\documentclass[reqno,12pt]{amsart} \usepackage{amscd,amssymb,verbatim,array} \usepackage{hyperref} \usepackage{amsmath} \usepackage[active]{srcltx} % SRC Specials: DVI [Inverse] Search \setlength{\textwidth}{6.3in} \addtolength{\oddsidemargin}{-1.7cm} \addtolength{\evensidemargin}{-1.7cm} \renewcommand{\baselinestretch}{1.1} \numberwithin{equation}{section} \theoremstyle{plain} % Command to set the paragraph indentation to zero (i.e. none) \setlength{\parindent}{0in} % Commands that allow both quiz and solution versions to be created \newif \ifanswer \newcommand{\question}[1]{\ifanswer {\em #1} \else {#1} \fi} \newcommand{\questiononly}[1]{\ifanswer \else #1 \fi} \newcommand{\answer}[1] {\ifanswer \else \color{white} \fi #1 \color{black}} \newcommand{\answeronly}[1]{\ifanswer #1 \fi} % \answertrue \answerfalse %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{document} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % A header line \noindent {\sc Complex Variables I \hfill Practice Midterm 2 \vspace{0.3cm} \\ Name:\underline{\hspace*{1.1in}} Id No.:\underline{\hspace*{1.9in}} Class: \underline{\hspace*{0.9in}} } \\ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {\bf Problem 1: (15 points)} Show that $f(z) = \frac{\operatorname{Log}(z+5i)}{z^2+3z+2}$ is analytic everywhere except at the points $-1, -2,$ and on the ray $\{(x, y)| x \le 0, y=-5 \}$. \begin{proof} First, the function $\frac{1}{z^2+3z+2}$ is analytic everywhere except at $-1$, and $-2$. Second, the function $\operatorname{Log}(z+5i)$ is analytic except at those points where $z+5i = 0$, or where $z+5i$ lies on the negative real axis, i.e. $\{(x; y) | x \le 0, y = -5\}.$ Hence the function $f(z) = \frac{\operatorname{Log}(z+5i)}{z^2+3z+2}$ is analytic everywhere except at the points $-1, -2,$ and on the ray $\{(x, y)| x \le 0, y=-5 \}$. \end{proof} {\bf Problem 2:} \begin{enumerate} \item {\bf (10 points)} Show that $ \operatorname{tanh}^{-1} z = \frac{1}{2} \log \left( \frac{1+z}{1-z} \right).$ \begin{proof}[Hint] Consider $z= \operatorname{tanh} w = \frac{(e^{w}-e^{-w})}{(e^{w}+e^{-w})}.$ Then write $w$ as a function of $z$. \end{proof} \item {\bf (5 points)} Compute $\operatorname{tanh}^{-1} (1+2i)$. \begin{proof}[Solution] $ \frac{1}{4} \operatorname{ln} 2 + i (\frac{3}{8} +n) \pi$, where $n$ is an integer. \end{proof} \end{enumerate} {\bf Problem 3:(10 points)} Determine whether $\log (i^2)$ and $2 \log i$ are equal or not when the branch $\log z = \operatorname{ln} r + i \theta (r>0, \frac{3 \pi}{4} < \theta < \frac{11\pi}{4}) $ is used. Show your work. \begin{proof}[Solution] $\log (i^2) = \log (-1) = i \pi$ and $2 \log i = 2 (i \frac{10 \pi}{4}) = i \frac{5 \pi}{2}$ when the stated branch of the logarithmic function is used. Hence $\log (i^2) \not= 2 \log i.$ \end{proof} {\bf Problem 3: (15 points)} Consider $I=\int_C \frac{1}{z^3(z+4)}dz.$ \begin{enumerate} \item Evaluate the integral $I$ when the contour $C$ is the positively oriented circle $|z|=2$. \begin{proof}[Hint] First we notice that $\frac{1}{z+4}$ is analytic inside and on $C$. Then we use the Extension of Cauchy Integral Formula. $\cdots$ The solution is $\frac{\pi i}{32}$. \end{proof} \item Evaluate the integral $I$ when the contour $C$ is the positively oriented circle $|z+2| =3.