
A Combined Linear and Nonlinear
Preconditioning Technique for Incompressible

Navier-Stokes Equations ?

Feng-Nan Hwang and Xiao-Chuan Cai

Department of Computer Science, University of Colorado, Boulder, CO 80309, USA
(hwangf@colorado.edu and cai@cs.colorado.edu)

Abstract. We propose a new two-level nonlinear additive Schwarz pre-
conditioned inexact Newton algorithm (ASPIN). The two-level nonlinear
preconditioner combines a local nonlinear additive Schwarz precondi-
tioner and a global linear coarse preconditioner. Our parallel numerical
results based on a lid-driven cavity incompressible flow problem show
that the new two-level ASPIN is nearly scalable with respect to the
number of processors if the coarse mesh size is fine enough.

1 Introduction

We focus on the parallel numerical solution of large, sparse nonlinear systems
of equations arising from the finite element discretization of nonlinear partial
differential equations. Such systems appear in many computational science and
engineering applications, such as the simulation of fluid flows [8]. In particular,
we introduce a nonlinearly preconditioned iterative method that is robust and
scalable for solving nonlinear systems of equations. Our approach is based on
the inexact Newton method with backtracking technique (INB) [4], which can
be briefly described as follows. Let

F (x∗) = 0 (1)

be a nonlinear system of equations and x(0) a given initial guess. Assume x(k)

is the current approximate solution. Then a new approximate solution x(k+1) of
(1) can be computed by first finding an inexact Newton direction s(k) satisfying

||F (x(k)) + F ′(x(k))s(k)||2 ≤ ηk||F (x(k))||2,

then obtaining x(k+1) with x(k+1) = x(k) +λ(k)s(k). The scalar ηk is often called
the “forcing term”, which determines how accurately the Jacobian system needs
to be solved by some iterative method, such as GMRES. The scalar λ(k) is
selected using a linesearch technique. Although INB has the desirable property of
? The work was partially supported by the Department of Energy, DE-FC02-

01ER25479, and by the National Science Foundation, CCR-0219190, ACI-0072089
and CCF-0305666.

local fast convergence, like other nonlinear iterative methods, INB is very fragile.
It converges rapidly for a well-selected set of parameters (for example, certain
initial guess, certain range of the Reynolds number Re), but fails to converge
due to a change in some parameters. It is often observed that INB converges well
at the beginning of the iterations, then suddenly stalls for no apparent reason.
In [2, 3, 6] some nonlinear preconditioning techniques were developed, and the
convergence of Newton-type methods becomes not sensitive to these unfriendly
parameters if INB is applied to a nonlinearly preconditioned system

F(x∗) = 0 (2)

instead. Here the word “preconditioner” refers to the fact that systems (1) and
(2) have the same solution and the new system (2) is better conditioned, both
linearly and nonlinearly. The preconditioner is constructed using a nonlinear ad-
ditive Schwarz method. To improve the processor scalability, a two-level method
was then proposed in [3], which works well if the number of processors is not
large. For a large number of processors, the nonlinear coarse solver takes too
much CPU and communication times. In this paper, we suggest a combined lin-
ear and nonlinear additive Schwarz preconditioner and show that using a linear
coarse solver we can retain the nonlinear robustness and reduce the nonlinear
complexity considerably.

2 Nonlinear preconditioning algorithms

In this section, we describe a two-level nonlinear preconditioner based on a com-
bination of local nonlinear additive Schwarz preconditioners and a global linear
coarse preconditioner. We restrict our discussion to a two-component system
(velocity and pressure) resulting from the finite element discretization of two-
dimensional steady-state incompressible Navier-Stokes equations defined on a
bounded domain Ω in R2 with a polygonal boundary Γ :u · ∇u − 2ν∇ · ε(u) +∇p = 0 in Ω,

∇ · u = 0 in Ω,
u = g on Γ,

(3)

where u = (u1, u2) is the velocity, p is the pressure, ν = 1/Re is the dynamic
viscosity, and ε(u) = 1/2(∇u + (∇u)T) is the symmetric part of the velocity
gradient. The pressure p is determined up to a constant. To make p unique, we
impose an additional condition

∫
Ω

p dx = 0. To discretize (3), we use a stabilized
finite element method [5] on a given quadrilateral mesh T h = {K}. Let V h and
Ph be a pair of finite element spaces for the velocity and pressure, given by

V h = {vh ∈ (C0(Ω) ∩H1(Ω))2 : v |K ∈ Q1(K)2, K ∈ T h } and
Ph = {ph ∈ C0(Ω) ∩ L2(Ω) : p|K ∈ Q1(K), K ∈ T h}.

