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Abstract. The full-space Lagrange-Newton algorithm is one of the numerical algorithms for
solving problems arising from optimization problems constrained by nonlinear partial differential
equations. Newton-type methods enjoy fast convergence when the nonlinearity in the system is
well-balanced, however, for some problems, such as the control of incompressible flows, even linear
convergence is difficult to achieve and a long stagnation period often appears in the iteration history.
In this work, we introduce a nonlinearly preconditioned inexact Newton algorithm for the boundary
control of incompressible flows. The system has nine field variables, and each field variable plays a
different role in the nonlinearity of the system. The nonlinear preconditioner approximately removes
some of the field variables, and as a result, the nonlinearity is balanced and inexact Newton converges
much faster when compared to the unpreconditioned inexact Newton method or its two-grid version.
Some numerical results are presented to demonstrate the robustness and efficiency of the algorithm.
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1. Introduction. Optimization problems constrained by nonlinear partial dif-
ferential equations (PDEs) represent a large class of problems with important scientific
and engineering applications, such as control of fluid flows, optimal design, and inverse
problems, etc [7, 8, 17, 21, 23, 31, 40, 41, 49, 50, 51]. The problems are often non-
linearly difficult to solve, and very large in size, therefore require parallel computing.
In this paper, we introduce a nonlinearly preconditioned inexact Newton algorithm,
which is also highly parallel when used together with domain decomposition method
as the linear Jacobian solver. As an application, we consider some boundary control
problems of thermally convective fluid flows. In practice, the instability of thermally
convective flows is responsible for certain undesirable convective states in some indus-
trial processes such as laser welding, alloy manufacturing, crystal growth, and so on
[38, 39, 44]. The flow control can be useful to reduce the instability [9, 17, 36, 50].

The Lagrange-Newton algorithm is one of the algorithms for solving the PDE-
constrained optimization problems. The algorithm is based on the full-space sequen-
tial quadratic programming technique [37], which converts the constrained optimiza-
tion problem to an unconstrained problem by introducing some Lagrangian multipliers
and a Lagrangian functional. Then, an inexact Newton method is employed to solve
a large sparse nonlinear system of equations derived from the first-order optimality
condition. From the algorithmic viewpoint, although the inexact Newton method
enjoys fast convergence, the full-space method poses some computational challenges.
First, at each Newton iteration, a large sparse saddle-point system needs to be solved,
which is often highly ill-conditioned [5]. Second, the convergence of the inexact New-
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ton method is often problematic. Numerical pieces of evidence [11, 28, 30] suggest
that the slow convergence is often determined by a small subset of equations in the
system with the highest nonlinearities. The family of continuation methods, such as
the grid-sequencing approach [2, 34] or the parameter continuation approach [3, 32],
is quite robust for these difficult nonlinear problems but not efficient; see their appli-
cations for PDE-constrained optimization problems [7, 48, 49, 51]. Alternatively, we
extend some nonlinear preconditioning techniques [29, 30], previously developed for
the system of nonlinear equations, to PDE-constrained optimization problems. The
fast convergence of the inexact Newton method can be restored when it is employed
in conjunction with the nonlinear preconditioning.

Similar to the linear case, a nonlinear preconditioner can be applied on the right or
on the left of a nonlinear function. For the left nonlinear preconditioner, the algorithm
reformulates the original nonlinear function implicitly into a more balanced function.
The additive Schwarz preconditioned inexact Newton algorithm (ASPIN) [11, 28] be-
longs to this class, where the nonlinearly preconditioned function is defined based on
the additive Schwarz framework and the new system is solved by an inexact Newton
algorithm. ASPIN has been successfully applied for some nonlinear system of equa-
tions with high local nonlinearities, such as high Reynolds number incompressible
flows [28], transonic compressible flows [12], nonlinear elasticity problems [22], and
multiphase flows in porous media [43, 45]. A parallel implementation of ASPIN is
available in the popular software package, PETSc [4], and it can be used as either
an iterative method or as a nonlinear preconditioner [10]. More recently, restricted
and multiplicative versions of nonlinear Schwarz preconditioner are introduced in [18]
and [35], respectively. On the other hand, the right nonlinear preconditioner works
differently. The main role of the right nonlinear preconditioner is to balance the
nonlinearities of F (x) by changing x. Since x often lives in a space of high dimen-
sion, we partition the space into subspaces and then try to identify the subspace in
which x behaves badly. Some possible partition strategies are: pointwise partition,
subdomain-based partition [30] and field-based partition [35]. In this paper, we focus
only on the field based approach since for the flow control problems some fields have to
be eliminated to achieve fast convergence, pointwise and subdomain based partitions
do not work well.

The rest of this paper is organized as follows. In Section 2, we briefly review
the full-space Lagrange-Newton algorithm for solving general PDE-constrained opti-
mization problems. In Section 3, we introduce the nonlinear elimination approach
as a right preconditioner and describe in detail the proposed nonlinearly precondi-
tioned Lagrange-Newton algorithm. In Section 4, we discuss a simple example with
unbalanced nonlinearity to provide some insight as to how the right nonlinear elim-
ination preconditioner works. In Section 5, we describe a boundary control problem
of thermally convective fluids. Section 6 is devoted to numerical experiments and
discussions. Some concluding remarks are given in Section 7.

2. Full-space Lagrange-Newton algorithm. We briefly review the frame-
work of full-space Lagrange-Newton algorithm for solving PDE-constrained optimiza-
tion problems [7, 8, 40, 41], which serves as the basis of the proposed algorithm,
in which an inexact Newton-type method is employed as both the subspace and
the global nonlinear solver. In this work, we follow the discretize-then-optimize ap-
proach, hence after the discretization, we write the resulting finite-dimensional PDE-
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constrained optimization problem as follows. Find the control u ∈ U and the state s ∈ S
such that min(s,u)∈S×U F(s, u)
subject to C(s, u) = 0,∈ Y,

(2.1)

where S, U , and Y are normed spaces, F : S × U → R is the objective function,
C: S × U → Y satisfying C(s, u) = 0, which is the nonlinear system of equations
arising from the discretization of some law of physics modeled by PDEs. To apply a
Lagrange-Newton algorithm for solving (2.1), we consider a Lagrangian functional as
follows.

