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Abstract

A good numerical blood flow simulation tool based on patient-specific anatomy and physiological

conditions can be clinically helpful for physicians or researchers to study vascular diseases, to

enhance diagnoses, as well as to plan surgery procedures. Such a tool is computationally very

expensive, and often requires the use of large scale supercomputers with many core processors. In

this paper, we focus on developing parallel domain decomposition algorithms for solving nonlinear

systems arising from the discretization of three-dimensional blood flow model equations with a

stabilized finite element method for the spatial variables and an implicit backward Euler finite

difference method for the temporal variable. More precisely speaking, at each time step, the

resulting nonlinear system is solved by the Newton-Krylov-Schwarz algorithm. We implement the

parallel fluid solver using PETSc and integrate it with other state-of-the-art software packages

into a parallel blood flow simulation system, which includes Cubit, ParMETIS and ParaView for

mesh generation, mesh partitioning, and visualization, respectively. We validate our parallel code

and investigate the parallel performance of our algorithms for both a straight artery model and an

end-to-side graft model.
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1. Introduction

In recent years there is growing interest in parallel computational techniques for the study of

blood flow dynamics in vascular systems [3, 4, 21, 28, 32]. Numerous computational models have

been developed to describe the local blood flow field and to simulate the response of the vessel

walls under certain hemodynamic conditions [24, 30, 31]. The blood characteristics of interests are

often shown as abnormal local flow structures such as vortices, flow separations, recirculation and

stagnation areas; blood pressure drop; high shear stress regions and system total energy dissipa-

tion [14, 15]. These characteristics play critical roles in the formation of serious vascular diseases

such as atherosclerotic lesions and thrombus formation. The ultimate goal of the computational

biofluid research is to provide reliable tools to illustrate the hemodynamic properties under specific

conditions and to predict their changes when certain disturbances arise. Good simulation results

can be used clinically to help physicians to understand vascular diseases.

In this research, we develop a scientific software system based on parallel domain decomposition

methods for simulating complex biofluid problems according to patient-specific vessel geometries

and flow conditions. A finite element method with unstructured meshes is suitable to handle

the complicated geometries of the blood flow problem [2, 9, 11, 25]. In general, finite element-

based scientific simulations comprise three basic steps [18, 25]: (1) preprocessing step, (2) solution

step, and (3) postprocessing step. During the preprocessing step, one first uses an image-to-surface

definition tool to construct a geometric solid model of a patient’s arteries based the images obtained

from some medical imaging devices, such as the Nuclear Magnetic Resonance, the Computed

Tomography or the Digital Substraction Angiography, then generates an unstructured 3D finite

element mesh for the complex geometries of the arteries. On the other hand, some non-invasive

device, like Doppler Ultrasound or Phase-Contrast Magnetic Resonance is used to measure some

of the flow condition, such as the velocity profiles and pressure drop at some point. This collected

data is useful for setting of the realistic boundary conditions for the blood flow simulation. The

solution processing step requires a robust and efficient time-dependent flow solver to handle the high

nonlinearity and complex geometry of the blood flow problem. To resolve the detailed changes of the

hemodynamic equations in complex and delicate vascular systems through numerical simulation,

the use of highly refined unstructured finite element meshes is essential. This implies that the

resulting ill-conditioned large algebraic systems need to be solved. Although there are commercial
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fluid software packages available, most of them are sequential. The large amount of required

computational time makes some simulations infeasible. Consequently, a fast parallel computational

algorithm and high performance software are needed to overcome such limitations.