Here, C0(Ω), L2(Ω), and H1(Ω) are the standard notations with usual meanings
in the finite element literature [5]. For simplicity, our implementation uses a

Q1−Q1 element (continuous bilinear velocity and pressure). The weighting and
trial velocity function spaces V h

0 and V h
g are

V h
0 = {vh ∈ V h : v = 0 on Γ} and V h

g = {vh ∈ V h : v = g on Γ}.

Similarly, let the finite element space Ph
0 be both the weighting and trial pressure

function spaces:

Ph
0 = {ph ∈ Ph :

∫
Ω

p dx = 0}.

Following [5], the stabilized finite element method for steady-state incom-
pressible Navier-Stokes equations reads: Find uh ∈ V h

g and ph ∈ Ph
0 , such that

B(uh, ph; v , q) = 0 ∀(v , q) ∈ V h
0 × Ph

0 (4)

with

B(u , p; v , q) =
((∇u) · u , v) + (2νε(u), ε(v))− (∇ · v , p)− (∇ · u , q) + (∇ · u , δ∇ · v)+∑
K∈T h

((∇u) · u +∇p− 2ν∇ · ε(u), τ((∇v) · v −∇q − 2ν∇ · ε(u))K .

We use the stabilization parameters δ and τ as suggested in [5]. The stabilized
finite element formulation (4) can be written as a nonlinear algebraic system

F (x) = 0, (5)

which is often large, sparse, and highly nonlinear when the value of Reynolds
number is large. The vector x corresponds to the nodal values of uh = (uh

1 , uh
2)

and ph in (4).

2.1 Subdomain partition and one-level nonlinear preconditioner

To define parallel Schwarz type preconditioners, we partition the finite element
mesh T h introduced in the previous section. Let {Ωh

i , i = 1,, N} be a non-
overlapping subdomain partition whose union covers the entire domain Ω and
its mesh T h. We use T h

i to denote the collection of mesh points in Ωh
i . To obtain

overlapping subdomains, we expand each subdomain Ωh
i to a larger subdomain

Ωh,δ
i with the boundary ∂Ωh,δ

i . Here δ is an integer indicating the degree of
overlap. We assume that ∂Ωh,δ

i does not cut any elements of T h. Similarly, we
use T h,δ

i to denote the collection of mesh points in Ωh,δ
i . Now, we define the

subdomain velocity space as

V h
i = {v ∈ V h ∩ (H1(Ωh,δ

i))
2

: vh = 0 on ∂Ωh,δ
i }

and the subdomain pressure space as

Ph
i = {ph ∈ Ph ∩ L2(Ωh,δ

i) : ph = 0 on ∂Ωh,δ
i \Γ}.

On the physical boundaries, Dirichlet conditions are imposed according to the
original equations (3). On the artificial boundaries, both u = 0 and p = 0.

Let Ri : V h × Ph → V h
i × Ph

i be a restriction operator, which returns all
degrees of freedom (both velocity and pressure) associated with the subspace
V h

i × Ph
i . Ri is an 3ni × 3n matrix with values of either 0 or 1, where n and ni

are the total number of mesh points in T h and T h,δ
i , respectively, and

∑N
i=1 3ni ≥

3n. Note that for Q1−Q1 elements, we have three variables per mesh point, two
for the velocity and one for the pressure. Then, the interpolation operator RT

i can
be defined as the transpose of Ri. The multiplication of Ri (and RT

i) with a vector
does not involve any arithmetic operation, but does involve communication in a
distributed memory parallel implementation. Using the restriction operator, we
define the subdomain nonlinear function Fi : R3n → R3ni as

Fi = RiF.