L(s, u, λ) ≡ F(s, u) + λTC(s, u),

where λ is the Lagrangian multiplier, and the corresponding KKT system of nonlinear
equations is derived by differentiating the Lagrangian functional with respect to the
state, the control, and the Lagrangian multiplier, respectively, as following

K(s, u, λ) ≡

 ∇sL∇uL
∇λL

 =

 ∇sF +∇sCTλ
∇uF +∇uCTλ

C(s, u)

 .

Then an inexact Newton-type method with backtracking technique (INB) [16] is ap-
plied to find the solution of the first-order optimality condition, i.e.,

K(s, u, λ) = 0. (2.2)

The standard algorithm consists of the following steps.

Algorithm 1 Inexact Newton method with backtracking (INB)

STEP 0. Choose an appropriate initial guess p(0), and set k = 0.
Until convergence do

STEP 1. Inexactly solve the Jacobian system

K′(p(k))∆p(k) = −K(p(k)). (2.3)

STEP 2. Update p(k+1) = p(k) + α(k)∆p(k), where α(k) ∈ (0, 1] is
determined by a linesearch along ∆p(k).

k = k + 1
End

Once the initial guess is picked, the most expensive step is Step 1, however, for
many problems, Step 0 is the most difficult step which determines the robustness and
overall cost of the algorithm. Below we briefly comment on some existing techniques
for Step 1, Step 2, and Step 0. (2.3) is a large sparse saddle point type system, which is
indefinite and highly ill-conditioned. A Krylov subspace method is often used together
with an effective preconditioner. Developing such preconditioners for saddle point
problems is an active research topic in numerical linear algebra; see [5] and references
therein for details. Some of the well-studied methods include the overlapping Schwarz
preconditioners [40, 41] and the block triangular decomposition methods based on
Schur complement [7, 8]. The solution accuracy of (2.3) is determined by the forcing
term ηk, which is understood as follows.

‖K′(p(k))(M (k))−1M (k)∆p(k) +K(p(k))‖2 ≤ ηk‖K(p(k))‖2, (2.4)
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where M (k) is a right preconditioner. If ηk is sufficiently small, the method is re-
duced to the exact Newton method. To enhance the robustness of INB, one can use
adaptive forcing terms as suggested by Eisenstat and Walker [19], together with some
globalization technique, such as linesearch or trust region. For example, the standard
cubic backtracking algorithm [16, 19] can be used to pick α(k) such that

‖K(p(k) + α(k)∆p(k))‖2 6 (1− ηα(k))‖K(p(k))‖2, (2.5)

where η is the parameter associated with backtracking to make sure that the reduction
of the merit function, ‖K‖2, is sufficiently large.

Unfortunately, the damping factor α(k) can be extremely small for problems with
unbalanced nonlinearity, no matter how accurately or inaccurately one solves the
Jacobian problem (2.3). As a result, this may cause the failure of linesearch, i.e.,
no appropriate scaling factor can be found so that (2.5) is satisfied. Using a high-
Reynolds number lid-driven cavity flow as an example, Tuminaro et al. [47] explained
that this is likely because the angle between the Newton direction and the steep-
est descent direction is close to being orthogonal. In such a situation, the Newton
direction becomes only a weakly descent direction; thus INB converges slowly or sim-
ply stagnates. Linear preconditioner M (k) in (2.4) does not change this angle, but
appropriate nonlinear preconditioning may improve the angle.

Step 0 is often the hardest step in INB, a family of the continuation methods
provides an alternative, in which using the solution of some “easier” problem as an
initial guess for the target problem. As shown in Algorithm 2, a special case of
the grid-sequence approaches will be considered for comparison purposes with the
proposed nonlinear preconditioned method in Section 6.

Algorithm 2 Two-grid Lagrange-Newton algorithm

Suppose there are two grids covering the computational domain. If we denote ΩH as
the coarse grid, Ωh as the fine grid, and IhH as the coarse to fine interpolation, then
the algorithm can be described as follows.

Solve KH(pH) = 0 on the coarse grid, by INB using a zero initial guess.
Interpolate the solution from the coarse grid to the fine grid ph0 = IhHp

H .
Solve Kh(ph) = 0 on the fine grid, by INB using ph0 as the initial guess.

In this work, instead of using the globalization techniques mentioned above, we
focus on the development of a nonlinear preconditioning technique to enhance the
robustness of INB based on the nonlinear elimination method. As pointed out by
[27], the linear preconditioning may speed up the solution algorithm for the Jacobian
system, but it does not help improving the quality of the search direction. On the
other hand, nonlinear preconditioning may provide a better search direction.

3. Nonlinear elimination preconditioned Newton algorithm for multi-
field problems. Consider the nonlinear KKT problem (2.2) in which the variable p
consists of several fields, s, u, λ etc. We partition these field variables into two groups
and label them as pg and pb, i.e., p = (pb, pg)

T and we assume the corresponding
equations are also partitioned as

K(p) = K(pb, pg) =

[
Kb(pb, pg)
Kg(pb, pg)

]
, (3.1)

where pb and pg are called the “bad” and “good” components, respectively. For any
given good vector, yg ∈ Rn, we define its extension to the bad region, Tb(yg) ∈ Rm,
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as the solution of the following subspace correction equation,

Kb(Tb(yg), yg) = 0, (3.2)

by using INB or other nonlinear iterative methods. Using the subspace correction
operator, we introduce a function G(x) as follows

p = G(y) =

[
Tb(yg)
yg

]
.