In this paper, we focus on developing parallel, scalable, robust domain decomposition algo-

rithms [22, 27, 29] for solving linear and nonlinear systems arising from the discretization of blood

flow model equations, where a stabilized finite element method is used for the spatial discretization

and a fully implicit backward Euler integrator for the temporal discretization. At each time step,

the Newton-Krylov-Schwarz (NKS) algorithm [5, 16] is employed for solving resulting nonlinear

algebraic equations. The NKS algorithm consists of three important components. The inexact

Newton method with backtracking (INB) [6, 20] is used as a nonlinear solver. In each Newton

step, an overlapping Schwarz-type preconditioner is employed to accelerate the convergence of a

Krylov subspace methods, which is used for solving linear Jacobian systems. The Schwarz-type

preconditioner is suitable for parallel computing, since all subdomain problems are independent of

each other and can be solved in parallel. In addition, we integrate our parallel time-dependent fluid

solver implemented by using Portable, Extensible Toolkit for Scientific Computation (PETSc) [1]

with other state of the art parallel software packages into a parallel blood flow simulation sys-

tem. These packages include (1) CUBIT [34] for unstructured finite element mesh generation;

(2) ParMETIS [13] for mesh partition; (3) ParaView [35] for displaying numerical results and

conducting data analysis.

The rest of this paper is organized as follows. In the next section, we briefly mention the blood

flow model based on incompressible Navier-Stokes equations. In Section 3, we provide a description

of a Newton-Krylov nonlinear solver, a parallel Schwarz preconditioner for the saddle-point type

Jacobian system. An overview of the parallel blood flow simulation system is outlined in Section

4. In Section 5, numerical results on two blood flow problems are presented. Concluding remarks

are given in Section 6.

2. Blood flow model and its spatial and temporal discretizations

In this study, we treat the wall of arteries as rigid and fixed. This assumption is acceptable in

some situation when the diameter of the arteries is varied much less than 5-10% during a cardiac

cycle in the case of diseased vessels in which we are particularly interested. We also assume blood
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flows to be incompressible and laminar [7, 23]. Under these assumptions, blood flows in large

arteries can be modeled by 3D unsteady incompressible Newtonian flow equations defined on a

bounded domain Ω with the boundary Γ = Γin ∪ Γout ∪ Γwall, which are given by



































































ρ

(

∂u

∂t
+ u · ∇u

)

+ ∇ · σ = 0 in Ω × (0, T ),

∇ · u = 0 in Ω × (0, T ),

u = 0 on Γwall × (0, T ),

u = g on Γin × (0, T ),

σ · n = 0 on Γout × (0, T ),

u = u0 in Ω at t = 0,

(1)

where u = (u1, u2, u3)
T is the velocity, ρ is the blood density. Here, we impose a periodic parabolic

type profile, for example, the solution of Womersley flow, on the inflow boundary, Γin, the no-slip

boundary condition on the wall, Γwall, and the Neumann type boundary condition on the outflow

boundary, Γout. For u0, we assume that the flow is steady at the beginning of computation. For

viscous incompressible fluids, the Cauchy stress tensor can be decomposed into two parts:

σ = −pI + 2µD ,

where p is the hydrostatic pressure, I is a second-order identity tensor, µ is the dynamic viscosity,

and D is a second-order deformation rate tensor defined as D = 1
2 [(∇u) + (∇u)T ]. The Reynolds

number is defined as Re = ρV D
µ , where V is the characteristic velocity and D is the characteristic

length. Additionally, the Womersley number, which plays an important role in biofluid mechanics,

is defined as α =
√

ρω
µ D and represents the ratio of the unsteady inertia force to the viscous force.

Here, ω is the angular frequency of the oscillatory flows.

To discretize (1), we use an implicit backward Euler finite difference method in the temporal

domain and a P1 − P1 stabilized finite element method [8] in the spatial domain on a given un-

structured tetrahedral mesh, T h = {K}. Let Vh and Ph be a pair of finite element spaces for the

velocity and pressure:

Vh = {v ∈ (C0(Ω) ∩ (H1(Ω))3 : v |K ∈ P1(K)3, K ∈ T h }

and

Ph = {p ∈ C0(Ω) ∩ L2(Ω) : p|K ∈ P1(K), K ∈ T h}.
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Here C0(Ω) is the set of all continuous functions defined on Ω, L2(Ω), and H1(Ω) are the standard

notations with the usual meanings in the finite element literature [9, 25]. The weighting and trial

velocity function spaces V 0
h and V g

h are

V 0
h = {v ∈ Vh : v = 0 on Γin ∪ Γwall} and

V g
h = {v (·, t) ∈ Vh, t ∈ [0, T ] : v = g on Γin and v = 0 on Γwall}.