We next define the subdomain mapping functions, which in some sense play
the role of subdomain preconditioners. For any given x ∈ R3n, Ti(x) : R3n →
R3ni is defined as the solution of the following subspace nonlinear systems,

Fi(x−RT
i Ti(x)) = 0, for = 1, ..., N. (6)

Throughout this paper, we always assume that (6) is uniquely solvable. Using
the subdomain mapping functions, we introduce a new global nonlinear function,

F (1)(x) =
N∑

i=1

RT
i Ti(x), (7)

which we refer to as the nonlinearly preconditioned F (x). The one-level additive
Schwarz inexact preconditioned Newton algorithm (ASPIN(1)) is defined as:
Find the solution x∗ of (5) by solving the nonlinearly preconditioned system,

F (1)(x) = 0, (8)

using INB with an initial guess x(0). As shown in [2, 6], an approximation of the
Jacobian of F (1) takes the form

Ĵ (1)(x) =
N∑

i=1

J−1
i J(x), (9)

where J is the Jacobian of the original function F (x) and Ji = RiJRi
T .

2.2 A parallel linear coarse component for the nonlinear
preconditioner

The one-level ASPIN is robust, but not linearly scalable with respect to the
number of processors. Some coarse preconditioner is required to couple the sub-
domain preconditioners. One such coarse preconditioner is proposed and tested

in [3, 7]. The nonlinear coarse system is obtained by the discretization of original
nonlinear partial differential equations on a coarse mesh. Although, in general,
solving the coarse systems is easier than the fine systems, a Newton-Krylov-
Schwarz method sometimes is not good enough to converge the coarse system.
Therefore, ASPIN(1) is used to solve the coarse system in [3, 7]. To evaluate
the coarse function at certain point, one needs to solve a set of nonlinear sys-
tems of equations. Although the ASPIN(1)-based coarse solver provides good
mathematical properties, such as helping speed up the convergence of the linear
iterative method, the computational cost to solve many coarse systems is usu-
ally high in practice. Numerical experiments [7] show that the ASPIN(1)-based
coarse solver works fine only for a moderate number of processors, for a large
number of processors, a more efficient coarse solver is needed.

Here we introduce a new coarse system, which is linear, and the system is
constructed by a linearization of the nonlinear coarse system mentioned above,
using a Taylor approximation. The coarse function evaluation only requires the
solution of a linear system, and hence the computational cost is reduced consid-
erably. More precisely, we assume there exists a finite element mesh T H covering
the domain Ω. The two meshes T H and T h do not have to be nested. For the pur-
pose of parallel computing, the coarse mesh is partitioned into non-overlapping
subdomains {ΩH

i } and overlapping subdomains {ΩH,δ
i }. The corresponding sets

of mesh points are denoted by {T H
i }, and {T H,δ

i }. For the simplicity of our
software implementation, we assume a non-overlapping partition to be nested.
In other words, we must have

Ωh
i = ΩH

i

for i = 1, . . . , N , even though the corresponding sets of mesh points do not have
to be nested; i.e.,

T h
i 6= T H

i .

This also means that the same number of processors is used for both the fine
and coarse mesh problems. If the overlap is taken into account, in general,

Ωh,δ
i 6= ΩH,δ

i , and T h,δ
i 6= T H,δ

i .

As in the fine mesh case, we can also define the restriction and extension opera-
tors Rc

i and (Rc
i)

T for each coarse subdomain. On the coarse mesh T H , we can
define finite element subspaces similar to the ones defined on the fine meshes,
and discretize the original Navier-Stokes equations to obtain a nonlinear system
of equations,

F c(x∗c) = 0, (10)

where the coarse solution x∗c of (10) is determined through a pre-processing
step. Similar to the fine mesh, on the coarse subdomains, we obtain the coarse
Jacobian submatrices

Jc
i = (Rc

i)J
c(Rc

i)
T , i = 1, . . . , N,

where Jc is the Jacobian matrix of the coarse mesh function F c.