This function keeps the good component of x, and replaces the bad component by a
new component. In practice, this is usually done approximately. In other words, (3.2)
is not solved exactly. The reason is not to save the computational time, but to avoid
the sharp change from the good component to the bad component. This operation
is referred to as nonlinear elimination since yb is eliminated. Now, consider the right
preconditioned system

W(y) ≡ K(G(y)) = 0,

where

p = G(y)

acts as a nonlinear preconditioner, and the Jacobian matrix takes the form

∂W
∂y

=
∂K
∂G

∂G
∂y
.

Then, INB used for solving W(y) = 0 is given by

y(k+1) = y(k) + α∆y(k) (3.3)

where ∆y(k) is the solution of the following Jacobian system

∂W(y(k))

∂y
∆y(k) = −W(y(k)),

or

∂K(p(k))

∂G
∂G(y(k))

∂y
∆y = −K(G(y(k))), (3.4)

Let ∆p(k) = ∂G(y(k))
∂y ∆y(k) and apply G to both sides of (3.3) to obtain

G(y(k+1)) = G(y(k) + α∆y)

≈ G(y(k)) + α
∂G(y(k))

∂y
∆y(k)

Here, the first-order Talyor’s expansion around y(k) is applied. Hence,

p(k+1) = p(k) + α∆p(k), (3.5)

where

∂K(p(k))

∂G
∆p(k) = −K(G(y(k))), (3.6)



6 HAIJIAN YANG, FENG-NAN HWANG, AND XIAO-CHUAN CAI

In general, applying INB directly to solve the system W(y) = 0 in the preconditioned
solution space for the y-variable ((3.3) and (3.4)) is not equivalent to solve the sys-
tem K(p) = 0 for the solution space for the p-variable ((3.5) and (3.6)), since the
operator G and the solution update (3.3) do not commute. Their equivalence can be
established by using the linearization of G. Note that in practice, we do not work
with the y-variable directly, since it has some potential drawbacks. For example, the
operator G(y) is implicitly defined so that the Jacobian of G(y) is difficult to obtain.
Also designing an effective preconditioner for (3.4) is quite challenging. Hence, in
this paper, we focus on INB for K(p) = 0 in conjunction with nonlinear elimination
preconditioning and the details of the algorithm are in Algorithm 3.

Algorithm 3 Nonlinear Elimination Preconditioned Inexact Newton algorithm (INB-
NE)

Given p(0).
Evaluate K(p(0)) and ‖K(p(0))‖, and set k = 1.
Until convergence do

Subspace correction:
Evaluate p(k) = G(p(k−1)).

Global update:
Inexactly solve K′(p(k))∆p(k) = −K(p(k))
Update p(k+1) = p(k) + α(k)∆p(k), where α(k) ∈ (0, 1].
Set k = k + 1

End

Remarks:

1. The algorithm does not include a step to detect the bad components. The
user needs to identify these components. Such mechanism is often problem
dependent. Using the knowledge of physics to the problem is one of the
possible approaches. For example, for the transonic flow problems, the bad
components are the components within or near the region where the shock
occurs. In such a situation, the numerical Mach number on the grid points
serves as a good indicator for these components [29, 30]. On the other hand,
the subdomain wise or pointwise residual norm can also be used for judging
whether the nonlinearity of the system is balanced or not. If a small number
of components contributes a large percentage of the total nonlinear residual
norm, they are classified as the bad components [13, 26]. In the numerical
experiment section, we show a slowness analysis as a way to find the bad
component.

2. The algorithm needs several control parameters. For example, the outer loop
needs stopping conditions, the subspace correction step also needs several
stopping conditions, and the Jacobian solve requires some stopping condi-
tions. A careful selection of these control parameters is very important for
the fast convergence of the algorithm. It is important to note that the stop-
ping condition for the correction equation should not be too small; in other
words, over-correction may slow down the outer iteration.

3. Linear preconditioner is required in the Jacobian solve of the subspace cor-
rection, and also the global update step.

4. This algorithm is closely related to the nonlinear elimination algorithm pre-
sented in [33]. The main difference is that the NE algorithm of [33] iterates in
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the subspace defined by the “good” components, but our algorithm iterates
in the whole space, and NE is only a preconditioner.

5. In this paper, we are interested in the splitting of x = (xb, xg) based on a field
partition, which is different from the domain based partition [13] in several
ways. In certain applications, such as flow control problems, the subdomain
based partition does not speed up the convergence, because, an entire field
needs to be eliminated. An advantage of the field based partition is that
the load balancing problem, which is difficult to deal with in the subdomain
based partition, disappears since all processors receive an equal number of
equations from the bad field(s), and the good field(s).

6. In the subdomain based partition, there is often a jump in the residual func-
tion near the subdomain boundary. One has to choose carefully the stopping
conditions for the subdomain solver to make sure that the jump is not too
large or use a large enough overlap to move the jump away from the interior
of the subdomain. In the field based partition, such problem does not seem
to be an issue.

4. A simple example with unbalanced nonlinearity. To illustrate how the
nonlinear elimination speeds up the Newton iteration, we consider a simple example
with unbalanced nonlinearity.

r(x1, x2) ≡
[
r1(x1, x2)
r2(x1, x2)

]
=

[
(x1 − x3

2 + 1)
m − xm2

x1 + 2x2 − 3

]
= 0,

where m = 1, 3, 5. x∗ = (1, 1)
T

is the exact solution. Four different choices of an initial

vector are tested, x(0) = (0, 0)
T
, (0, 2)

T
, (2, 0)

T
, and (2, 2)

T
. The distances between

the initial guesses and the exact solution are all the same. Table 4.1 summarizes
the iteration counts for the INB and INB-NE. In INB-NE, x1 is chosen as the “bad”
component, which is eliminated using the first equation, r1(x1, x2) = 0, in every outer
Newton iteration. Then the preconditioned problem is defined as

t(x1, x2) ≡
[
t1(x1, x2)
t2(x1, x2)

]
=

[
(x1 − x̄3

2 + 1)
m − x̄m2

x2 − x̄2

]
= 0, (4.1)

provided that x̄2 is given, and the subspace problem in the elimination step is solved
by INB. The absolute stopping condition for the outer and subspace Newton is 10−7.
Some observations from Table 4.1 are made as follows.

