
An Iteratively Adaptive Multi-scale Finite Element Method for Elliptic
PDEs With Rough Coefficients

Thomas Y. Houa, Feng-Nan Hwangb,∗, Pengfei Liua, Chien-Chou Yaob

aDepartment of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA 91125, USA
bDepartment of Mathematics, National Central University, Jhongli District, Taoyuan City 32001, Taiwan

Abstract

We propose an iteratively adaptive Multi-scale Finite Element Method (MsFEM) for elliptic PDEs with
rough coefficients. The choice of the local boundary conditions for the multi-sale basis functions determines
the accuracy of the MsFEM numerical solution, and one needs to incorporate the global information of
the elliptic equation into the local boundary conditions of the multi-scale basis functions to recover the
underlying fine-mesh solution of the equation. In our proposed iteratively adaptive method, we achieve
this global-to-local information transfer through the combination of coarse-mesh solving using adaptive
multi-scale basis functions and fine-mesh smoothing operations. In each iteration step, we first update the
multi-scale basis functions based on the approximate numerical solutions of the previous iteration steps,
and obtain the coarse-mesh approximate solution using a Galerkin projection. Then we apply several steps
of smoothing operations to the coarse-mesh approximate solution on the underlying fine mesh to get the
updated approximate numerical solution. The proposed algorithm can be viewed as a nonlinear two-level
multi-grid method with the restriction and prolongation operators adapted to the approximate numerical
solutions of the previous iteration steps. Convergence analysis of the proposed algorithm is carried out under
the framework of two-level multi-grid method, and the harmonic coordinates are employed to establish the
approximation property of the adaptive multi-scale basis functions. We demonstrate the efficiency of our
proposed multi-scale methods through several numerical examples including a multi-scale coefficient problem,
a high-contrast interface problem, and a convection-dominated diffusion problem.

Key words: Iteratively adaptive MsFEM, global-to-local information transfer, two-level multi-grid
method, elliptic equation with rough coefficients, convection-dominated diffusion equation.

1. Introduction

Many problems of practical importance in science and engineering have multi-scale features. Porous
media simulation and composite materials modeling are typical examples of such kind. The small-scale
features of the problem can have significant impact on the large-scale properties of the solutions, and one
needs a very fine discretization that resolves the small-scale variation of the problem to obtain faithful
numerical results. For these problems, methods that allow people to effectively incorporate the small-scale
features of the problem into the large-scale properties of the solutions are desired. In this work, we consider
the following second order linear elliptic partial differential equation (PDE) with rough coefficient,{

−div(a(x)∇u(x)) = f(x), x ∈ D,
u(x)|∂D = 0,

(1)

∗Corresponding author. Tel: +886-3-422-7151 Ext. 65110; Fax +886-3-425-7379
Email addresses: hou@cms.caltech.edu (Thomas Y. Hou), hwangf@math.ncu.edu.tw (Feng-Nan Hwang),

plliu@caltech.edu (Pengfei Liu), ccyao001@gmail.com (Chien-Chou Yao)

Preprint submitted to Journal of Computational Physics February 4, 2016



and the proposed method will also be applied to a convection-dominated diffusion problem.
Here we assume that D is a convex polygon domain in R2, and the forcing term f(x) ∈ L2(D). We also

assume that the equation is uniformly elliptic, i.e., there exist λmin > 0 and λmax > 0 such that

a(x) ∈ [λmin, λmax]. (2)

We do not assume any regularity of the coefficient a(x) ∈ L∞(Ω), which can be arbitrarily rough, thus
equation (1) can be used to model diffusion process in strongly heterogeneous media. Classical finite element
methods use piecewise linear (polynomial) functions to discretize the equation, and for smooth coefficient
problems, their convergence depends on the following approximation property and regularity result

‖u(x)− Ju(x)‖H1
0 (D) ≤ CH‖u(x)‖H2(D), ‖u(x)‖H2(D) ≤ C‖f(x)‖L2(D), (3)

where Ju(x) is the piecewise linear interpolation of u(x), and H is the underlying mesh size. We can see
that O(H) accuracy in the H1

0 (D) norm can be obtained if a discretization of size H is employed. However,
classical finite element methods may fail if the coefficient a(x) is rough, because the solution u(x) loses
regularity and ‖u(x)‖H2(D) cannot be bounded by ‖f(x)‖L2(D) in (3). It is actually shown in [9] that the
polynomial finite element methods can perform arbitrarily badly in this setting. In practice, one needs a
much finer mesh that resolves the small scale features of a(x) to achieve the desired accuracy.

1.1. The multi-scale finite element method

The Multi-scale Finite Element Methods (MsFEM) [44, 45, 46, 28, 19] were developed to solve these
multi-scale PDEs. Instead of piecewise polynomials in the classical finite element methods, MsFEM employs
basis functions that incorporate properties of the elliptic operator to discretize the equation (1),

φ1(x), φ2(x), . . . , φn(x) ∈ H1
0 (Ω). (4)

Consider a coarse-mesh discretization of the domain with mesh size H, and an underlying fine mesh of
size h that refines the coarse mesh and resolves the small-scale variations of the problem. This two-level
discretization of the domain is illustrated in Figure 1. The MsFEM basis functions φj(x) are constructed
by numerically solving local elliptic boundary value problems on each coarse element Di,

−div(a(x)∇φij (x)) = 0, x ∈ Di, φij (xik) = δkj . (5)

Di

xi1 xi2

xi3

(a) A Coarse Element.

H

Di

(b) Two-level Discretization.

Figure 1: Discretization of the problem.

With the basis functions φi(x), i = 1, . . . , n, MsFEM finds the numerical solution

uMS
H (x) ∈ VH = span{φ1(x), φ2(x), . . . , φn(x)} ⊂ H1

0 (Ω), (6)
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using the Galerkin projection. Namely, one finds uMS
H (x) ∈ VH , such that

a(uMS
H (x), v(x)) = 〈f(x), v(x)〉, for all v(x) ∈ VH , (7)

where a(u(x), v(x)) =
∫

Ω
∇u(x)ta(x)∇v(x)dx, 〈f(x), v(x)〉 =

∫
Ω
f(x)v(x)dx.

The numerical solution defined above satisfies the following optimal property under the energy norm

‖u(x)− uMS
H (x)‖E = inf

v(x)∈VH

‖u(x)− v(x)‖E , ‖u(x)‖2E = a(u(x), u(x)). (8)

Convergence analysis of MsFEM in the periodic homogenization setting, where a(x) = A(xε ) with ε =
o(1), was given in [45, 29, 17]. To construct the multi-scale basis function φij (x) on Di in (5), appropriate
local boundary conditions on ∂Di are needed. We will review in section 2 that the local boundary conditions
of the basis functions are crucial and determine the accuracy of the MsFEM numerical solution. With the
optimal choice of local boundary conditions for the basis and some local bubble corrections, MsFEM can
indeed recover the underlying fine-mesh solution. However, due to the nonlocal nature of elliptic equations,
the local solution to (1) depends on the coefficient a(x) and the forcing term f(x) on the whole domain D.
And to exactly recover the underlying fine-mesh solution, one needs to incorporate the global information
of the elliptic equation into the local boundary conditions of the basis functions in (5).

1.2. Main contributions of this work

In this paper we propose an iteratively adaptive method, Algorithm 1, to construct the multi-scale
basis. The global information of the elliptic equation is transferred to the local boundary conditions of the
multi-scale basis through iterative coarse-mesh solving and fine-mesh smoothing operations.

In the s-th step of the iteration, we first construct basis functions φsi (x), i = 1, 2 . . . , n, based on the
approximate numerical solutions from the previous several iteration steps, namely, uk(x), k ≤ s − 1. We
require that these multi-scale basis functions can exactly recover us−1(x) on the boundary of the coarse-
mesh elements, Γ = ∪i∂Di. Then we solve the equation (1) using the basis functions φsi (x) and a Galerkin

projection, and correct the numerical solution u
(s)
H (x) by solving a series of local bubble problems. Finally,

we apply several steps of smoothing operations on the fine mesh to the numerical solution u
(s)
H (x) to get the

updated approximate solution us(x). Throughout the iteration process, the approximation property of the
basis functions φsi (x) to the solution u(x) gets improved. Our numerical results suggest that the numerical
solutions us(x) converge to the underlying fine-mesh solution exponentially fast. The coarse-mesh solving
and the fine-mesh smoothing operations are the two key steps of the proposed algorithm.

Algorithm 2 is derived as a stabilized variant of Algorithm 1, and is essentially a two-level multi-grid
method that employs multi-scale basis functions for the restriction and prolongation operations. By com-
paring Algorithm 1 with Algorithm 2, we show that even without explicit restriction operation, Algorithm
1 can indeed be viewed as a nonlinear version of the two-level multi-grid method where the restriction and
prolongation operators are adapted to the approximate solutions of the previous iteration steps.