Similarly, Ph is used for both the weighting and trial pressure function spaces. A fully implicit

stabilized finite element method takes the form: Find u
(n+1)
h ∈ V g

h and p
(n+1)
h ∈ Ph, such that

B(u
(n+1)
h , p

(n+1)
h ; vh, qh) = 0 ∀(vh, qh) ∈ V 0

h × Ph (2)

with

B(u , p; v , q) =

(

ρ

(

u − u
(n)

∆t

)

, v

)

+ ((ρ∇u) · u , v ) + (µ∇u ,∇v) − (∇ · v , p)−

(∇ · u , q) +
∑

K∈T h

(ρ(
u − u

(n)

∆t
) + (∇u) · u + ∇p, τ((∇v ) · v + ∇q))K + (∇ · u , δ∇ · v ),

where u
(n) is the velocity at the current time step, and u

(n+1) and p(n+1) are unknown velocity

and pressure, respectively, at the next time step. We use the stabilization parameters τ and δ

suggested in [8]. Or, equivalently, at each time step, we solve a large, sparse, nonlinear algebraic

system

F (x∗) = 0, (3)

where the vector x∗ corresponds to the nodal values of uh = (u1
h, u2

h, u3
h) and ph at time t =

(n + 1)∆t.

3. A parallel Newton-Krylov-Schwarz algorithm

To solve the large nonlinear systems (3), we employ a NKS algorithm, which can be briefly

described as follows. Let the solution at the previous time step be an initial guess, x(0), for Newton

iterations, and assume x(k) is the current approximation of x∗. Then a new approximation x(k+1)

can be computed via the following steps:
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Step 1: Find a Newton direction s(k) by solving the following preconditioned Jacobian

system approximately by a Krylov subspace method, such as GMRES [26],

JkM
−1
k y = −F (x(k)), with s(k) = M−1

k y, (4)

where Jk is the Jacobian of F evaluated at x(k) and M−1
k is called a right preconditioner. We

will discuss the constructions of M−1
k further in this subsection later.

Step 2: Obtain the new approximation x(k+1) = x(k) + λ(k)s(k), where λ(k) ∈ (0, 1] is a

damping parameter.

In NKS, the accuracy of the solution to the Jacobian systems is controlled by the parameter,

ηk, to force the condition

‖F (x(k)) + F ′(x(k))s(k)‖ ≤ ηk‖F (x(k))‖

to be satisfied. ηk is often referred to as the forcing term. If the chosen forcing term is small enough,

the algorithm reduces to the exact Newton algorithm. The step length, λ(k) ∈ [λmin, λmax] ⊂ (0, 1),

is selected so that

f(x(k) + λ(k)s(k)) ≤ f(x(k)) + βλ(k)∇f(x(k))T s(k), (5)

where the two parameters λmin and λmax act as safeguards required for the strong global conver-

gence. The merit function f : Rn → R is defined as ‖F (x)‖2
2/2, and the parameter β is used to

assure that the reduction of f is sufficient. Here, a linesearch technique [6] is employed to determine

the step length, λ(k).

To define parallel Schwarz-type preconditioners we partition the finite element mesh T h. Let

{Ωh
i , i = 1, ...., N} be a non-overlapping subdomain partition whose union covers the entire mesh

T h. We denote by T h
i as the collection of mesh points in Ωh

i . To obtain overlapping subdomains,

we expand each subdomain Ωh
i to a larger subdomain Ωh,δ

i with the boundary ∂Ωh,δ
i . Here δ is an

integer indicating the level of overlap. We assume that ∂Ωh,δ
i does not cut any elements of T h.

Similarly, we denote by T h,δ
i as the collection of mesh points in Ωh,δ

i .

Now, we define the subdomain velocity space as

V h
i = {vh ∈ V h ∩ (H1(Ωh,δ

i ))
3

: vh = 0 on ∂Ωh,δ
i }
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and the subdomain pressure space as

P h
i = {ph ∈ P h ∩ L2(Ωh,δ

i ) : ph = 0 on ∂Ωh,δ
i \(Γin ∪ Γwall)}.