• As m increases, the first equation becomes more nonlinear than the other. If
the problem is solved with INB without NE preconditioning, the number of
nonlinear iterations increases and is quite sensitive to the choice of the initial
guess.

• It is clear that INB-NE improves the convergence of INB, and also reduces
its sensitivity to the choice of the initial guess.

To understand why INB-NE works, we plot the iteration path history of INB-NE and
that of INB for the purpose of comparison in Fig. 4.1. For INB, basically speaking,
the iteration follows the Newton search direction and converges slowly toward the
exact solution. The convergence is especially slow in the region with steep gradient or
within the valley. On the other hand, although INB-NE follows a similar path as INB
(if the subspace correction phase is ignored), the subspace correction step in INB-NE
can take the intermediate solution away from the slow region and then bring it back
to track via the global update. Unlike INB, which wastes so many steps in the slow
region, INB-NE skips several unnecessary steps.
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Fig. 4.1. A contour plot of log(0.5‖r(x)‖22 + 1) and a path history comparison of INB (left
column) and INB-NE (right column) for the case of m = 5. Note that the exact solution is located
within the valley. For INB, the blue triangle represents the intermediate solution, pk+1 in Algo-
rithm 1. For INB-NE, the red star represents the solution after the subspace correction phrase is
performed in Algorithm 3 and the blue triangle represents the solution after the global updates in
Algorithm 3. Each row corresponds a different initial guess as shown in Table 4.1.
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Table 4.1
A summary of the number of nonlinear iterations for INB and INB-NE by using four different

initial guesses.

INB INB-NE

x(0) m=1 m=3 m=5 m=1 m=3 m=5

(0, 0)T 5 8 10 5 6 6
(0, 2)T 5 11 12 5 6 6
(2, 0)T 5 1 7 5 1 5
(2, 2)T 5 12 13 5 5 6

We mention the right nonlinear preconditioning can also be interpreted as a
nonlinear change-of-basis for the solution space. For example being considered, let
β = {e1, e2}, where e1 = (1, 0)T and e2 = (0, 1)T be the standard basis for R2. The
subspace correction operator is then derived from (4.1) as

G(x1, x2) = (−x3
2 + 1)

[
−1
0

]
+ x2

[
1
1

]
= (−x3

2 + 1)e′1 + x2e
′
2,

β′ = {e′1, e′2}, where e′1 = (−1, 0)
T

and e′2 = (1, 1)
T

is a new basis. This relation
changes the original Cartesian coordinates into the β′-coordinate system. In the right
figure of Fig. 4.2, we replot the contour of log(0.5‖r(x)‖22 + 1) and the outer iterates
but now in the transformed space, which is compared with the ones in the original
space. What we can see is that the contours of the transformed space become straight
lines. This is very different from the linear change of basis, in which the contours are
preserved with rotation. As a result, it is much easier for INB to find the solution in
the transformed space than in the original space. This is probably why INB with right
NE preconditioning works so well. Note that for this simple example, the nonlinear
right preconditioned system r(G(x1, x2)) = 0 can be formed explicitly and hence the
Jacobian can be evaluated exactly. Also, it is easy to check that the iteration actually
terminates in a single step in the transformed space.
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Fig. 4.2. A comparison of a path history of INB-NE and the contour plot of log(0.5‖r(x)‖22 +1)
on the standard Cartesian coordinates (left) and new transformed coordinates relative to β′ (right).

5. Boundary control of thermally convective flows. Flow control prob-
lems can be described in many different forms such as flow matching, vorticity min-
imization, viscous drag minimization, avoiding hot spots, stabilization enhancement,
mixing maximization, and so on [1, 6, 20, 23]. The control variables can be defined
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on the boundary or inside the flow domain and can be the velocity, external force,
temperature, etc. In this study, we focus on the minimization of vorticity in vis-
cous incompressible thermally convective flows by controlling the temperature of the
surrounding medium on the wall. Let Ω be a 2D bounded computational domain
with the boundary segment, Γ = Γp ∪ Γc. Here, Γp is the uncontrolled part of the
boundary and Γc is the control part of the boundary. Then this flow control problem
can be mathematically stated as finding the control variable g and the state variables
(u, v, ω, T ) that minimize the objective functional L

L =
1

2

∫
Ω

ω2 dΩ +
γ

2

∫
Γc

g2 dΓ, (5.1)

subject to the constraints

−∆u− ∂ω

∂y
= 0,

−∆v +
∂ω

∂x
= 0,

− 1

Re
∆ω + u

∂ω

∂x
+ v

∂ω

∂y
− Gr

Re2

∂T

∂x
= 0,

− 1

RePr
∆T + u

∂T

∂x
+ v

∂T

∂y
= 0,

(5.2)

where u and v are the two components of the velocity field, ω = −∂u∂y + ∂v
∂x is the

vorticity, T is the temperature. g is the temperature of the surrounding medium to
the wall that controls the flow field via the Robin-type boundary condition, ∂T

∂n =
g − T , and γ is the weight of the regularization. In addition, Re is the Reynolds
number, Gr is the Grashof number, and Pr is the Prandtl number. To close the
PDE-constrained optimization system (5.1) and (5.2), some appropriate boundary
conditions are required. The constraint (5.2) along with the corresponding boundary
conditions is the so-called simulation or forward problem. Generally speaking, the
optimization problem is more difficult to solve than the simulation problem, since the
nonlinearities are more unbalanced, and an initial guess that is good for all fields is
much harder to find.