Convergence analysis of the proposed algorithms is carried out under the framework of the two-level multi-
grid method. And the harmonic coordinates [59] are employed to establish the approximation property of
the adaptively constructed multi-scale basis functions to the solution space of equation (1).

There exist some multi-scale methods in the literature that adaptively update the boundary conditions
of the multi-scale basis. In [25, 54], the adaptive multi-scale basis functions in each iteration step are
constructed using the local oversampling technique, and the local boundary conditions on the oversampling
domain are constructed based on approximate solutions of the previous steps. There exist no smoothing
operations in these methods, and they cannot obtain fine mesh accuracy as the present work. In [47], an
adaptive bubble part is introduced in each iteration step, and the resulting method is similar to Algorithm
2 in this work. The method in [47] employs a finite volume formulation, and a dual mesh is needed
to formulate the coarse-mesh linear system. In additin, the bubble correction terms in [47] need to be
constructed explicitly by solving local boundary value problems. No convergence analysis has been provided
for the previous adaptive multi-scale methods [47, 25, 54]. After suitable modifications, these methods may
be analyzed under the same two-level multi-grid method framework presented in the current paper.
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To demonstrate the applicability of our proposed methods for a variety of applications with multi-scale
features, we consider three classes of PDE problems, including elliptic problems with rough coefficients [39,
40, 44, 45], elliptic interface problems with high-contrast discontinuous coefficients [18, 19, 49, 54], and
convection-dominated diffusion equations [21, 31, 33, 34, 66]. In all the three types of problems that we
consider, we observe significant improvement of the proposed methods over classical methods.

1.3. Review of multi-scale methods

Considerable amount of efforts has been devoted to analyzing and numerically solving the multi-scale
PDE (1), and we list a few previous works related to the present paper below.

The classical homogenization theories, including the periodic homogenization where a(x) = A(xε ) [11,
48, 62, 20, 3, 2], and the H, G, Γ-convergence theories [56, 23, 22, 68, 67, 55, 35], consider the convergence
(in an appropriate sense) of a sequence of operators parameterized by ε as ε→ 0.

Numerical methods for the multi-scale elliptic PDE (1) can be divided into two categories. Methods in
the first category can be viewed as fast solvers of the equation on the underlying fine mesh and alternatives
of the multi-grid methods [32, 13, 36, 37]. Multi-grid methods are known as the fastest solvers for elliptic
boundary value problems with linear computational complexity. However, due to the lack of regularity of
the solutions, classical multi-grid method in general would fail for the multi-scale elliptic PDE (1) [30, 26].
Methods in the first category include the algebraic multi-grid methods (AMG) [1, 15, 14, 64, 69], the
hierarchical matrix methods [38, 10], AMG based on energy minimization [51, 74, 76, 75, 72], stabilized
hierarchical basis methods [71, 70, 73], and wavelet based methods [16, 12, 4, 24].

Methods in the second category, including the MsFEM, are essentially model reduction methods. They
employ special basis functions adapted to the elliptic operator instead of piecewise polynomials to descretize
the equation to reduce the total degrees of freedom. These methods generally employ a two-level discretiza-
tion as shown in Figure 1, and are only able to achieve coarse-mesh accuracy. Methods in the second category
include the generalized finite element methods [53, 8, 5], oversampling methods [7, 6, 43], localization meth-
ods [60, 50, 41, 63, 42], harmonic coordinates transformation [59], the polyharmonic splines [61, 57], and a
recent method that depends on the multi-resolution decomposition of the solution space [58].

The proposed Algorithm 1 in this paper is able to achieve fine-mesh accuracy by iteratively incorporating
the global information of the equation into the local boundary conditions of the basis functions. Thus it falls
into the first category of multi-scale methods. Namely, it can be viewed as a fast fine-mesh solver and an
alternative of the classical multi-grid methods. On the other hand, the proposed Algorithm 1 employs special
basis to discretize the equations on the coarse mesh, and from this perspective it is similar to the model
reduction method in the second category. In multi-scale methods of the second category, building basis with
robust approximation property is in general expensive. The proposed method bypasses this difficulty by
adaptively improving the approximation property of the multi-scale basis in the iteration.

The rest of the paper is organized as follows. In section 2, we briefly review multi-scale basis functions
and the importance of their local boundary conditions. In section 3, we detail the proposed method to solve
the multi-scale PDE (1) and derive a variant of this method. In section 4, we provide convergence analysis
of the proposed algorithm under the two-level multi-grid method framework. In section 5, we present some
numerical results employing the proposed method. Concluding remarks are made in section 6.

2. Motivation: Multi-scale Basis and the Importance of Their Local Boundary Conditions

Given a coarse-mesh discretization of the domain D = ∪iDi as shown in Figure 1, we consider the
following decomposition of the solution to (1), u(x) = u1(x) + u2(x),{

−div(a(x)∇u1(x)) = 0, x ∈ Di;

u1(x)|∂Di = u(x)|∂Di ;

{
−div(a(x)∇u2(x)) = f(x), x ∈ Di;

u2(x)|∂Di = 0.
(9)

u1(x) is a(x)-harmonic in each coarse element and only depends on the trace of the solution on the edges
of coarse elements, Γ = ∪i∂Di. We call u1(x) the a(x)-harmonic part of the solution. u2(x) depends on
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the forcing term f(x) in each coarse element, and it can be constructed by solving a series of local bubble
problems. We call u2(x) the bubble part of the solution. u1(x) and u2(x) are a(x)-orthogonal,

a(u1(x), u2(x)) = 0. (10)

Besides, the local bubble part of the solution u2(x) is small on each coarse element,

‖u2(x)|Di
‖H1

0 (Di) ≤ CH‖f(x)‖L2(Di), ‖u2(x)|Di
‖L2(Di) ≤ CH2‖f(x)‖L2(Di), (11)

which can be obtained using a scaling argument. Summing (11) up over each coarse element, we obtain

‖u2(x)‖H1
0 (D) ≤ CH‖f(x)‖L2(D), ‖u2(x)‖L2(D) ≤ CH2‖f(x)‖L2(D). (12)

Motivated by the above orthogonal decomposition of the solution, a special type of basis functions, the
multi-scale basis functions were introduced in [43], which generalize the basis functions employed in MsFEM.
They are a(x)-harmonic within each coarse element, but are not necessarily nodal basis.

Definition [43] (Multi-scale basis) Consider basis functions ψ1(x), ψ2(x), . . . , ψn(x) ∈ H1
0 (D), if they are

a(x)-harmonic on each coarse element Dj of the discretization (but not across the boundary), namely,

−div(a(x)∇ψi(x)) = 0, x ∈ Dj ,

then they are called multi-scale basis functions.

Due to the smallness of u2(x) (12), one can get the following optimal property of multi-scale basis.

Proposition [43] Consider a set of basis functions ψi(x) ∈ H1
0 (D), i = 1, 2 . . . ,m, and a set of multi-scale

basis φi(x), i = 1, 2, . . . , n. Denote the Galerkin solutions using these basis functions as uψH(x) and uMS
H (x)

respectively, and let the union of coarse element boundaries be Γ = ∪i∂Di. If

span{ψ1(x)|Γ, ψ2(x)|Γ, . . . , ψm(x)|Γ} = span{φ1(x)|Γ, φ2(x)|Γ, . . . , φn(x)|Γ}, (13)

then
‖u(x)− uMS

H (x)‖2E ≤ ‖u(x)− uψH(x)‖2E + CH2‖f(x)‖2L2(D). (14)

The proposition says that for the same boundary conditions on Γ, the multi-scale basis functions perform
at least as well as other basis functions, if only O(H) accuracy in the energy norm is desired.

Moreover, the multi-scale basis functions φi(x), i = 1, 2 . . . , n, are a(x)-orthogonal to the local bubble
part of the solution u2(x), then according to the Galerkin projection formulation (7) and the optimal property
(8), we have the following characterization of the numerical solution uMS

H (x),

‖u1(x)− uMS
H (x)‖E = inf

v(x)∈VH

‖u1(x)− v(x)‖E . (15)

Recall that we can construct the local bubble part of the solution u2(x) by solving a series of local bubble
problems (9) on each coarse element, independently from the Galerkin projection (7). We can then add
u2(x) to uMS

H (x) to get the corrected multi-scale solution uH(x),

uH(x) = uMS
H (x) + u2(x). (16)

We have the following approximation property for the corrected multi-scale solution,

‖u(x)− uH(x)‖E = ‖u1(x)− uMS
H (x)‖E = inf

v(x)∈VH

‖u1(x)− v(x)‖E . (17)

The right hand side of (17) only depends on u(x)|Γ and the local boundary conditions of the multi-scale
basis (13). With (17), one can focus on multi-scale basis functions, and their local boundary conditions
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(13). If the multi-scale basis can exactly recover the solution on the boundaries of the coarse elements, Γ,
the corrected multi-scale solution uH(x) can exactly recover the fine-mesh solution.