$ \begin{proof}[Hint] The singularities $0$ and $-4$ of $\frac{1}{z^3(z+4)}$ are inside the contour $C$. We consider the contour $C_1$ the positively oriented circle $|z|=\frac{1}{2}$ and the contour $C_2$ the positively oriented circle $|z+4|=\frac{1}{2}$. Then $C_1$ and $C_2$ are inside $C$. So we can apply the Cauchy-Goursat theorem for multiply connected domain. $\cdots$ The solution is $0$ \end{proof} \end{enumerate} {\bf Problem 4:(10 points)} Consider the function $f(z) = (z-2)^4$ and the closed rectangular region $R$ with vertices at $0, -1, -1+4i, 4i.$ Find the points on or inside $R$ at which $|f(z)|$ attains its maximum and minimum values. \begin{proof}[Solution] Observe that $|z-2| = d$ is the distance from $z$ to 2 and $|(z-2)^4| = |z-2|^4 = d^4$. The maximum (minimum) modulus principle implies that the maximum and minimum values occur at the boundary. From the geometry, we can see that the maximum and minimum values of $d$, and therefore $|f(z)|$, occur at the boundary points, namely $-1+4i$ and $0$. Hence $\operatorname{max} |f(z)|$ occurs at $z=-1+4i$ and $\operatorname{min}|f(z)|$ occurs at $z=0$. \end{proof} %{\bf Problem 4:(10 points)} %Let $R$ region $0 \le x \le \pi, 0 \le y \le 1$. Show that the modulus of the entire function $f(z)= \sin z$ has a maximum value in $R$ at the boundary point $z=(\pi/2) +i$. %\begin{proof}[Hint] %Write $|f(z)|^2=\sin^2 x + \sinh^2 y$ and locate points in $R$ at which $\sin^2 x$ and $\sinh^2 y$ are the largest. %\end{proof} {\bf Problem 5:(10 points)} Let $f$ be an entire function with the property that $|f(z)| \ge 1$ for all $z$. Show that $f$ is constant. \begin{proof}[Hint] Liouville's theorem. \end{proof} {\bf Problem 6: (15 points)} Compute $\int_C \frac{1}{z^2-z}dz$, where $C$ is a line segment from $2$ to $2+i$. \begin{proof} $\frac{1}{z^2-z} = -\frac{1}{z} + \frac{1}{z-1}$ is analytic everywhere except at $0$ and $1$. Let $D=\mathbb{C} \backslash \{ (x,y) | x \le 1, y=0 \}$. Then $\frac{1}{z^2-z} = -\frac{1}{z} + \frac{1}{z-1}$ is analytic in $D$ and $-\operatorname{Log} z + \operatorname{Log}(z-1)$ is an antiderivative of $\frac{1}{z^2-z} = -\frac{1}{z} + \frac{1}{z-1}$. By the extension of fundamental theorem of calculus, $\int_C \frac{1}{z^2-z}da = \int_2^{2+i} \frac{1}{z^2-z}dz =(-\operatorname{Log}z + \operatorname{Log}(z-1))|_{2}^{2+i} = -\frac{1}{2} \ln 5+ \frac{3}{2} \ln 2 + i(\operatorname{arc tan} \frac{1}{2} + \frac{1}{4} \pi).$ \end{proof} {\bf Problem 7: (10 points)} Let $C_R$ denote the upper half of the circle $|z|=R (R>2)$, taken in the counterclockwise direction. Use ML bounds to find an upper bound on the modulus of the following contour integral $\int_{C_R} \frac{2z^2-1}{z^4+5z^2+4} dz$. \begin{proof}[Hint] $M = \frac{ (2R^2+1)}{(R^2-1)(R^2-4)}$ and $L=\pi R$. The upper bound is $\frac{\pi R (2R^2+1)}{(R^2-1)(R^2-4)}$ %$|\int_{C_R} \frac{\operatorname{Log} z}{z^2} dz| \le ML= \operatorname{max}_{z \in C_R} |\frac{\operatorname{Log}z}{z^2}|(2 \pi R) = \frac{\operatorname{max}_{z \in C_R}|\operatorname{ln}|z|+i\theta|}{R^2}(2 \pi R) = 2 \pi \frac{\sqrt{(\operatorname{ln}R)^2+\pi^2}}{R}.$ \end{proof} \end{document}