4.2.23: Let $A \in M_{n \times n}(F)$ be an upper triangular matrix. We want to show that

$$
\operatorname{det}(A)=\prod_{i=1}^{n} A_{i i} .
$$

Proof. We proceed by induction on n.
For $n=1$, obviously $\operatorname{det}(A)=A_{11}$.
Assume that the statement holds for $n-1$.
Since A is an upper triangular matrix, we know that $A_{n i}=0$, for $i=1,2, \cdots, n-1$.
Then Cofactor expansion along the n-th row of A gives

$$
\operatorname{det}(A)=A_{n n} \operatorname{det}\left(\widetilde{A}_{n n}\right)
$$

Since $\widetilde{A}_{n n}$ is the matrix obtained from A by deleting the n-th row and the n-th column, and hence is a $(n-1) \times(n-1)$ matrix.
By induction hypothesis,

$$
\operatorname{det}\left(\widetilde{A}_{n n}\right)=\Pi_{i=1}^{n-1} A_{i i}
$$

Therefore

$$
\operatorname{det}(A)=A_{n n} \operatorname{det}\left(\widetilde{A}_{n n}\right)=\prod_{i=1}^{n} A_{i i}
$$

