LINEAR ALGEBRA

Solutions

4.2.23: Let $A \in M_{n \times n}(F)$ be an upper triangular matrix. We want to show that

$$\det(A) = \prod_{i=1}^{n} A_{ii}.$$

Proof. We proceed by induction on n.

For n = 1, obviously $det(A) = A_{11}$.

Assume that the statement holds for n-1.

Since A is an upper triangular matrix, we know that $A_{ni} = 0$, for $i = 1, 2, \dots, n-1$. Then Cofactor expansion along the *n*-th row of A gives

$$\det(A) = A_{nn} \det\left(\widetilde{A}_{nn}\right).$$

Since \widetilde{A}_{nn} is the matrix obtained from A by deleting the *n*-th row and the *n*-th column, and hence is a $(n-1) \times (n-1)$ matrix.

By induction hypothesis,

$$\det\left(\widetilde{A}_{nn}\right) = \prod_{i=1}^{n-1} A_{ii}.$$

Therefore

$$\det(A) = A_{nn} \det\left(\widetilde{A}_{nn}\right) = \prod_{i=1}^{n} A_{ii}.$$