For a specific solution u(x) to (1), one can choose local boundary conditions in (5) to make (17) vanish.
However, these choices will depend on u(x)|Γ, which is unknown in advance. Due to the nonlocal nature
of elliptic operators, the local solution to (1) depends on the elliptic equation and the forcing term on the
whole domain. Thus to exactly recover the underlying fine-mesh solution, one needs to incorporate the global
information of the elliptic equation into the local boundary conditions of the multi-scale basis functions.
In this paper, we propose an iteratively adaptive approach that achieves this global-to-local information
transfer through the combination of coarse-mesh solving and fine-mesh smoothing operations.

3. An Iteratively Adaptive MsFEM for Multi-scale Elliptic PDEs

We propose an iteratively adaptive mulit-scale finite element method in this section, which iteratively
updates the multi-scale basis functions based on the approximate numerical solutions in previous iteration
steps. We also derive a stabilized variant of the proposed method, and it is essentially a two-level multi-grid
method that employs a set of multi-scale basis for the restriction and prolongation operations.

3.1. An Iteratively Adaptive MsFEM

In this algorithm, we iteratively update the multi-scale basis functions φsi (x) and the approximate nu-
merical solution us(x) simultaneously, where s is the iteration step.

Let the adaptive multi-scale finite element space at the s-th iteration step be

V sH = span{φsi (x), i = 1, ..., n}, (18)

where n is the total number of interior coarse-mesh nodal points. At the s-th step, we first solve the equation

(1) on the coarse mesh using trial space V sH (18) and the Galerkin projection (7) to get u
(s)
H (x),

a(u
(s)
H (x), vH(x)) = 〈f(x), vH(x)〉, for all vH(x) ∈ V sH . (19)

Then we solve the local bubble problems (9) to get the local bubble part of the solution u2(x), and add

it to u
(s)
H (x). Recall that we can compute u

(s)
H (x) and u2(x) independently because φsi (x) are multi-scale

basis functions, and they are a(x)-orthogonal to the local bubble part of the solution. We obtain

u(s)(x) = u
(s)
H (x) + u2(x). (20)

These local bubble problems (9) need to be solved for only once in the iteration, and the obtained bubble

part of the solution u2(x) will be used to correct u
(s)
H (x) in each step of the iteration.

Recall that the multi-scale basis functions φsi (x) and the local bubble part of the solution u2(x) are all
constructed and stored using the piecewise linear basis functions on the underlying fine mesh. Then the
approximate numerical solution u(s)(x) will also be stored as linear combination of the fine mesh piecewise
linear basis. Discretizing the equation (1) using the fine mesh piecewise linear basis, we get the underlying
fine mesh linear system. Next, we apply ν steps of smoothing operations, e.g., weighted Jacobi iteration, to
the underlying fine mesh linear system using u(s)(x) as initial guess to get the updated us(x),

us(x) = Sνu(s)(x). (21)

The purpose of this step is to eliminate the high frequency modes of the error in u
(s)
H (x). Here the

high-frequency modes correspond to the eigenfunctions of the elliptic operator with large eigenvalues.
Then we employ the approximate numerical solutions of previous iteration steps, uk(x), k ≤ s, to

construct the updated multi-scale basis functions for the next iteration step,

φs+1
i (x), i = 1, . . . , n. (22)
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Here we require that the updated multi-scale basis functions (22) can exactly recover us(x)|Γ,

us(x)−
∑
i

us(xi)φ
s+1
i (x) = 0, x ∈ Γ. (23)

With the updated multi-scale basis φs+1
i (x), we can move to the next iteration step. There are several

choices for the construction of multi-scale basis (22), and we describe two of them below.

1. One possible choice of the local boundary conditions for the multi-scale basis based on sampled solutions
was proposed in [27] and later employed in [25, 54]. On the coarse element Di as shown in Figure 1,
we choose φs+1

i1
(x) = 0 on the edge xi2xi3 . And on the edges xi1xij , j = 2, 3, we choose

φs+1
i1

(x) =


us(x)−us(xij

)

us(xi1
)−us(xij

) , us(xi1) 6= us(xij );

linear, us(xi1) = us(xij ).
(24)

One can show that in the case that the values of u(x) on any two adjacent node points are not equal,

us(x) =

n∑
i=1

us(xi)φ
s+1
i (x), x ∈ Γ.

Namely, the basis functions can exactly recover the trace of the solution on Γ.

2. Another choice is employing the oversampling technique [44]. In the oversampling method, one solves
two local boundary value problems (5) on an oversampling domain Ki that encloses the coarse element
Di, and uses the linear combination of these local sampled solutions to get the multi-sale basis on Di.
Now given two sampled solutions us(x) and us−1(x), we build the local boundary conditions of the
multi-scale basis ψij (x) on the Di as the linear combination of constant, us(x) and us−1(x),

φ̄s+1
ij

(x) = cs+1
i,j,0 + cs+1

i,j,1u
s(x) + cs+1

i,j,2u
s−1(x), x ∈ ∂Di, (25)

where the coefficients cs+1
i,j,k, k = 0, 1, 2 are determined by the condition that

φ̄s+1
ij

(xil) = δjl. (26)

The basis functions constructed as (25) are in general non-conforming and φ̄i(x) may have jump across
the coarse-mesh edges. This is because the local boundary conditions on a coarse mesh edge e determined
from its two neighbor coarse elements may be different. We can use a simple averaging technique to
obtain conforming basis. For edge e, we denote its two neighbor coarse elements as Di1 , Di2 . We modify
the local boundary conditions of φ̄j(x) on e, and denote the corresponding averaged basis as φj(x),

φj(x)|e =
1

2
(φ̄j,Di1

(x)|e + φ̄j,Di2
(x)|e), (27)

where φ̄j,Di1
(x) = φ̄j(x)|Di1

, φ̄j,Di2
(x) = φ̄j(x)|Di2

. The price we pay for this averaging process is
that the resulting basis φj(x) has enlarged support. This is shown in Figure 2. The same averaging
technique to make the basis functions conforming has been employed in [25, 19, 54].
Note that to determine the coefficients cs+1

i,j,k according to the condition (26), one needs to solve a 3× 3
linear system. If the system is singular, we choose linear local boundary conditions for the multi-scale
basis functions on element Di. If the linear system is not singular, one can show that the resulting
multi-scale basis functions (27) can recover us(x) on Γ = ∪∂Di. Convergence analysis of Algorithm 1
with the choice of updated multi-scale basis (27) will be carried out in section 4.
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Support of φi(x) Support of φ̃i(x)

Averaging boundary conditions

xi xi

Figure 2: Averaging on the coarse mesh edge.

Algorithm 1 Iteratively adaptive multi-scale finite element algorithm

1: for s = 1 to smax do
2: for i = 1 to n do
3: Construct the local boundary conditions for the multi-scale basis φsi (x) based on the approximate

solutions of the previous steps, uk(x), k ≤ s− 1. For example, employing formula (24) or (27).
4: Construct the multi-scale basis φsi (x) by solving local boundary value problems (5).
5: end for
6: Employ V sH (18) and the Galkerkin projection to solve (1) and get u

(s)
H (x).

7: Correct the coarse-mesh solution using the local bubble part u2(x),

u(s)(x) = u
(s)
H (x) + u2(x).

8: Relax the fine mesh linear system Au = b for ν times with the initial guess u(s)(x) to get us(x).
9: Check the user-defined stopping criteria.

10: end for
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Iterative implementation of the above coarse mesh solving (19) and fine mesh smoothing (21) operations
leads to the proposed iteratively adaptive multi-scale finite element method, Algorithm 1. We employ the
Galerkin method to solve the local bubble problems (9) and construct multi-scale basis (5).

Remark 1 There are similar multi-scale methods in the literature, for example [25, 54], which iteratively
update the local boundary conditions of the multi-scale basis functions. In those works, the adaptive multi-
scale basis functions are constructed using the oversampling technique. And the local boundary conditions of
basis functions on the oversampling domain are constructed based on the approximate numerical solution of
the previous iteration step, us(x), and the rule (24). These works are different from our proposed method in
the following aspects. In [25, 54], the multi-scale basis functions cannot recover us−1(x) on the boundaries of
coarse elements, Γ, because the local bubble part of us−1(x) on Ki is not taken into account in the boundary
conditions of the basis functions on ∂Di. Thus these methods [25, 54] cannot obtain the underlying fine mesh
solution even the iteration converges. Besides, there are no explicit smoothing operations in the previous
methods [25, 54], and the transfer of the global information of the equation to the local boundary conditions
of the multi-scale basis is achieved through oversampling and coarse-mesh solving.

We will prove in section 4 under certain assumptions that the approximate numerical solutions us(x)
in Algorithm 1 converge to the underlying fine mesh solution exponentially fast, which means that the
iteratively adaptive approach proposed in Algorithm 1 can effectively incorporate the global information of
the equation into the local boundary conditions of the multi-scale basis (13).