We next define the coarse-to-fine and fine-to-coarse mesh transfer operators.
Let {φH

j (x), j = 1, . . . ,m} be the finite element basis functions on the coarse
mesh, where m is the total number of coarse mesh points in T H . We define an
3n× 3m matrix Ih

H , the coarse-to-fine extension matrix, as

Ih
H = [E1 E2 · · ·En]T ,

where the block matrix Ei of size 3× 3m is given by

Ei =

 (eh
H)i 0 0
0 (eh

H)i 0
0 0 (eh

H)i

and the row vector (eh

H)i of length m is given by

(eh
H)i =

[
φH

1 (xi), φH
2 (xi), . . . φH

m(xi)
]
, xi ∈ T h

for i = 1, . . . , n. A global coarse-to-fine extension operator Ih
H can be defined as

the transpose of IH
h .

To define the coarse function T0 : R3n → R3n, we introduce a projection
T c : R3n → R3m as the solution of the linearize coarse system

F c(x∗c) + Jc(x∗c)(T
c(x)− x∗c) = IH

h F (x), (11)

for any given x ∈ R3n. Note that the left hand side of (11) is a first order Taylor
approximation of F c(x) at the exact coarse mesh solution, x∗c . Since F c(x∗c) = 0,
we rewrite (11) as

T c(x) = x∗c + (Jc(x∗c))
−1IH

h F (x),

provided that Jc(x∗c) is nonsingular. It is easy to see that T c(x∗) can be computed
without knowing the exact solution x∗ of F , and T c(x∗) = x∗c . Then the coarse
function can be defined as

T0(x) = Ih
H(T c(x)− T c(x∗)) = Ih

H(Jc(x∗c))
−1IH

h F (x)

and its derivative is given by

∂T0(x)
∂x

= Ih
H(Jc(x∗c))

−1IH
h J(x). (12)

We introduce a new nonlinear function

F (2)(x) = T0(x) +
N∑

i=1

RT
i Ti(x),

and combining (12) and (9), we obtain an approximation of Jacobian of F (2) in
the form

Ĵ (2)(x) =

{
Ih
H(Jc(x∗c))

−1IH
h +

N∑
i=1

[
RT

i (Ji(x))−1Ri

]}
J(x).

The two-level additive Schwarz preconditioned inexact Newton algorithm
with a linear coarse solver (ASPIN(2)) is defined as: Find the solution x∗ of (5)
by solving the nonlinearly preconditioned system

F (2)(x) = 0, (13)

using INB with an initial guess x(0). Details of ASPIN(2) is given below. Let
x(0) be an initial guess and x(k) the current approximate solution. Then a new
approximate solution x(k+1) can be computed by the ASPIN(2) algorithm as
follows:

Step 1: Evaluate the nonlinear residual F (2)(x) at x(k) through the following steps:
1. Find w

(k)
0 by solving the linearize coarse mesh problem

Jc(x∗c)zc = IH
h F (x(k)) (14)

using a Krylov-Schwarz method with a left preconditioner,
P−1 =

∑N
i=1(R

c
i)

T (Jc
i)−1Rc

i and the initial guess zc = 0.
2. Find w

(k)
i = Ti(x(k)) by solving in parallel, the local nonlinear systems

Gi(w) ≡ Fi(x
(k)
i − w) = 0 (15)

using Newton method with backtracking and the initial guess w = 0.
3. Form the global residual

F (2)(x(k)) = Ih
Hw

(k)
0 +

N∑
i=1

RT
i w

(k)
i .

Step 2: Check the stopping condition on ||F (2)(x(k))||2. If ||F (2)(x(k))||2 is small
enough, stop, otherwise, continue.

Step 3: Evaluate pieces of the Jacobian matrix J (2)(x) of the preconditioned system
that are needed in order to multiply (16) below with a vector in the next
step. This includes J(x(k)) as well as Ji and its sparse LU factorization.

Ĵ (2) =

{
Ih
H(Jc(x∗c))

−1IH
h +

N∑
i=1

[
RT

i (Ji(x(k)))−1Ri

]}
J(x(k)). (16)

Step 4: Find an inexact Newton direction s(k) by solving the following Jacobian
system approximately using a Krylov subspace method

Ĵ (2)s(k) = −F (2)(x(k)) (17)

in the sense that

||F (2)(x(k)) + Ĵ (2)(x(k))s(k)||2 ≤ ηk||F (2)(x(k))||2 (18)

for some ηk ∈ [0, 1).

