2.5.9:

Proof. 1. (Reflexivity) $A=I^{-1} A I$, so A is similar to A.
2. (Symmetry) If A is similar to B, i.e. there exists a matrix Q such that $A=Q^{-1} B Q$, then $B=\left(Q^{-1}\right)^{-1} A Q^{-1}$, i.e. B is similar to A.
3. (Transitivity) If A is similar to B, i.e. there exists a matrix Q such that $A=Q^{-1} B Q$, and B is similar to C, i.e. there exists a matrix P such that $B=P^{-1} C P$, then $A=(P Q)^{-1} C(P Q)$, i.e. A is similar to C. Hence "is similar to" is an equivalence relation on $M_{n \times n}(F)$.