Before we end this subsection, we make the following comments on the proposed Algorithm 1.

1. In the construction of the updated multi-scale basis functions, for certain us(x), there may not exist
nodal basis functions ψs+1

i (x), i = 1, . . . , n, which can recover the solution on Γ in (23).
An extreme case is that us(xi) = 0, i = 1, 2 . . . , n, but us(x) is not a zero function.

2. In each step of the iteration, one needs to construct the updated multi-scale basis functions by solving
local boundary value problems on the fine mesh and assembling the updated stiffness matrix.

3. In constructing the local boundary conditions, one may encounter dividing by a small number in (24)
or solving a nearly singular system in (26), thus suffer from some instability issue.

A stabilized variant of the proposed method, Algorithm 2, is derived in the next subsection, which intro-
duces an adaptive correction term and keeps the multi-scale basis fixed throughout the iteration. Algorithm
2 is less expensive in each iteration step and avoids the potential instability issue in Algorithm 1.

3.2. A stabilized variant of the proposed algorithm

In Algorithm 1, the multi-scale basis functions φsi (x) are constructed according to the approximate
numerical solutions in the previous iteration steps, uk(x), k < s. Then we employ φsi (x) and a Galerkin
projection to get the approximate numerical solution u(s)(x) (20). We consider simplifying this step by
using a set of multi-scale basis functions constructed before the iteration, which we denote as

φi(x), i = 1, 2, . . . , n. (28)

We have the following decomposition of us−1(x) and u(s)(x) using φi(x),

us−1(x) =
∑
i

us−1(xi)φi(x) +Rs−1(x), (29)

u(s)(x) =
∑
i

u(s)(xi)φi(x) +R(s)(x), (30)

where Rs−1(x) and R(s)(x) are the interpolation residuals of us−1(x) and u(s)(x) using basis φi(x).
Since both us−1(x) and u(s)(x) approximate u(x), we assume that the interpolation residuals Rs−1(x)

and Rs(x) are close, Rs−1(x) ≈ R(s)(x). Then u(s)(x) can be written as

u(s)(x) ≈
∑
i

u(s)(xi)φi(x) + us−1(x)−
∑
i

us−1(xi)φi(x) =
∑
i

ciφi(x) + us−1(x). (31)
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And we construct an approximation of u(s)(x) (31) by solving the following optimization problem,

min
ci
‖u(x)−

∑
i

ciφi(x)− us−1(x)‖E . (32)

The resulting esH(x) =
∑n
i=1 ciφi(x) is the Galerkin finite element solution of equation

−div(a(x)∇e(x)) = f(x) + div(a(x)∇us−1(x)), e(x)|∂D = 0, (33)

using the multi-scale basis functions φi(x), i = 1, . . . , n. And we get an approximation of u(s)(x),

u(s)(x) ≈ esH(x) + us−1(x). (34)

To reduce the error in the bubble part of u(s)(x) (34), we construct the bubble part of the solution to
(33) by solving a series of local bubble problems as in (9). We denote the bubble part of the solution to (33)
as es,2(x). We use es,2(x) to correct the approximate numerical solution in (34) and obtain

u(s)(x) ≈ us−1(x) + esH(x) + es,2(x). (35)

Replacing the construction of u(s)(x) in Algorithm 1 by the approximation (35), we get Algorithm
2. The interpolation residual Rs−1(x) is introduced to motivate Algorithm 2 in (31), and in numerical
implementation, we only need to solve equation (33) to get the approximate u(s)(x).

Algorithm 2 Iteratively Adaptive Multi-scale Finite Element Method

1: Construct multi-scale basis functions φi(x), i = 1, . . . , n.
Let u0(x) = 0 be the initial guess of the solution.

2: for s = 1 to smax do
3: Solve equation (33) using multi-scale basis functions φi(x) to get esH(x)
4: Solve the local bubble part of the solution to (33), es,2(x).
5: Obtain the approximate numerical solution

u(s)(x) = us−1(x) + esH(x) + es,2(x).

6: Relax the fine-mesh linear system for ν times with initial guess u(s)(x) to get us(x).
7: Check the user-defined stopping criteria.
8: end for

Because there is no need to construct updated multi-scale basis in each iteration step according to (24)
or (25), the potential instability issue in the rules (24) and (26) is avoided, and this is is the reason that
we call Algorithm 2 a stabilized variant of Algorithm 1. Moreover, the simplification procedure (35) also
brings in computational savings in each iteration step of the Algorithm, since we do not need to construct
the updated multi-scaled basis and the updated stiffness matrix in each iteration step.

The choice of multi-scale basis φi(x) (28) determines the convergence of Algorithm 2, and we will come
back to the issue about the choice of the multi-scale basis in the convergence analysis in section 4.

Remark 2 There exists a similar method in the literature [47], which also uses a bubble part to correct the
coarse-mesh multi-scale solution. Algorithm 2 is different from the method in [47] in the following aspects.
In [47], the finite element volume formulation is employed to construct the coarse-mesh linear system, and
a set of dual coarse grids in addition to the primary coarse grids are required in the discretization. In [47],
the correction term that enriches the finite element trial space is explicitly constructed in each step of the
iteration by solving a series of local boundary value problems. Moreover, the local boundary conditions of the
correction term on each coarse mesh edge are constructed by solving 1D problems in [47].
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4. Convergence of the Proposed Algorithms

In this section, we carry out the convergence analysis of the proposed Algorithm 1 and 2. We first show
that Algorithm 2 is a two-level multi-grid method that employs a set of multi-scale basis for the restriction
and prolongation operations. Then by comparing with Algorithm 2, we show that Algorithm 1 is a nonlinear
version of the two-level multi-grid method with the restriction and prolongation operators adapted to the
approximate solutions of the previous iteration steps. To establish the convergence of proposed Algorithm 1,
one needs to analyze the approximation property of the constructed multi-scale basis to the solution space
of (1) with L2(D) forcing f(x), and this is achieved by employing the harmonic coordinates.

4.1. Reformulation of the two algorithms as two-level multi-grid methods

We denote the piecewise linear basis functions on the underlying fine mesh as

ψk(x), k = 1, 2 . . . , N. (36)

The multi-scale basis functions φsi (x) in Algorithm 1 (18) and φi(x) (28) in Algorithm 2 are all represented
as linear combinations of ψk(x). We denote these linear combinations as

φsi (x) =
N∑
k=1

Ds
kiψk(x), φi(x) =

N∑
k=1

Dkiψk(x), (37)

then Ds and D are the matrix presentations of the multi-scale basis functions using ψk(x).
Let φbj(x), j = 1, . . . , Nb be the bubble basis functions, namely, the parts of fine mesh basis functions

(36) that span the bubble part of the solution space. We have that for each φbj(x), there exists kj , such that

φbj(x) = ψkj (x), ψkj (x)|Γ = 0. (38)

Then let Db as the matrix representation of φbj(x) using ψk(x), and we have

Db(i, j) = δi,kj . (39)

We denote V bH as the space spanned by these bubble basis functions

V bH = span{φb1, φb2, . . . , φbNb
}. (40)

When we solve equation (1) (in Algorithm 1) or (33) (in Algorithm 2) using the multi-scale basis (18)
or (28), and add the corresponding local bubble parts back to the numerical solutions, we are essentially
solving the equations using the multi-scale basis functions enriched with the bubble basis

Ṽ sH = V sH ⊕ V bH , ṼH = VH ⊕ V bH . (41)

This procedure can be separated into two steps, i.e., the coarse-mesh solving using VH and local bubble
correction using V bH , because the bubble basis is a(x)-orthogonal to the multi-scale basis.

We denote D̃ and D̃s as
D̃ = [D,Db], D̃s = [Ds, Db], (42)

which are the matrix representations of the multi-scale basis enriched with the bubble basis.
We denote the underlying fine-mesh linear system for equation (1) as

Au = f, (43)

where A is the stiffness matrix, and f is the load vector,

A(i, j) = a(ψi(x), ψj(x)), f(i) = 〈f(x), ψi(x)〉. (44)
11



With the above notations, we derive the matrix representation of the iteration relation in Algorithm 1
and Algorithm 2. We consider Algorithm 2 first, which is a linear two-level multi-grid method.