To numerically solve the boundary control problem of thermally convective flows,
we employ the discretize-then-optimize approach [1, 21, 23], where the objective func-
tional and the PDE constraints are first approximated numerically before applying an
optimization method to the resulting finite-dimensional nonlinear optimization prob-
lem. In our implementation, a standard second-order central finite difference scheme
(both for the Laplacian operators and the first-order partial derivatives) is used to
discretize (5.2) on the domain. A set of uniform grids with the grid size of h is
used. Omitting the lengthy details of the discretization, we simply write the discrete
optimization problem as follows: min L = 1

2

∑
p∈P

ω2
p h

2 + γ
2

∑
p∈Pb

g2
p h,

s.t. F (up, vp, ωp, Tp, gp) = (F
(u)
p , F

(v)
p , F

(ω)
p , F

(T )
p ) = 0, p ∈ P,

(5.3)

where P is the index set of all grid points, and Pb is the index set of all boundary
grid points.

The first-order optimality condition says that the solution of (5.3) is the critical
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point of the Lagrangian functional defined as

L(u, v, ω, T, g, λu, λv, λω, λT )

=
1

2

∑
p∈P

ω2
ph

2 +
γ

2

∑
p∈Pb

g2
ph

+
∑
p∈Pb

(λuF
(u)
p + λvF

(v)
p + λωF

(ω)
p + λTF

(T )
p )h

+
∑

p∈P\Pb

(λuF
(u)
p + λvF

(v)
p + λωF

(ω)
p + λTF

(T )
p )h2, (5.4)

where λu is the Lagrangian multiplier or the adjoint variable with respect to the
state variable u, and the others are defined in a similar way. Thus, it satisfies the
Karush-Kuhn-Tucker (KKT) condition

K(u, v, ω, T, g, λu, λv, λω, λT )

= ∇L(u, v, ω, T, g, λu, λv, λω, λT )

= (Kup
,Kvp ,Kωp

,KTp
,Kgp ,Kλup

,Kλvp
,Kλωp

,KλTp
) = 0 (5.5)

The optimality system (5.5) is a large, sparse nonlinear, and multi-fields system, which
consists of the following three types of nonlinear or linear systems:

• The state system is nonlinear and derived from the original Navier-Stokes
equations (

Kup
,Kvp ,Kωp

,KTp

)
=
(
F (u)
p , F (v)

p , F (ω)
p , F (T )

p

)
= 0. (5.6)

• The control system, which relates the control and an adjoint variable, is a
linear system

Kgp = γgp + λT
∂F

(T )
p

∂gp
= 0. (5.7)

• The adjoint system, which is the result of differentiation with respect to state
variables, is itself a nonlinear system

Kλup
=
∑
i∈I

λupsi
∂F

(u)
i

∂up
= 0,

Kλvp
=
∑
i∈I

λvpsi
∂F

(v)
i

∂vp
= 0,

Kλωp
= ωph

2 +
∑
i∈I

λωpsi
∂F

(ω)
i

∂ωp
= 0,

KλTp
=
∑
i∈I

λTp
si
∂F

(T )
i

∂Tp
= 0,

(5.8)

where the index set I is a set of the standard five-point central difference
stencil points associate with the grid point p, and

sp =

{
h, p ∈ Pb,
h2, others.
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6. Numerical results and discussions. In this section, we report a series of
numerical experiments for understanding the performance of the proposed algorithms.
The software is developed using PETSc, [4]) library. In our implementation, the
KKT conditions (5.5) are analytically formulated, and the associated Jacobian ma-
trices are approximately constructed by using a multicolored central finite difference
method [15]. For the nonlinear elimination methods, INB is employed for solving
the nonlinear subspace problem. 10−10 (10−6) is chosen as the absolute (relative)
stopping condition for all nonlinear solves. To solve the global and subspace Jaco-
bian systems, we use the one-level restricted additive Schwarz (RAS) preconditioned
GMRES [14, 42] with an absolute (relative) tolerance 10−10 (10−6). A zero initial
guess is used for Newton for all test cases. We refer the methods with/without non-
linear elimination preconditioning as LNKSz-NE and LNKSz, respectively. Generally
speaking, the performance of the RAS preconditioner in conjunction with a Krylov
subspace method depends on several parameters, including the size of the overlap, the
quality of the subdomain solve, and the subdomain partitioning, etc. Our numerical
experiments suggest the number of linear iterations decreases when the overlapping
size increases, which is similar to the scalar elliptic problems, but for the flow control
problem, a moderate overlapping size is often needed to obtain the optimal compute
time. Hence, the overlapping size for the RAS preconditioner for the global and local
problems is set to be 6. Other options for RAS are set as follows. A checkerboard
partition is used to obtain the subdomains, and a sparse LU decomposition is used as
the subdomain solve. Other studies of RAS for flow control problems can be found
in [40, 41, 49, 51].

We consider two flow control problems: a high-pressure chemical vapor deposition
(CVD) reactor problem [25, 31] and a backward-facing step (BFS) flow problem [24,
31, 40]. All control problems are to seek the minimization of the objective function
(5.1) with γ = 0.01. In the study, Re = 1 and Pr = 0.72 [31] are fixed. Note
that typical values for Pr are around 0.7 to 0.8 for air and many other gasses. We
investigate the influence of different values of Grashof number, which controls the
system’s nonlinearity and in particular, we are interested in the cases that LNKSz
converges slowly or stagnates.