On the physical boundaries, we impose Dirichlet conditions according to the original equations (1).

On the artificial boundaries, we assume both u = 0 and p = 0. Similar boundary conditions were

used in [10, 12].

Let Ri: V h × P h → V h
i × P h

i be a restriction operator, which returns all degrees of freedom

(both velocity and pressure) associated with the subspace V h
i × P h

i . Ri is an 4ni × 4n matrix

with values of either 0 or 1, where n and ni are the total number of mesh points in T h and T h,δ
i

, respectively, and
∑N

i=1 4ni ≥ 4n. Note that for P1 − P1 elements, we have four variables per

mesh point, three for the velocity and one for the pressure. Then, the extension operator RT
i

can be defined as the transpose of Ri. The multiplication of Ri (and RT
i ) with a vector does

not involve any arithmetic operation, but does involve communication in a distributed memory

parallel implementation. Using the restriction matrix, we write the one level additive Schwarz

preconditioner in the matrix form (ASM) as

M−1
k =

N
∑

i=1

RT
i J−1

i Ri,

where J−1
i is subspace inverse of Ji = RiJRT

i . We remark that the global-to-local restriction

operator Ri collects the data from neighboring subdomains, and the local-to-global prolongation

operator RT
i sends partial solution to neighboring subdomains. In practice, to save the computa-

tional cost and the memory use, J−1
i in M−1

k are often replaced by an inexact solver, such as ILU

with some levels of fill-ins.

4. Parallel software development

The heart of the blood flow simulator is the parallel fully implicit time-dependent flow solver

based on the NKS algorithm as described in the previous section. The code is implemented by

PETSc of the Argonne National laboratory [1], USA. Note that PETSc, a powerful tool for parallel

computing, is designed for users to develop parallel scientific codes written in FORTRAN, C or

C++ programming languages for solving large linear and nonlinear systems arising from PDEs in

large-scale scientific applications. Several PETSc-based codes have been developed in a wide range
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of applications in computational science and engineering, for example, nano-materials simulations,

biomechanics calculations, fusion energy simulations, etc. The research represents the modern

trend in scientific computing.

Once the geometric model of arteries is constructed using some image-to-surface tool, we employ

a mesh generation software package, CUBIT of Sandia National laboratories, USA [34] to generate

a 3D unstructured finite element mesh for the arteries and a mesh partitioning tool, ParMETIS

of University of Minnesota, USA [13], to partition the mesh for the purpose of parallel processing.

Later, we use a scientific visualization system, ParaView of Kitware and Sandia National Labora-

tories, USA [35] as a post-processor for data analysis. In addition, we develop some interface codes

that convert the data files between two systems. One interface code transfers the CUBIT files for

geometry, connectivity, and boundary conditions in the Abaqus format into a PETSc loadable file

in the binary format. The other interface code combines CUBIT files for geometry and connectivity

with the solution file exported from the fluid solver into a ParaView file in the VTK format.

5. Numerical results

In this section, we consider two test cases: (a) a long straight artery model [33] and (b) an end-

to-side anastomosis model [17, 19] (See Figure 1), to check the correctness of our parallel fluid code

as well as to evaluate its performance on a cluster of PCs. The detailed geometrical configurations

and physiological flow conditions are introduced in the next subsection.

5.1. Test cases

5.1.1. A long straight artery model

We consider a long straight circular tube with a length of 3.0 cm and radius of 0.2 cm. As

pulsatile flows, we impose a uniform periodic velocity u(x, t) = V (1 + sin(2πt/T )) with mean

velocity V =13.5 cm/sec and period T = 0.2 sec for x ∈ Γin as the inflow boundary condition, a

stress-free condition as the outflow boundary condition, and a no-slip condition on the wall. In

addition, we assume the flow is Poiseuille at the beginning of computation. For this model, we set

a Reynolds number Re=135 based on the diameter of the tube and the mean velocity. In this case,

a kinematic viscosity of 0.04 cm2/sec is selected. We test oscillatory flows at both low and high

frequencies, which correspond to the Womersley number α = 1 and 10, respectively.
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Figure 1: Case 1: a long straight artery model (top) and Case 2: an end-to-side anastomosis model (bottom).