Let us be the fine-mesh discrete solution in the s-the step, namely,

us(x) =

N∑
i=1

us(i)ψi(x). (45)

In Algorithm 2, we employ the enriched trial space ṼH in (41) to solve (33) and get

esH(x) + es,2(x). (46)

We first compute the corresponding load vector 〈φi(x), f(x) + div(a(x)∇us(x))〉, which is

D̃T (f −Aus). (47)

The corresponding stiffness matrix employing the trial space (41) is

D̃TAD̃, (48)

and we can get the coarse-mesh solution based on (48) and (47),

(D̃TAD̃)−1D̃T (f − Lhus). (49)

Next we represent the coarse-mesh solution (49) using the fine mesh basis ψk(x), we get

es + es,2 = D̃(D̃TAD̃)−1D̃T (f − Lhus). (50)

We denote L−1
H as the coarse-mesh solution operator,

L−1
H = D̃(D̃TAD̃)−1D̃T , (51)

then we have es + es,2 = L−1
H (f − Lhus) in (50). We add it back to us in (35), and get

u(s) = us + L−1
H (f − Lhus). (52)

Finally, we apply ν steps of smoothing operations to the approximate solution (52). Let S be iteration
matrix in the smoothing operation, then we get the following iteration relation for Algorithm 2,

us+1 = Sν(I − L−1
H Lh)us +M, (53)

where M is a constant vector that does not depend on us.
From (53), we can see that Algorithm 2 is a two-level multi-grid method that employs the multi-scale basis

(28) and bubble basis (38) for the restriction and prolongation operators, which are D̃T and D̃ respectively.
Next we consider the proposed Algorithm 1. The only difference between Algorithm 1 and 2 is that in

Algorithm 1, the multi-scale basis in the coarse-mesh solution operator L−1
H is adapted to the approximate

numerical solutions in previous iteration steps. To show this we consider replacing the multi-scale basis in
the coarse-mesh correction (33) by φsi (x), which are obtained according to (24) or (27).

Consider solving (33) using trial space Ṽ sH (41) and a Galerkin projection to get esH(x) + es,2(x). Then

a(u(x)− us−1(x)− esH(x)− es,2H (x), v(x)) = 0, for v(x) ∈ V sH . (54)

Recall that in our construction of the adaptive multi-scale basis φsi (x), we require that they can recover
the approximate solution us−1(x) on Γ (23). Therefor we have us−1(x) ∈ Ṽ sH , and

u(s)(x) = us−1(x) + esH(x) + es,2H (x) ∈ Ṽ sH . (55)
12



The representation of u(s)(x) (55) and the orthogonality condition (54) together imply that u(s)(x) is just
the Galerkin numerical solution to the original equation (1) employing the updated trial space Ṽ sH , which
is the same as the approximate numerical solution u(s)(x) that we obtain in Algorithm 1, (20). Namely, if
we replace the coarse mesh solution operator L−1

H in Algorithm 2 using (LsH)−1, we get Algorithm 1. So we
conclude that Algorithm 1 is a nonlinear version of the two-level multi-grid method with the restriction and
prolongation operators adapted to approximate solutions of the previous iteration steps.

Note that there is no explicit restriction operation in the proposed Algorithm 1, namely, we do not need
to compute the fine mesh residual and pass it to coarse mesh as in (47). The reason that we can skip the
restriction operation in Algorithm 1 is that we have required that the multi-scale basis φsi (x) can recover
the approximate numerical solution of the previous iteration step, us−1(x), on Γ.

Similar to (53) in Algorithm 2, we get the following iteration relation for Algorithm 1,

us = S(ν)(I − (LsH)−1Lh)us−1 +Ms. (56)

4.2. Estimates of the error decay in the two proposed algorithms

The exact fine-mesh solution u∗ = A−1f is a fixed point of the iteration schemes (56) and (53). In this
subsection, to simplify the notation, we will write L−1

H in (53) as (LsH)−1.
We have the following relation between the errors in two consecutive iteration steps,

us+1 − u∗ = S(ν)(I − (LsH)−1Lh)(us − u∗). (57)

We will provide convergence analysis of the proposed algorithms under the framework of the two-level
multi-grid method, see [37], in which the iteration relation (57) is decomposed as (with A = Lh)

A(us+1 − u∗) = (ASν)[L−1
h − (LsH)−1][A(us − u∗)]. (58)

Then we have the following estimate on the decay of the l2 norm of the residual,

‖A(us+1 − u∗)‖ ≤ ‖ASν‖‖L−1
h − (LsH)−1‖‖A(us − u∗)‖, (59)

where ‖ · ‖ is the discrete l2 norm and the corresponding induced operator norm. We need

‖ASν‖‖L−1
h − (LsH)−1‖ < ρ < 1 (60)

for the robust convergence of the iteration scheme (58). Classical convergence analysis of the two-level
multi-grid methods estimates the two parts in (60) separately.

For the first part, one needs the following smoothing property,

‖ASν‖ = O(
1

ν
), ν → +∞, (61)

which requires that the smoothing operation can effectively damp the high frequency modes in the error.
For the second part in (60), classical convergence analysis requires the approximation property

‖L−1
h − (LsH)−1‖ ≤ CH2h−2. (62)

Note that ‖L−1
h ‖ = O(h−2), and (62) requires O(H2) accuracy of the Galerkin solution (7) in L2(D),

‖u(x)− uMS
H (x)‖L2(D) ≤ CH2‖f(x)‖L2(D). (63)

For the multi-scale PDE with rough coefficient a(x), the smoothing property (61) still holds for several
types of smoothing operators. However, due to the lack of regularity of the solution, the approximation
property (62) fails if piecewise linear basis functions are used in the coarse-mesh solving.

To recover the robust convergence (60) as for smooth coefficient problems, one needs the approximation
property of the multi-scale basis functions φsi (x) and φi(x) to the solution space of the equation, (63).
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1. In Algorithm 2, if we have constructed a set of multi-scale basis functions φi(x) that can achieve the
desired approximation property (63) to the solution space of (1), then there exists ν∗ that depends on
H/h, such that for ν > ν∗, one can obtain the robust convergence (60) for Algorithm 2.
In the periodic homogenization setting, it was shown in [44] that the multi-scale basis functions (5)
with linear local boundary conditions have good approximation property to the solution space of (1).
We will see in the numerical results section that even for some rough coefficient problems without clear
scale-separation, Algorithm 2 employing multi-scale basis functions φi(x) with linear local boundary
conditions also performs significantly better than the classical two-level multi-grid method.

2. In Algorithm 1, the multi-scale basis functions φsi (x) are constructed based on the approximate solutions
in previous iteration steps, which can be viewed as sampled solutions to (1). Success of multi-scale
methods that employ sampled solutions to construct local multi-scale basis can be explained using the
harmonic coordinates. We will prove the approximation property (63) for multi-scale basis constructed
according to (27) under certain assumptions of the harmonic coordinates in the next subsection.
One key idea of Algorithm 1 is using approximate solutions of previous iteration steps as sampled
solutions to construct the multi-scale basis, instead of generating sampled solutions by solving (1) with
random forcing terms. The latter has the same computational complexity as the original problem.

3. Once we have generated multi-scale basis functions in Algorithm 1 that can achieve good approximation
property to the solution space of the equation, (63), we can then switch to Algorithm 2 with this set of
multi-scale basis, since Algorithm 2 is computationally more efficient for each iteration step.

Remark 3 The adaptive multi-scale method in [47] can be directly put into the two-level multi-grid method
framework as (53). The multi-scale methods in [25, 54] cannot obtain the fine mesh solution, thus these
methods are not fine mesh solvers of the equation as two-level multi-grid method. However, the oversampling
method employed there is similar to blockwise smoothing operations. With suitable modifications, these multi-
scale methods may be analyzed as nonlinear two-level multi-grid methods as (56).

Remark 4 In (58), in order to effectively reduce the error A(u∗ − us), we would like to make (L−1
h −

(LsH)−1)A(u∗ − us−1) as small as possible. This requires that the adaptively constructed multi-scale basis
functions φsi (x) approximate the error u(x)− us−1(x). Recall that the multi-scale basis functions φsi (x) are
constructed based on approximate solutions in previous iteration steps uk(x), k < s. It is not obvious that
the multiscale basis functions based on uk(x), k < s would give a good approximation of the error u(x) −
us−1(x). In other words, this adaptively constructed multi-scale basis (27) may not have clear advantage in
approximating u(x)− us−1(x) over multi-scale basis functions constructed based on other sampled solutions
of (1). However, in our numerical results in subsection (5.2), we will see that for the high contrast interface
problem, Algorithm 1 actually performs better than Algorithm 2 that employs a set of multi-scale basis
functions constructed from two randomly generated sampled solutions of (1).