6.1. The CVD reactor problem. CVD is an important technique to deposit a
layer or layers of a substance on a thin film. Mathematically, the CVD reactor problem
is to find the state variables, (u, v, ω, T ), and the control variable g, respectively, such
that the minimization of

J =
1

2

∫
Ω

|ω|2 dΩ +
γ

2

∫
Γ2∪Γ4

|g|2 dΓ

is achieved subjecting to the constraints (5.2) with the following boundary conditions.

v = (0, 0) and T = 1, on Γ1 ∪ C1 ∪ C2,

v = (0, 0) and
∂T

∂n
= g − T, on Γ2 ∪ Γ4,

v = (0,−4(x− 1/3)(2/3− x)) and T = 0, on Γ3,m,

v = (0, 2x(1/3− x)) and
∂T

∂n
= 0, on Γ3,l ∪ C4,

v = (0, 2(x− 2/3)(1− x)) and
∂T

∂n
= 0, on Γ3,r ∪ C3,

where the geometry of the computational domain is shown in Fig. 6.1. The goal is to
minimize the vorticity by controlling the boundary temperature near the side walls
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in order to obtain a flow field with smaller circulation, which implies better vertical
transport. The flow is assumed to be fully developed at the outflow boundaries, Γ3,l

and Γ3,r.

r r

rr r r

C1 : (0,0) C2 : (1,0)

C3 : (1,1)C4 : (0,1)

Γ1

Γ2Γ4

Γ3,mΓ3,l Γ3,r

Fig. 6.1. The CVD reactor problem. The computational domain Ω = (0, 1) × (0, 1). Γ1 =
{(x, y) : 0 < x < 1, y = 0}, Γ2 = {(x, y) : x = 1, 0 < y < 1}, Γ3 = {(x, y) : 0 < x < 1, y = 1},
Γ4 = {(x, y) : x = 0, 0 < y < 1}. Γ3,l = {(x, y) ∈ Γ3 : 0 < y < 1/3} is the left outflow boundary,
Γ3,r = {(x, y) ∈ Γ3 : 2/3 < y < 1} is the right outflow boundary, and Γ3,m = {(x, y) ∈ Γ3 : 1/3 ≤
y ≤ 2/3} is the inflow boundary.

We first perform a grid convergence test to assure that the numerical solution
is correct by using different grids ranging from 128 × 128 to 512 × 512. Fig. 6.2
shows the v-component of the computed velocity profiles along the horizontal line
y = 0.5 for different grids. The convergence of the computed solutions is observed
as the grid is refined for each Grashof number. The finest grid solution is used as
a reference solution, and a near quadratic convergence is achieved. In Fig. 6.3, we
compare the solution plots of the simulation problem and the corresponding control
problem via the temperature contours for Gr = 104, 5 × 104, and 105, respectively.
From these figures, we find that, under the mechanism of the temperature control,
the change rate of the temperature in the x-direction becomes much smaller. Also
shown in Fig. 6.4, the magnitude of the vorticity measured by the 2-norm is reduced
more than one order of magnitude when the flow is properly controlled for different
values of Grashof number. Fig. 6.5 shows a comparison of the uncontrolled and
controlled vorticity contour plots for the case of Gr = 105. Two major vortices with
large magnitude are completely eliminated when the temperature on the boundary
is properly controlled. The stronger vorticity is localized in the top corners for the
controlled case.

6.2. A slow convergence analysis of INB. We investigate how the classical
LNKSz method performs for solving the CVD reactor problem with different Grashof
numbers and grid sizes when no nonlinear preconditioning is applied. A summary of
the nonlinear iteration counts for each case is reported in Table 6.1. For small Gr, the
convergence of Newton is quite fast, and the rate is independent of the grid sizes. On
the other hand, when the grid size is fixed, the number of Newton iterations increases
as Gr increases until some critical Gr is reached, where the classical Newton method
begins to stagnate.

In the left figure of Fig. 6.6, we show the LNKSz convergence history of the non-
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Fig. 6.2. The CVD reactor problem. A comparison of the v-component of the velocity along
the horizontal line y = 0.5 with different grid sizes for three values of the Grashof numbers. (a)
Gr = 104; (b) Gr = 5 × 104; (c) Gr = 105. In addition, (d) The plot of the 2-norm error of
the v-component versus the grid size in the logarithmic scale for different Gr. The orders of the
convergence for Gr = 104, 5× 104, and 105 are 1.75, 1.78, and 1.78, respectively.

linear residual norm with different Gr. The method exhibits a typical convergence
behavior; the iteration stagnates longer and longer as Gr increases. When the ap-
proximate solution moves into the ball of convergence, then quadratic convergence is
suddenly achieved. The plateau in the left figure of Fig. 6.6 is an indication that some
nonlinear preconditioning is necessary, but it does not tell which part of the nonlin-
ear problem is responsible for the slowness of the convergence. To further analyze
the slow convergence, we look at the residual vectors more carefully – component by
component and field by field. The right figure of Fig. 6.6 shows a field by field plot
of the residual function, and it is clear that the temperature component dominates
the residual. Therefore, it is chosen as the component, together with its Lagrangian
multiplier, to be eliminated. Fig. 6.7 shows the optimal control variable, i.e., the tem-
perature along the boundary Γ2∪Γ4. As Gr increases, the gradient becomes sharper,
which makes the resulting KKT condition (5.5) more nonlinear, as a result, Newton
is having difficulty to converge.

Note that the optimal T is nearly linear everywhere in the computational domain,
except for the two corners near the cold wall; see the second row of Fig. 6.3. To
further understand the slow convergence of LNKSz, we plot some of the intermediate
solutions for T in Fig. 6.8 at few selected Newton iterations as well as some of the
temperature profiles along the vertical line at x = 0.5. For this case, Gr = 2 × 104

is set, and a 64 × 64 grid is used. LNKSz takes 17 iterations to converge. During
the stagnation period, LNKSz can roughly catch certain features of the solution such
as ∂T/∂x = 0 and ∂T/∂y is constant in the y-direction almost everywhere. But the
value of ∂T/∂y is incorrect. From the bottom-right figure of Fig. 6.8, we observe that
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Fig. 6.3. The CVD reactor problem. The temperature contour plots for different value of Gr.
The Reynolds number is fixed to Re = 1 and the grid is 64×64. (a) Simulation problem at Gr = 104;
(b) Simulation problem at Gr = 5× 104; (c) Simulation problem at Gr = 105; (d) Control problem
at Gr = 104; (e) Control problem at Gr = 5× 104; (f) Control problem at Gr = 105.
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Fig. 6.4. The CVD reactor problem. The 2-norm of vorticity for the control and simulation
problems with different Grashof numbers on a 64 × 64 grid. In the figure, “Simulation problem”
denotes the uncontrolled flow and “Control problem” denotes the controlled flow.