Zamir [33] derives the analytical solution to this problem, known as the Womersley velocity

profile for the axial velocity given by

u1(r, t) =
ks

4µ
(r2 − a2) +

iksa
2

µα2
(1 −

J0(ζ)

J0(Λ)
)eiωt,

where ks is the steady-state part of the pressure gradient and J0 is the Bessel function of order

zero of the first kind. Here, a is the diameter of the tube and the complex frequency parameter,

Λ = i3/2α. For the situation of flows with low frequency rate, the solution can be further simplified

using a series expansion of the Bessel function

u1(r, t) ≈
ks

4µ
(r2 − a2)(1 + cos ωt). (6)

Since the pressure gradient k = ks cos(ωt), compared to Eq. (6), we notice that at very low

frequency, or in a limiting case of “zero frequency”, the relation between flow and pressure becomes

instantaneously the same as in the case of steady Poiseuille flow. But at high frequency the behavior

of the velocity profile is different. For flows at high frequency rate, we first consider the flow near
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the tube of the wall, i.e., r/a ≈ 1, the analytical velocity can be written as

u1(r, t) = us(r) + uφ(r, t) = us(r) + uφR(r, t)

≈ ks

4µ(r2 − a2) + 2
√

2ks

4µα (ar − a2)(cos ωt + sin ωt)

≈ ks

4µ [(r2 − a2) + 2
√

2
α (ar − a2))(cos ωt + sin ωt)].

On the other hand, for the flow around the center of the tube, i.e., r/a ≈ 0

uφ(r, t)

ûs
=

−4

Λ2
eiωt.

The real and imaginary parts are given by

uφR(r,t)

ûs
≈ 4

α2 sinωt,

uφI(r,t)

ûs
≈ −4

α2 cos ωt,

where ûs = − ks

4µa2 is the corresponding maximal velocity in Poiseuille flow. Thus, the analytical

velocity

u(r, t) = us(r) + uφ(r, t) = us(r) + uφR(r, t)

≈ ks

4µ(r2 − a2) + ksa2

α2µ sin ωt. (7)

From the above results at high frequency the flow near the wall of the tube is affected differently

from the flow near the center of the tube, thus the parabolic characteristic of the velocity profile

is distorted and the 90 degree phase difference between velocity and pressure is expected.

5.1.2. An end-to-side anastomosis model

For the end-to-side anastomosis model as shown in Figure 2, the diameter of the host artery is

1.75 mm while the diameter of the graft artery is 2.8 mm. The graft branching angle is 5 degrees

and the ratio of the length of the hood to the diameter of the host artery is 5 to 1.

Figure 2: Specific regions of the end-to-side graft model.
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Figure 3: Physiological flow waveforms at inlet (Qg) and outlets (Qp , Qd) [17].

For the case of Poiseuille flow, in vivo values, the graft input flow rate = 1.9 ml/sec, the dynamic

viscosity = 0.035 g/s/cm, and the density = 1.05 g/ml. The division ratio of flow between the

proximal outlet segment (POS) and the distal outlet segment (DOS) is set at 20:80 for a Reynolds

number of 208 based on the host artery diameter. On the other hand, for the case of Pulsatile

flows, Dirichlet type conditions at the inflow and the POS are set according to the physiological

flow waveforms as shown in Figure 3. The DOS is set to be the stress-free boundary condition.

The frequency of the pulsatile waveform ω = 1.4Hz and the corresponding Womersley number is

2.8. The mean flow rate ratio is about 20:80 (The typical flow rate ratio during the systolic phase

is 22:78). The Reynolds number, which is based on the host artery diameter, has a maximum value

of 850 and a mean value of 222. We take the mean input velocity as the characteristic velocity, so

the total period, T , is 43.2 and the kinematic viscosity is the inverse of the mean Reynolds number.