Step 5: Scale the search direction s(k) ← smax

||s(k)||2
s(k) if ||s(k)||2 ≥ smax.

Step 6: Compute a new approximate solution

x(k+1) = x(k) + λ(k)s(k),

where λ(k) is determined by the linesearch technique.

Remark 1. No preconditioning is used in Step 4 of ASPIN(2). In fact, Ĵ (2) can be
viewed as the original Jacobian system J preconditioned by a two-level additive
Schwarz preconditioner, where the coarse preconditioner Ih

H(Jc(Ih
Hx(k)IH

h)−1IH
h

is approximated by Ih
H(Jc(x∗c))

−1IH
h . Hence, Ĵ (2) is well-conditioned through

nonlinear preconditioning as long as Ih
Hx(k)IH

h is close to x∗c .

Remark 2. Although each component of Ĵ (2) is sparse, Ĵ (2) itself is often dense
and expensive to form explicitly. However, if a Krylov subspace method is used to
the global Jacobian system (17), only the Jacobian-vector product, u = Ĵ (2)v, is
required. In a distributed-memory parallel implementation, this operation con-
sists of five phrases:

1. Solve Jc(x∗c)zc = IH
h v, using a Krylov-Schwarz method with a left precondi-

tioner, P−1 =
∑N

i=1(R
c
i)

T (Jc
i)−1Rc

i and the initial guess zc = 0.
2. Perform the matrix-vector multiply, w = Jv, in parallel.
3. On each subdomain, collect the data from the subdomain and its neighboring

subdomains, wi = Riw.
4. Solve Jiui = wi using a sparse direct solver.
5. Send the partial solutions to its neighboring subdomain and take the sum,

u =
∑N

i=1 RT
i ui + Ih

Hzc.

3 Numerical results

In this section, we consider a two-dimensional lid-driven cavity flow problem.
We used PETSc [1] for the parallel implementation and obtained all numeri-
cal results on a cluster of workstations. Only machine independent results are
reported. In our implementation, after ordering the mesh points, we numbered
unknown nodal values in the order of uh

1 , uh
2 , and ph at each mesh point. The

mesh points were grouped subdomain by subdomain for the purpose of paral-
lel processing. Regular checkerboard partitions were used for our experiments.
The number of subdomains was always the same as the number of processors,
np. At the fine mesh level, the linesearch technique [4] was used for both global
and local nonlinear problems. The global nonlinear iteration was stopped if the
condition ||F (2)(x(k))||2 ≤ 10−6||F (2)(x(0))||2 was satisfied, and the local non-
linear iteration on each subdomain was stopped if the condition ||Gi(w

(k)
i,l)||2 ≤

10−4||Gi(w
(k)
i,0)||2 is satisfied. Restarted GMRES(200) was used for solving the

global Jacobian systems (17). The global linear iteration was stopped if the
relative tolerance ||F (2)(x(k)) +J (2)(x(k))s(k)||2 ≤ 10−6||F (2)(x(k))||2 was satis-
fied. During local nonlinear iterations, a direct sparse solver, LU decomposition,

was employed for solving each local Jacobian system. At the coarse mesh level,
restarted GMRES(200) with a left Schwarz preconditioner was used for solving
the coarse systems (14). The stopping criterion for the coarse mesh problem was
that the condition ||IH

h F (x(k))−Jc(x∗c)zc||2 ≤ 10−10||IH
h F (x(k))||2 was satisfied.

δ = 2 for both the fine and coarse systems. As suggested in [6], we included the
re-scaling of the search direction s(k) in Step 5 if ||s(k)||2 ≥ smax to enhance the
robustness of ASPIN for solving incompressible flows. This step also reduces the
number of line search steps, since the evaluation of nonlinearly preconditioned
function is expensive. All numerical results reported here are based on the opti-
mal choice of the parameter smax, which results in the smallest number of global
nonlinear iterations.