LNKSz gradually correct ∂T/∂y by increasing its value at a very slow rate; moreover,
this correction is global in the sense that all points in the computational domain are
involved.

Note that the convergence behavior of INB for the flow control problems is quite
different from the problems with local nonlinearity, such as boundary layers, shock
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Left: the uncontrolled flow and right: the controlled flow.

Table 6.1
The number of nonlinear iterations for the classical LNKSz method for the CVD reactor problem

for different Grashof numbers and grid sizes. In the table, “Newton” denotes the number of inexact
Newton iterations and “−” means the failure of the Newton iteration.

CVD reactor problem
Gr 64× 64 128× 128 256× 256 512× 512
104 3 3 3 3

2× 104 17 11 6 4
4× 104 41 25 25 23
6× 104 − 104 48 −−
8× 104 − − − −

105 − − − −
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Fig. 6.6. The CVD reactor problem. Left: The convergence history plots of the global nonlinear
residual norms for different Grashof numbers Gr = 4×104, 6×104, 8×104, and 105 on a 256×256
grid. For Gr = 8 × 104 and 105, LNKSz does not converge after 70 Newton iterations. Right:
The convergence history plots of the nonlinear residual norms for all nine components obtained by
LNKSz, which requires the total number of 17 nonlinear iterations to converge. The calculation is
carried out for Gr = 2× 104 on a 64× 64 grid.
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Fig. 6.7. The CVD reactor problem. Computed temperature on the boundary x = 0 (i.e., Γ4)
with different Grashof numbers on a 64 × 64 grid. Re = 1 and Pr = 0.72. (a) Gr = 104; (b)
Gr = 5× 104; (c) Gr = 105.

wave or corner singularity. For example, for the transonic flow problem [12, 30], the
number of INB iterations typically increases as the grid is refined. When the shock
location is highly resolved, the nonlinear problem is harder to solve. In such case,
the high nonlinearity is “local”. But for the control problem, sometimes, the coarse
problem is more difficult to solve than the fine grid problem for some value of Gr.
This is an indication that some component is “globally” bad on the whole domain. In
such a situation, nonlinear elimination based on the field partition is more appropriate
than the one based on the subdomain partition, which is more suitable to problems
with local high nonlinearities.

It is important to identity the right field to eliminate, otherwise, the convergence
of the outer Newton iteration is not improved much. An iteration count comparison
of two different elimination choices (the field variables ω or T in Table 6.2) confirms
this. If we select the correct components, i.e., T and λT in this case, the algorithm
becomes very robust and efficient. Only 4 or 5 global Newton iterations is needed
and the number of linear iterations increases slightly as Gr increases. If the fields
corresponding to ω and λω are eliminated, the convergence deteriorated drastically
as Gr is increased.

Table 6.2
A comparison of two different elimination strategies for the CVD reactor problem on a 128×128

grid. In the table, “Newton” denotes the number of the global Newton iterations, “GMRES” denotes
the average number of GMRES iterations per Newton iteration, and “Time” the total computing
time in seconds. “Global” denotes the performance of LNKSz–NE in the global update phase and
“Local” denotes the performance of LNKSz-NE in the subspace correction phase. “−” means the
failure of the Newton iteration.

Eliminate ω and λω strategy Eliminate T and λT strategy
LNKSz-NE: Global (Local) LNKSz-NE: Global (Local)

Gr Newton GMRES Time Newton GMRES Time
104 4 (2) 50.2 (11.5) 10.7 (1.6) 4 (2) 50.0 (16.0) 10.6 (1.9)
2× 104 11 (9) 269.8 (16.0) 107.7 (9.3) 4 (5) 61.2 (18.0) 12.6 (5.4)
4× 104 23 (21) 459.7 (15.6) 360.9 (21.5) 4 (5) 61.2 (18.0) 12.6 (5.4)
6× 104 93 (91) 971.0 (15.6) 3453.1 (101.4) 5 (6) 74.6 (18.0) 17.5 (6.1)
8× 104 − 5 (6) 76.8 (18.5) 18.6 (6.5)
105 − 5 (7) 83.8 (18.7) 19.5 (7.4)
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Fig. 6.8. The CVD reactor problem. Computed intermediate solution for the temperature at
the 2nd (top-left), 6th (top-right), and 16th (bottom-left) Newton iteration for the Grashof number,
Gr = 2× 104 on a 64× 64 grid. The the temperature profile curves along the vertical line at x = 0.5
for few selected Newton iterations (bottom-right).

6.3. A comparison with a two-grid method. In this section, we compare
LNKSz-NE with a two-grid version of the LNKSz method as described in Algorithm
2. The numerical experiments are carried out on two fixed grids, 256 × 256 and
512× 512 with the Grashof number varies from 104 to 105. For the two-grid method,
the size of the coarse grid H is taken as 4h. Recall that Table 6.1 reveals that
for LNKSz, the number of Newton iterations increases dramatically as the Grashof
number increases due to the high nonlinearity of the system. For the two-grid method,
the nonlinear iterations become acceptable and, compared with the one-grid LNKSz
method, the total computing time is much smaller. As a result, the two-grid method
performs so much better. However, with the further increase of the Grashof number,
neither LNKSz nor the two-grid method is convergent. Next we test the proposed
LNKSz-NE. In Table 6.3, we show that the convergence is dramatically improved
when LNKSz is applied with NE preconditioning, interestingly, the number of linear
iterations is also substantially reduced. Compared with the two-grid method, LNKSz-
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NE is much more effective, in terms of the total number of outer Newton iterations
and the total compute time. Here, we only consider a two-grid LNKSz method.
Alternatively, the full-approximation scheme (FAS) (or nonlinear multigrid (NLMG)
from Hackbusch) [46], which has a correction term on the right-hand side of the coarse
problem, might be able to push the interpolant into the domain of convergence on the
fine grid.