4.3. Approximation property of the multi-scale basis φsi (x)

We employ the harmonic coordinates to establish the approximation property of multi-scale basis func-
tions constructed from (27). The a(x)-harmonic coordinates

F (x) = (F1(x), F2(x)), (64)

are defined as the solutions to the following equations,{
−div(a(x)∇Fi(x)) = 0;

Fi(x)|∂D = xi.
(65)

A remarkable property proved in [59] is that under certain assumptions about F (x), the solution to (1),
u(x), gains an order of regularity with respect to the harmonic coordinates,

‖u ◦ F−1(x)‖W 2,p(D) ≤ C(p)‖f ◦ F−1(x)‖Lp(D), p > 2. (66)

14



We consider two sampled solutions of the equation (1), v1(x) and v2(x),

−div(a(x)∇v1(x)) = g1(x), −div(a(x)∇v2(x)) = g2(x), v1,2(x)|∂D = 0, (67)

where v1(x) and v2(x) are normalized based on

‖g1(x)‖Lp(D) = 1, ‖g2(x)‖Lp(D) = 1. (68)

We build multi-scale basis based on v1(x), v2(x) following the procedure outlined in (25) and (27),
and show the approximation property (63) of the resulting multi-scale basis φi(x), i = 1, . . . , n. These
basis functions are approximately local linear combinations of v1(x) and v2(x), (25). Our basic idea is the
following: we consider approximating the solution u(x) using the multi-scale basis φi(x) in the harmonic
coordinates; on each D̃i = F (Di), ṽ1(x) = v1 ◦F−1(x) and ṽ2(x) = v2 ◦F−1(x) has W 2,p regularity, thus can
be approximated by linear functions; the multi-scale basis functions in the harmonic coordinates, namely,
φ̃i(x) = φi ◦F−1(x), are approximately linear combinations of ṽ1(x) and ṽ2(x), thus are approximately local
linear functions; ũ(x) = u ◦F−1(x) has W 2,p regularity and can be approximated by the constructed φ̃i(x).
Then we pass the estimates in the harmonic coordinates to the physical space to get (63).

To facilitate the error estimation procedure, we make the following two relatively strong assumptions on
the stability of the harmonic coordinates (64) and the sampled solutions (67).

1. The solution in the harmonic coordinates, u ◦F−1(x), satisfies a non-divergence form elliptic equation,
and to obtain the regularity result (66), one needs the Cordes condition [52]. This requires estimates
of ∇F (x). And to pass the estimates in the harmonic coordinates to the physical space, one also needs
estimates of ∇F (x). Here for simplicity, we make a strong assumption that

∇F (x), (∇F (x))−1 ∈ L∞(D). (69)

For each coarse element Di with node points xij , j = 1, 2, 3, we denote the triangle of x̃ij = F (xij ) as
∆x̃i1 x̃i2 x̃i3 . To obtain the desired estimates in the harmonic coordinates, we assume that

∆x̃i1 x̃i2 x̃i3 has bounded aspect ratio. (70)

2. On each coarse element Di, the interpolation of u(x) using the basis φ̄ij (x) can be written as

c0i + c1i v1(x) + c2i v2(x). (71)

To obtain the estimates in the harmonic coordinates, we need the stability of the interpolation and
some estimates on cji . We denote the derivatives of the linear interpolation of u ◦ F−1(x), v1 ◦ F−1(x)
and v2 ◦ F−1(x) on the node points x̃ij , j = 1, 2, 3 as kui , kv1i and kv2i respectively.

Then the coefficients cji in (71) can be obtained as

(c1i , c
2
i )
T = [kv1i , k

v2
i ]−1kui . (72)

For the stability of the interpolation, we assume that

Ci = ‖[kv1i , kv2i ]−1‖ ≤ C. (73)

With the two major assumptions made above, and some other technical assumptions, we can show that
using the multi-scale basis obtained from v1(x), v2(x), the Galerkin numerical solution uMS

H (x) satisfies

‖u(x)− uMS
H (x)‖L2(D) ≤ CH2‖f(x)‖L2(D). (74)

The proof of (74) is given in the appendix. Then if some linear combinations of the sampled solu-
tions us(x) and us−1(x) satisfy the same stability condition as v1(x), v2(x) in (73), we can recover the
approximation property (62) as for smooth coefficient problems. We have the following Theorem.
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Remark 5 For arbitrarily rough coefficient a(x), one can only get that F (x) is Hölder continuous and
cannot get (69). However, under some integrability condition of ∇F (x), the same estimate procedure in this
subsection still carries through, but we can only get weaker approximation property than (63).

Theorem With the assumptions made above, the adaptive multi-scale basis φsi (x) constructed following
the procedure outlined in (25) and (27) in Algorithm 1 has the apprxomation property (63). And there
exist ν∗ that depends on H/h, such that for ν > ν∗, we can achieve the convergence (60) in Algorithm 1,

‖Aus − f‖ ≤ ρs‖Au0 − f‖, ρ < 1. (75)

If there exist a set of multi-scale basis φ1(x), . . . , φn(x), which has the approximation property (63) to
the solution space of (1). Then employing this set of basis in Algorithm 2, we have that there exists ν∗ that
depends on H/h, such that for ν > ν∗, we can achieve the robust convergence (60) for Algorithm 2.

‖Aus − f‖ ≤ ρs‖Au0 − f‖, ρ < 1. (76)

Remark 6 Recall that Ci = ‖[kv1i , kv2i ]−1‖−1. Ci will be large if (1) kv1i and kv2i are close to being align to
each other; or (2) k

vj
i is small. To avoid the first case, we want v1(x) are v2(x) to be independent sampled

solutions to (1). To avoid the second case, we want ‖∇vj(x)‖ to be large.

Remark 7 Each iteration step in Algorithm 2 has the same computational cost as the classical two-level
multi-grid method. On the other hand, Algorithm 1 is more expensive than Algorithm 2 since one needs to
construct the adaptive multi-scale basis functions and the corresponding stiffness matrix in each iteration
step. In the multi-query setting where the equation (1) needs to be solved for multiple times with different
forcing functions, one can construct a set of multi-scale basis functions with good approximation property
(63) by employing several steps of Algorithm 1 iterations in the first query, and then switch to Algorithm 2
with this set of multi-scale basis functions. Then the computational cost of the proposed algorithms will be
the same as classical two-level multi-grid method for smooth coefficient problems.

5. Numerical Results

In this section, to demonstrate the efficiency of the proposed iteratively adaptive multi-scale finite element
method, we apply it to several problems with multi-scale features, including a rough coefficient problem, a
high-contrast interface problem, and a convection-dominated diffusion equation. In particular, we will show
its advantage over the classical two-level multi-grid method as fine mesh solvers.

We employ a two-level discretization of the domain D = [0, 1]× [0, 1] as shown in Figure 1. The coarse
mesh size is chosen to be H = 1

32 and the underlying fine mesh size is chosen to be h = 1
1024 .

5.1. An elliptic PDE with rough coefficient

In this subsection, we consider an example of the multi-scale PDE (1) where the coefficient a(x, y) is
rough and does not have clear scale-separation. a(x, y) and f(x, y) are given by

a(x, y) = |ã(x, y)|+ 0.5, f(x, y) = 1. (77)

The values of ã(x, y) on the node points of an intermediate mesh of size 1
128 are iid Gaussian random variables.

And the values of a(x, y) on the fine mesh node points are obtained using piecewise linear interpolation based
on its values on the intermediate mesh node points. A typical realization of the coefficient a(x, y) is shown
in Figure 3, and we will solve equation (1) with this realization of a(x, y).

We first numerically verify our stability assumption on the harmonic coordinates (69). We solve the
harmonic coordinates (65) on the underlying fine mesh and numerically compute ‖∇F (x)‖ and ‖(∇F (x))−1‖.
They are plotted in Figure 4. We can see that ‖∇F (x)‖ and ‖(∇F (x))−1‖ are both bounded, namely, the
stability assumption (69) holds for this rough coefficient elliptic problem.
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Figure 3: Rough coefficient a(x, y) without scale-separation.
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Figure 4: ‖∇F (x)‖ and ‖(∇F (x))−1‖.
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To start the iteration in Algorithm 1, we need to two sampled solutions to generate the multi-scale basis
φ1
i (x). We first solve the equation (1) using piecewise linear basis on the coarse mesh to get u−1(x). Then

we apply 10 steps of Jacobi iteration on the fine mesh using u−1(x) as initial guess to obtain u0(x). With
u−1(x) and u0(x), we build multi-scale φ1

i (x) following the construction (25) and (27).
In the iteration of both Algorithm 1 and Algorithm 2, we choose ν = 10 and the Gauss-Seidel iteration for

the smoothing operations in step (21). There exist other smoothing methods that may perform better than
the Gauss-Seidel iteration. However, for the purpose of comparing the proposed methods with the classical
two-level multi-grid method, we will employ the simple Gauss-Seidel smoothing operation in implementation.
We keep track of the l2 norms of the error ‖us − u∗‖ and the residual ‖Aus − f‖ in the iteration. We solve
the multi-scale equation (1) using Algorithm 1, Algorithm 2, and the classical two-level multi-grid method
under the same discretization. Note that the only difference between the three methods is the choice of the
finite element basis functions in the coarse mesh solution operator (LsH)−1. In Algorithm 1, we employ the
adaptive multi-scale basis functions φsi (x) and the bubble basis functions φbj(x); in Algorithm 2, we employ

the multi-scale basis functions with linear local boundary conditions φi(x) and φbj(x); in the classical two-
level multi-grid method we employ the coarse-mesh piecewise linear basis functions. The decay of ‖us−u∗‖
and ‖Aus − f‖ for the three methods is shown in Figure 5.
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Figure 5: Decay of the error ‖us − u∗‖ and the residual ‖Aus − f‖.