We first study the effect of the coarse mesh size on the global nonlinear
iterations and the global linear iterations of ASPIN(2) for different values of
Reynolds number. In this set of numerical experiments, all results are obtained
using a fixed fine mesh 128 × 128 on 16 processors, and the coarse mesh size is
varied from 16 × 16 to 80 × 80. Table 1 shows that to apply two-level methods
on a moderate number of processors, the coarse mesh has to be sufficiently fine,
say 40×40 in this case. For this particular case, the numbers of global nonlinear
iterations, as well as global linear iterations, are not very sensitive with the
increase of Reynolds number. To study the parallel scalability of ASPIN(2) with
respect to the number of processors, we use a fixed fine mesh 128 × 128 and
a coarse mesh 40 × 40. For comparison purposes, we also include the results
obtained using ASPIN(1). Table 2 shows that by adding a coarse preconditioner,
not only the global linear iterations is reduced significantly as we increase the
number of processors from 4 to 64, but also the global nonlinear iterations is
improved especially for high Reynolds number flows.

Table 1. ASPIN(2): Varying the coarse mesh size for different values of Reynolds
number. Fine mesh: 128× 128. The number of processors np=16.

Coarse meshes Re=103 Re=3×103 Re=5×103 Re=8×103 Re=104

Number of global nonlinear iterations

16× 16 8 11 11 14 17
20× 20 9 9 11 13 14
32× 32 8 9 11 10 12
40× 40 8 9 9 10 11
64× 64 8 10 9 11 11

Average number of global linear iterations

16× 16 58 74 94 111 122
20× 20 50 66 75 89 103
32× 32 45 52 59 64 68
40× 40 43 50 54 60 60
64× 64 42 49 52 55 65

Table 2. ASPIN(1) and ASPIN(2): Varying the number of processors. Fine mesh size:
128× 128. Coarse mesh size: 40× 40.

np Re=103 Re=3×103 Re=5×103 Re=8×103 Re=104

Number of global nonlinear iterations

ASPIN(1)
2× 2 = 4 9 10 13 19 19
4× 4 = 16 9 12 12 16 18
8× 8 = 64 10 15 14 19 19
ASPIN(2)
2× 2 = 4 9 9 11 10 12
4× 4 = 16 8 9 9 10 11
8× 8 = 64 8 9 12 12 14

Average number of global linear iterations

ASPIN(1)
2× 2 = 4 67 69 71 73 74
4× 4 = 16 127 128 133 137 140
8× 8 = 64 395 394 400 497 655
ASPIN(2)
2× 2 = 4 33 40 40 40 46
4× 4 = 16 43 50 54 60 60
8× 8 = 64 49 62 61 78 79

References

1. S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, M. Knepley, L. C.
McInnes, B. F. Smith, and H. Zhang, Portable, Extensible, Toolkit for Scientific
Computation(PETSc) home page, http://www.mcs.anl.gov/petsc, 2004.

2. X.-C. Cai and D. E. Keyes, Nonlinearly preconditioned inexact Newton algo-
rithms, SIAM J. Sci. Comput., 24 (2002), pp. 183-200.

3. X.-C. Cai, D. E. Keyes, and L. Marcinkowski, Nonlinear additive Schwarz
preconditioners and applications in computational fluid dynamics, Int. J. Numer.
Meth. Fluids, 40 (2002), pp. 1463-1470.

4. J. Dennis and R. Schnabel, Numerical Methods for Unconstrained Optimization
and Nonlinear Equations, SIAM, Philadelphia, 1996.

5. L. P. Franca and S. L. Frey, Stabilized finite element method: II. The incom-
pressible Navier-Stokes equation, Comput. Methods Appl. Mech. Engrg., 99 (1992),
pp. 209-233.

6. F.-N. Hwang and X.-C. Cai, A parallel nonlinear additive Schwarz preconditioned
inexact Newton algorithm for incompressible Navier-Stokes equations, J. Comput.
Phys., (2004), to appear.

7. L. Marcinkowski and X.-C. Cai, Parallel performance of some two-level AS-
PIN algorithms, Lecture Notes in Computational Science and Engineering, ed. R.
Kornhuber, R. H. W. Hoppe, D. E. Keyes, J. Periaux, O. Pironneau and J. Xu,
Springer-Verlag, Haidelberg, pp. 639-646.

8. J. N. Shadid, R. S. Tuminaro, and H. F. Walker, An inexact Newton method for
fully coupled solution of the Navier-Stokes equations with heat and mass transport,
J. Comput. Phys., 137 (1997), pp. 155-185.