5.2. Parallel fluid code validation

Before validating our parallel fluid code, we first perform the mesh resolution independent test.

We compute directly the steady-state solution to the NS equation. For the long straight artery

model, we test a sequence of four meshes with different sizes (the total number of elements ranges

from about 55,000 to 202,000). As a result, we find the numerical velocity profiles obtained by

using a mesh with 103,625 elements and 19,930 nodes is almost distinguishable with the analytical

solution. Similarly for the end-to-side graft model, five meshes are tested ranging from 38,000 to

788,000 elements. We also observe that the numerical velocity profiles obtained by using a mesh

with 103,625 elements and 19,930 nodes at different observation cross sections are consistent with

the experimental data. Hence, these two meshes are used for the rest of the numerical experiments.
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For the long straight artery model, we verify whether the incompressibility condition is satisfied

by first computing numerically the outflow flow rate and then comparing it with the inflow flow

rate with respect to time during the first period. As shown in Figure 4, they are quite consistent.

Figure 4: A comparison of the analytical flow rate at the inlet boundary and the computed flow rate at the outlet

boundary at low frequency.

Figure 5: Low frequency case: Variation of velocity, compared with variation of pressure at the center of the tube

with in an oscillatory cycle.

As mentioned in Subsection 5.1.1, for the low frequency flows, the peak of the axial velocity

(Eq. (6)) is in phase with the peak of pressure gradient. But the peak of the axial velocity (Eq.

(7)) lags the peak of the pressure gradient by 90 degrees at high frequency. As observed in Figures

5 and 6, neither the phase nor the amplitude of these peaks profiles correspond with the peaks of

the pressure clearly due to the inertia of the fluid. In addition, the difference of the phase angle at
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Figure 6: High frequency case: Variation of velocity, compared with variation of pressure at the center of the tube

with in an oscillatory cycle.

low frequency to high frequency is near 0 to 90 degrees.

For the end-to-side graft model, we compare the numerical velocity profiles with experimental

data [19] at the cross section near the proximal end of the anastomotic region in the x-direction

and the y-direction in the symmetry plane in the phases t = T/8, T/4, T/3, and 2T/3 in Figures

7 and 8, respectively. Note that these four phases represent the peak systole, the late systole, the

early diastole, and the mid-diastole in order. It is observed that the computational results do agree

qualitatively with the experimental data, especially that we can catch the location of the reverse

flow zone.

Figure 9 displays the computed streamlines at these four phases. We observe that the flows

decelerate during the late systole phase. Some vortices form near the hood and the direction of

flows is reversed at the early diastole phase and the streamlines are more chaotic at this phase

than these at other phases. The flow patterns at the mid-diastole and the peak systole are similar

but the flow speed is slower at the mid-diastole phase. Figure 10 depicts the computed pressure

distribution at these four phases.

5.3. Parallel performance study

In our numerical simulation, at each time step, we employ NKS to solve (3) with the previous

time step solution as the initial guess. We claim the intermediate solution converges when the

stopping condition for Newton

‖F (x(k))‖ ≤ max{10−6‖F (x(0))‖, 10−10}
13



Figure 7: A comparison of the computed velocity profile (FEA) in x-direction and experimental data (LDA) at

t = T/8 (top left), T/4 (top right), T/3 (bottom left), and 2T/3 (bottom right) at a cross section near the proximal

end of anastomotic region.
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Figure 8: A comparison of the computed velocity profile (FEA) in y-direction and experimental data (LDA) at

t = T/8 (top left), T/4 (top right), T/3 (bottom left), and 2T/3 (bottom right) at a cross section near the proximal

end of anastomotic region.
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Figure 9: The computed streamlines at t = T/8, T/4, T/3, and 2T/3 (from top to bottom).
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Figure 10: The computed pressure distribution at t = T/8, T/4, T/3, and 2T/3 (from top to bottom).
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is satisfied. A cubic linesearch technique [6] is employed to determine the step length λ(k), with

β = 10−4, λmin = 1/10 and λmax = 1/2. A right additive Schwarz preconditioned GMRES with

a zero initial guess is employed to solve the Jacobian system. The components of the Jacobian

corresponding to Galerkin finite element formulations are analytically constructed and other com-

ponents associated with stabilized terms are approximately computed by using multicolored finite

differences. The accuracy of the solution to the Jacobian systems is controlled by the parameter,

ηk, in the following condition,

‖F (x(k)) + (Jk(x
(k))M−1

k )(Mks
(k))‖ ≤ max{ηk‖F (x(k))‖, 10−10}.