According to the comparisons made in Figure 5, we can get the following conclusions.

1. The l2 norms of the error and the residual both decay exponentially fast for Algorithm 1 and Algorithm
2. This agrees with our convergence analysis under the two-level multi-grid method framework.

2. The error and residual in Algorithm 1 and Algorithm 2 decay faster than the classical two-level multi-
grid method. This is because the multi-scale basis functions employed in Algorithm 1 and 2 have better
approximation property to the solution space of (1) than the coarse mesh piecewise linear basis.

In practical applications, even though the approximate solution us(x) in Algorithm 1 and 2 converge to
the underlying fine mesh solution uh(x) exponentially fast, we do not need to wait until

‖us(x)− uh(x)‖L2(D) = O(h2) (78)

to stop the iteration. This is because the fine mesh size h is not chosen according to the desired order of
accuracy, but according to the small-scale variations of the coefficient.

Even if we terminate the iteration based on the condition (78), we cannot get O(h) accuracy in the
numerical solution us(x). Due to the oscillation in the coefficient a(x), we have

‖u(x)− uh(x)‖L2(D) � h2. (79)
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If our desired order of accuracy is the coarse mesh size H, as in the multi-scale methods of the second
category described in section 1.3, [7, 50, 43, 61], then we can terminate the iteration much earlier.

For this specific problem, with the Gauss-Seidel iteration for the smoothing operation, we obtain H2

10 in
L2(D) accuracy after 1 step of iteration in Algorithm 1 and 4 steps of iteration in Algorithm 2.

In the multi-scale methods, for example, [7, 50, 43, 61], constructing multi-scale basis functions with
robust approximation property could be very expensive. Our method, Algorithm 1, bypasses this difficulty
by adaptively updating the multi-scale basis to improve the approximation property of the basis.

5.2. A high-contrast interface problem

In this subsection, we consider an elliptic problem with a high-contrast interface. Note that the high-
contrast inclusions violate the uniform ellipticity assumption (2). However, the proposed Algorithm 1 still
works well and performs much better than the classical two-level multi-grid method.

The high-contrast coefficient a(x, y) that we consider in this example is illustrated in Figure 6, and the
right hand side function is chosen as f(x, y) = 1. As in the previous numerical example, we solve this high-
contrast interface problem using Algorithm 1, Algorithm 2 and the classical two-level multi-grid method
under the same discretization. We choose ν = 10 and the Gauss-Seidel iteration in the smoothing operation.
The decay of the error and the residual in the iteration is plotted in Figure 7.
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Figure 6: The high-contrast coefficient. log10 a(x).

For this high-contrast interface problem, no convergence is observed for the proposed Algorithm 2 em-
ploying multi-scale basis with linear local boundary conditions and the classical two-level multi-grid method.
Due to the high contrast inclusions, the derivatives of the solution has large jump across the boundaries
of the inclusions. Multi-scale basis with linear local boundary conditions cannot accurately capture these
jumps, thus have very poor approximation property to the solution space of (1). This explains the failure
of Algorithm 2 and the classical two-level multi-grid method observed in Figure 7.

For this high-contrast interface problem, the l2 norms of the error us − u∗ and the residual Aus − f in
the iteration of Algorithm 1 both converge exponentially fast. The adaptive multi-scale basis functions in
Algorithm 1 are constructed based on sampled solutions of the equation, which can capture this jump of
derivatives, thus have much better approximation property to the solution space of (1).
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Figure 7: Decay of l2 error and the residual for the high-contrast interface problem.

Next we consider constructing multi-scale basis functions φi(x), i = 1, 2, . . . , n based on randomly gen-
erated sampled solutions of (1) following (25) and (27), and employing them in Algorithm 2 to solve the
equation (1). For this purpose, we consider the following finite dimensional subspace of Lp(D),

{1, sin(2πx), cos(2πx), . . . sin(10πx), cos(10πx)} ⊗ {1, sin(2πy), cos(2πy), . . . sin(10πy), cos(10πy)}, (80)

and generate random forcing functions f(x) from this finite-dimensional subspace of Lp(D).
We remark that solving (1) with randomly generated forcing has the same computational complexity as

the original problem, and we design this example to compare the performance of Algorithm 1 and Algorithm
2. We consider two approaches for Algorithm 2. In the first approach, we generate a set of multi-scale basis
functions before the iteration, and employ them in the coarse mesh solving step of Algorithm (2). In the
second approach, we generate a new set of multi-scale basis functions for the coarse mesh solving operation in
each iteration step of Algorithm 2. For this high-contrast interface problem, the convergence of the solutions
is plotted in Figure 8. We observe that the iterative error corresponding to Algorithm 2 using the second
approach indeed decays faster than that using the first approach. This shows that updating the multi-scale
basis functions during the iteration indeed helps to reduce the iteration error. However, the iterative error
in Algorithm 1 decays much faster than the iterative errors of Algorithm 2 even if we update multi-scale
basis functions based on randomly generated sampled solutions (the second approach).

The complete understanding of this phenomenon requires further study. We would like to point out
that that in our convergence analysis presented in section 4, we simply view the adaptive multi-scale basis
functions φsi (x) as generated from two sampled solutions. But there is an important factor that could
potentially explain the difference in the performance between Algorithm 1 and Algorithm 2. It is important
to note that the sample solutions that we use to construct the multiscale basis functions, us−2(x) and
us−1(x), are tailored to the right hand side Aus−1− f in (58). It is possible that the adaptively constructed
multiscale basis functions, φsi (x), may give a better approximation of the solution corresponding to the
specific right hand side function during the iteration process. The results in Figure 8 implies that the
combination of fine-mesh smoothing operations with coarse mesh solving using the adaptive multi-scale
basis constructed in (27) can more effectively reduce the error in us−1(x), than the combination of fine
mesh smoothing operations with multi-scale basis functions generated from random sampled solutions of
the equation.
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Figure 8: Comparison of Algorithm 1 with Algorithm (2) using multi-scale basis functions generated from
random sampled solutions of (1). The line labeled “Fixed Random” corresponds the first approach described
above for Algorithm 2, and the line labeled “Random” corresponds to the second approach for Algorithm
2. The line labeled “Linear Basis” corresponds to the classical two-level multi-scale method.

5.3. A convection-dominated diffusion equation

The proposed iteratively adaptive multi-scale finite element method, Algorithm 1, can also be naturally
applied to solve convection dominated diffusion problems. In this subsection, we consider equation{

−κ∆u(x) + a · ∇u(x) = f, x ∈ Ω,

u(x) = g(x), x ∈ ∂Ω,
(81)

where κ = 10−6 is the diffusivity, a = (a1, a2)T is the velocity field, f(x) is a given source term, and g is
given Dirichlet boundary condition. We consider the following four test cases as in [34]

1. Convective field with a fixed angle. Ω = [0, 1]× [0, 1], a = (
√

2/2,
√

2/2)T , f = 0.

2. Thermal boundary layer problem. Ω = [0, 1]× [0, 0.5], a = (2y, 0)T , f = 0.

3. Double ramp problem, Ω = [0, 0.5]× [0.5, 1] ∪ [0.5, 1.5]× [0, 1], a = (1, 0)T , and f = 1.

4. Smith-Hutton problem [69], Ω = [−1, 1]× [0, 1], a = (2y(1− x2),−2x(1− y2))T , and f = 0.

The problem setting and boundary conditions for the four cases are illustrated in Figure 9.
In the discretization of the problem, the coarse mesh size is H = 1

16 and fine mesh size is h = 1
128 . The

streamline-crosswind diffusion method (SD/CD) [66] with a set of uniform rectangular meshes is used to
construct the multi-scale basis with boundary conditions given by (24). And in the coarse mesh solving, we
employ the following discretization of the equation: find u(s)(x) ∈ V sH , such that

ac(u
(s)(x), v(x)) = (f(x), v(x))c, ∀v(x) ∈ V sH , (82)

where

ac(u(x), v(x)) = a(u(x), v(x)) +
∑
i

τi(a · ∇u,a · ∇v)Di +
∑
i

(κm − κ)(b · ∇u,b · ∇v)Di (83)

and
(f, v)c = (f, v) +

∑
i

τi(f,b · ∇v)Di . (84)

Here a(u, v) = κ(∇u,∇v) + (a · ∇u,∇v) is a bilinear form and (f, v) is a linear form.
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Figure 9: Boundary conditions for the four convection-diffusion problems.

The stabilization parameter τi is defined as

τi =
H2
Di

6κmax{1, P ei}+ 6κ
, (85)

with

Pei =
|a|aHDi

3κ
. (86)

The artificial crosswind diffusion coefficient κm is given as

κm =

{
κ, if κ ≥ H3/2

Di
,

H
3/2
Di

, if κ < H
3/2
Di

.
(87)

And b = (−a2, a1) is the crosswind vector.
The initial and final MsFEM solutions for the 4 cases are plotted in Figure 10.
The initial MsFEM solutions are obtained using multi-scale basis with linear local boundary conditions.

