigensolvers, especially for standard and generalized eigenvalue problems
of the types that arise in QD simulation. It is worth pointing out that the extendability
and flexibility of PETSc and SLEPc allow us to easily conduct future studies by using
various preconditioning strategies, performing parallel linear system solve other than
GMRES, and/or integrating new ideas into our codes.

The proposed parallel Jacobi-Davidson algorithm is not only useful for application
in QD simulations, but possesses the potential to be a powerful computational tool
for solving eigenvalue problems arising in other physical models with various govern-
ing equations. The efficient parallel eigensolver is also a promising candidate to fulfill
the increasing computational demands due to larger computational domains and higher
accuracy requirements in eigenvalue problems.
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