Here ηk = 10−4. And the maximum number of GMRES iterations is limited to be at 200.

Figure 11 shows the history of the number of Newton iterations at each time step, and Figure

12 shows the average number of GMRES iterations at each time step. The end-to-side anastomosis

model is considered and the results are obtained by using 48 processors. Since we use the solution

of the previous time step as the initial guess, Newton is quite robust, i.e., only requires at most

three iterations to reach convergence. On the other hand, from Figure 12, except for the beginning

of the simulation, we notice that the Jacobian system is more ill-conditioned during the reverse

flow phase, as a result NKS requires more linear iterations in this phase than in other phases.

Figure 11: Number of Newton iterations at each time step.

Next, some parameter studies and the parallel performance of the software are discussed. We

report the results based on 10 time steps performed with a fixed ∆t = 0.1 for several different

number of processors. The execution time reported in seconds only takes into account for the
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Figure 12: Average number of linear iterations and the value of Reynolds number at each time step.

computing time spent on the nonlinear solve, which includes the function evaluations, the Jacobian

constructions, and the inner Jacobian solves.

We investigate how the parameters involved, such as the quality of subdomain solve and and

the overlapping size for ASM, affect the overall performance of the NKS algorithm. We test the

cases using the LU decomposition and the incomplete LU (ILU) decomposition with different levels

of fill-ins, k = 0, 1, 2, 3 and vary the overlapping size δ = 1, 2, 3, 4.

We observe that by increasing the size of ASM overlapping or the levels of fill-ins of ILU, the

average number of GMRES iterations is decreased. However, typically, smaller overlapping size

and fewer levels of ILU fill-ins produces better timing results. Meanwhile, although when LU is

used as the subdomain solver, the number of iterations is smaller than when ILU is used as the

subdomain solver, the overall timing results, NKS with ILU is much faster than that of NKS with

LU. The best combinations of the level of ILU fill-ins and the overlapping size in terms of the

execution time with respect to the number of processors are summarized in Table 1.

Finally, to evaluate the parallel performance of our blood flow simulation, we consider the

parallel efficiency defined as

Ef =

(

16

Nnp

)

T16

Tnp
.

From Table 1, the parallel efficiency of our parallel fluid solver achieves at least 50% with up to

64 processors and it is degraded when 128 processors is used. Multilevel methods will be needed

when the number of processors is larger [3].
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np ILU(k), δ NNI, ANLI time Ef (%)

16 1, 1 2.5, 159.7 995.9 100

32 1, 1 2.6, 170.7 690.3 72.10

64 1, 2 2.5, 167.5 473.8 52.60

128 2, 1 2.4, 169.0 432.7 28.50

Table 1: Parallel efficiency. k: the level of ILU fill-ins, δ: the overlapping size for ASM, NNI: the number of nonlinear

iterations per time step, and ANLI: the average number of linear iterations per Newton at each time step.

6. Concluding remarks

In this work, we developed a computer simulation system for blood flows in large arteries.

The algorithms are based on the fully coupled and fully implicit scalable Newton-Krylov-Schwarz

framework, and the software are developed on top of PETSc and several other recently introduced

open source packages. We validated the numerical algorithms and the software by considering two

representative model problems; namely a straight artery case and an end-to-side case. Our studies

showed good qualitative agreements between numerical solutions, analytical solutions, as well as

experimental data. Moreover, our solver achieved above 50% of parallel efficiency with up to 64

processors on a cluster of PCs.
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