We observe that the accuracies of the MsFEM numerical solutions are significantly improved in the end of
the iteration: the overshooting problem within the boundary layer regions is completely eliminated.

The smoothing operation (21) is chosen as the incomplete LU factorization without fill-in, namely, the
ILU(0) method [65]. We choose ν = 1, 2, . . . , 5, and the stopping criteria for the Algorithm is ‖us−1(x) −
us(x)‖L2(Ω) ≤ 10−4. To obtain the convergence, the steps of iterations required for the four cases are
summarized in Table 1. For ν ≥ 4, the iteration converges within 6 steps for all the 4 cases.

6. Concluding Remarks

An iteratively adaptive multi-scale finite element is proposed, in which the multi-scale basis functions
and the approximate solutions are updated simultaneously in each iteration step. The global information
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ν Fixed angle Thermal Double ramp Smith-Hutton

1 5 11 10 7
2 4 7 8 6
3 4 6 8 5
4 3 5 6 5
5 3 5 5 5

Table 1: Number of iteration steps to obtain convergence for the four tested cases.

(a) Initial MsFEM solution. First case. (b) Final MsFEM solution. First case.

(c) Initial MsFEM solution. Second case. (d) Final MsFEM solution. Second case.

(e) Initial MsFEM solution. Third case. (f) Final MsFEM solution. Third case.

(g) Initial MsFEM solution. Fourth case. (h) Final MsFEM solution. Fourth case.

Figure 10: Initial and final MsFEM solutions for the convection-dominated diffusion problems.
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of the elliptic equation is transferred to the local boundary conditions of the multi-scale basis functions
through coarse mesh solving using adaptive multi-scale basis and fine mesh smoothing operations.

A stabilized variant of the proposed algorithm is also derived, which is a two-level multi-grid method that
employs a set of multi-scale basis functions for the restriction and prolongation operations. The proposed
iteratively adaptive MsFEM can be viewed as a nonlinear version of the two-level multi-grid method.

Convergence analysis of the proposed algorithm is carried out in the two-level multi-grid method frame-
work. And we employ the harmonic coordinates to establish the approximation property of the adaptively
constructed multi-scale basis functions to the solution space of the equation.

Numerical results are presented for a rough coefficient problem, an elliptic interface problem and several
convection dominated diffusion problems. Significant improvements over classical methods are observed for
all these three types of PDE problems. In particular, the proposed Algorithm 1 has significant advantage
over the classical two-level multi-grid method as a fine mesh solver of the multi-scale equation.
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APPENDIX

Let φi(x), i = 1, 2, . . . , n be the multi-scale basis functions constructed using the sampled solutions v1(x),
v2(x) obtained from (67) and following the procedure outlined in (25) and (27). Further, we denote uMS

H (x)
as the Galerkin finite element solution of (1) using the resulting trial space

Vh = span{φ1(x), φ2(x), . . . , φn(x)}.

We will prove that
‖u(x)− uMS

H (x)‖L2(D) ≤ CH2‖f(x)‖L2(D), (88)

under the two assumptions in subsection 4.3, and some additional technical assumptions (93), (101), (103).

Proof:
We first consider the interpolation of the solution u(x) using the non-conforming basis φ̄i(x). On the

boundary of the coarse element Di, the interpolation residual ei(x) = u(x)−∑3
j=1 u(xij )φ̄ij (x) is

ei(x) = u(x)− c0i − c1i v1(x)− c2i v2(x), x ∈ ∂Di. (89)

Then employing the optimality property of multi-scale basis functions, (14), we have

‖ei(x)‖2E ≤ ‖u(x)− c0i − c1i v1(x)− c2i v2(x)‖2E + CH2‖f(x)‖2L2(Di)
, (90)

where ‖ · ‖E is the energy norm (8). To bound the energy norm of Ei(x) = u(x)− c0i − c1i v1(x)− c2i v2(x) in
the above estimate, (90), we express this term in the harmonic coordinates, Ẽi(x) = Ei ◦ F−1(x),

Ẽi(x) = ũ(x)− c0i − c1i ṽ1(x)− c2i ṽ2(x), x ∈ D̃i. (91)

We denote v̂i,1(x), v̂i,2(x) and ûi(x) as the linear interpolation of ṽ1(x), ṽ2(x) and ũ(x) on the three
node points, x̃i1 , x̃i,2, x̃i,3. Then we can decompose (91) as

Ẽi(x) = [ũ(x)− c0i − c1i v̂i,1(x)− c2i vi,2] + [c1i (v̂i,1(x)− ṽ1(x)) + c2i (v̂i,2(x)− ṽ2(x))]. (92)

The first term in (92) is simply ũ(x) − ûi(x), and to get an estimate of it on D̃i, we need to put D̃i in a
regular domain. Let D̂i be the triangle which is the scaling of ∆x̃i1 x̃i2 x̃i3 by a factor of 2, and has the same
center as ∆x̃i1 x̃i2 x̃i3 . Then we assume that D̃i ⊂ D̂i and each x ∈ D is covered by finite D̂i,

D̃i ⊂ D̂i, max
x∈D

#{i : x ∈ D̂i} ≤ C. (93)

The element Di, its image D̃i, and the triangle D̂i are illustrated in Figure 11.

D̃i

x̃i1

x̃i2 x̃i3

D̂iDi

Harmonic Map F (x)

Figure 11: Coarse-mesh element in Harmonic Coordinate.
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Then using the regularity result (66) and the assumption that D̂i has bounded aspect ratio, we have

‖ũ(x)−c0i −c1i v̂i,1(x)−c2i vi,2(x)‖H1(D̃i)
≤ ‖ũ(x)−c0i −c1i v̂i,1(x)−c2i vi,2(x)‖H1(D̂i)

≤ CH‖ũ(x)‖H2(D̂i)
. (94)

Using the same assumptions as in (94), we can bound the second term in (92) by

‖c1i (v̂i,1(x)− ṽ1(x)) + c2i (v̂i,2(x)− ṽ2(x))‖H1(D̃i)
≤ |c1i |H‖ṽ1(x)‖H2(D̂i)

+ |c2i |H‖ṽ2(x)‖H2(D̂i)
. (95)

Putting estimates (94) and (95) together in the decomposition (92), we have

‖Ẽi(x)‖2
H1(D̃i)

≤ CH2‖ũ(x)‖2
H2(D̂i)

+ C(c1i )
2H2‖ṽ1(x)‖2

H2(D̂i)
+ C(c2i )

2H2‖ṽ2(x)‖2
H2(D̂i)

. (96)

Adding up the estimate (96) over each coarse element, we have∑
i

‖Ei(x)‖2H1(Di)
≤ CH2‖ũ(x)‖2H2(D) + C max

i
(c1i )

2H2‖ṽ1(x)‖2H2(D) + C max
i

(c2i )
2H2‖ṽ2(x)‖2H2(D). (97)

Using the regularity result (66) and the normalization condition (68), we have

‖ũ(x)‖H2(D) ≤ C‖f(x)‖Lp(D); ‖ṽ1(x)‖H2(D), ‖ṽ2(x)‖H2(D) ≤ C. (98)

For the coefficients c1i and c2i , according to (72), we have

c1i , c
2
i ≤ C‖ũ(x)‖C1(D) ≤ C‖f(x)‖Lp(D). (99)

Putting the estimates (98), (99) and (97) in (90), we have∑
i

‖ei(x)‖2H1(Di)
≤ CH2‖f(x)‖2Lp(D). (100)

To obtain the approximation property of the conforming basis (27), we simply assume that the error will
not be amplified due to the averaging,

‖u(x)−
∑
i

u(xi)φi(x)‖2H1(D) ≤ C
∑
i

‖ei(x)‖2H1(Di)
. (101)

Then using the optimal property (8), (100) and (101), we have

‖uMS
H (x)− u(x)‖H1(D) ≤ CH‖f(x)‖Lp(D). (102)

Finally, we assume that for all the f(x) that occur in the iteration of Algorithm 1, we have

‖f(x)‖Lp(D) ≤ C‖f(x)‖L2(D), (103)

which requires that the f(x) is wide spread. With (103), we get

‖u(x)− uMS
H ‖H1(D) ≤ CH‖f(x)‖L2(D). (104)

Then using a Aubin-Nitsche duality argument, we get (88). The assumption (103) requires

‖u(x)− uMS
H (x)‖Lp(D) ≤ C‖u(x)− uMS

H (x)‖L3(D) (105)

in the duality argument. We keep track of the constants C in (103) and (105) in the iteration of Algorithm
1 for the rough coefficient problem in subsection (5.1), and they are plotted in Figure 12.
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Figure 12: The constants in (103) and (105).
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