Table 6.3
A comparison of LNKSz and LNKSz-NE for the CVD reactor problem. In the table, “Newton”

denotes the number of inexact Newton iterations, “GMRES” denotes the average number of GMRES
iterations per Newton iteration, and “Time” the total computing time in seconds. “LNKSz-NE:
Global” denotes the performance of LNKSz-NE in the global iteration and “LNKSz-NE: Local”
denotes the performance of LNKSz-NE in the subspace iteration. “−” means divergence of the
Newton iteration on the coarse grid.

Gr LNKSz–NE: Global (Local) Two-grid method: Fine (coarse)
Newton GMRES Time Newton GMRES Time

256× 256 grid and Np = 64
104 4 (2) 115.2 (28) 18.1 (3.1) 3 (4) 108.0 (75.3) 13.3 (3.3)
2× 104 4 (4) 141.7 (29.7) 21.2 (6.1) 3 (17) 127.6 (341.4) 10.0 (35.1)
4× 104 5 (6) 162.2 (32.0) 36.6 (9.5) 3 (41) 160.0 (481.3) 25.5 (107.1)
6× 104 6 (6) 213.3 (34.0) 54.7 (10.1) 4 (183) 162.0 (864.5) 47.9 (801.5)
8× 104 6 (6) 248.5 (34.0) 65.4 (10.1) −
105 6 (6) 339.3 (35.3) 91.3 (11.3) −

512× 512 grid and Np = 256
104 4 (1) 470.2 (78.0) 87.8 (4.0) 3 (4) 312.3 (152.7) 42.1 (8.9)
2× 104 5 (4) 433.6 (56.5) 100.5 (11.6) 3 (11) 390.6 (395.7) 46.1 (36.5)
4× 104 5 (5) 554.8 (64.0) 135.2 (16.4) 3 (25) 522.3 (591.6) 66.7 (106.4)
6× 104 6 (6) 613.6 (65.0) 172.9 (19.6) 4 (104) 481.7 (922.0) 96.7 (616.1)
8× 104 6 (6) 679.0 (67.0) 204.1 (19.8) −
105 6 (6) 662.6 (69.0) 186.2 (20.2) −

6.4. The backward-facing step flow problem. To illustrate the applicability
of the LNKS-NE algorithm, we consider a BFS flow problem, which is stated as follows.
Find (u, v, ω, T, g) such that

min J =
1

2

∫
Ω

|ω|2 dΩ +
γ

2

∫
Γ1∪Γ3

|g|2 dΓ

subject to the constraints (5.2) with the following boundary conditions.

v = (0, 0) and
∂T

∂n
= g − T, on Γ1 ∪ Γ3,

v = (y(1− y), 0) and
∂T

∂n
= 0, on Γ2 ∪ C2 ∪ C3,

v = (8(1− y)(y − 1

2
), 0) and T = 0, on Γ4,i ∪ C4,

v = (0, 0) and T = 1, on (Γ4 − Γ4,i) ∪ C1,

The geometrical configuration for the BFS problem is shown in Fig. 6.9, and the
temperature control is applied on Γ1 and Γ3. Fig. 6.10 shows the vorticity contour
plots for the simulation and controlled cases. The circulation in the controlled case
is clearly smaller than the one without control.. For Gr = 104, Fig. 6.11 presents
a comparison of the magnitude of the vorticity in the 2-norm for the uncontrolled
and controlled problems. We vary the Grashof number from 104 to 105, and fix the
Prandtl number to Pr = 0.72. From Fig. 6.11, we see that, as the Grashof number
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Fig. 6.9. The BFS flow problem. Ω = (0, 6) × (0, 1). Γ1 = {(x, y) : 0 < x < 6, y = 0},
Γ2 = {(x, y) : x = 6, 0 < y < 1}, Γ3 = {(x, y) : 0 < x < 1, y = 1}, Γ4 = {(x, y) : x = 0, 0 < y < 1},
and Γ4,i = {(x, y) ∈ Γ4 : 0.5 ≤ y < 1}. Γ4,i (Γ2) is the inlet (outlet) boundary, respectively.

increases, the the magnitude of the vorticity also grows for both the simulation and
the control problems. But the order of magnitude of the vorticity for the control
problem is smaller than of the simulation problem.
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Fig. 6.10. The BFS flow problem. The vorticity ω contour plots Gr = 104 on a 96 × 16 grid.
The top figure is the uncontrolled solution and the bottom figure is the corresponding controlled
solution.

Fig. 6.12 compares the convergence histories of LNKSz and LNKSz-NE with
different Grashof numbers on a 384 × 64 grid. Again, it is clear that LNKSz-NE is
more robust and efficient than LNKSz.
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Fig. 6.11. The BFS flow problem. The 2-norm of vorticity for the control and simulation
problems with different Grashof numbers. The Reynolds number is fixed to Re = 1 and the grid is
96× 16.
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Fig. 6.12. Nonlinear residual histories of LNKS (left) and LNKS-NE (right) for the BFS flow
problem with different Grashof numbers Gr = 6× 103, 8× 103, 104, and 4× 104 on a 384× 64 grid.

7. Concluding remarks. In the paper, we developed a nonlinearly precondi-
tioned full-space Lagrange-Newton method for solving PDE-constrained optimization
problems. The proposed right preconditioner is based on the nonlinear elimination of
certain field variables whose residual norms dominate the global residual during the
stagnation period of the outer inexact Newton iterations. The new approach consists
of two major ingredients: a subspace correction and a global update by the outer
Newton iterations. We validated our implementation and evaluated the performance
of the proposed full-space method on two benchmark problems, including a chemi-
cal vapor deposition reactor problem and a backward-facing step flow problem. Our
numerical experiments showed that the number of outer Newton iterations could be
drastically reduced when certain “bad” field variables were correctly identified and
effectively eliminated by the subspace correction. We restricted our discussion on flow
control problems in 2D, but we believe the general approach should be applicable to
other PDE-constrained optimization problems and problems in 3D.
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