Linear Algebra

Solutions

4.3.21:

Proof. Let A be an $k \times k$ matrix.
We proceed by induction on k.
For $k=1$, the cofactor expansion along the first column gives

$$
\operatorname{det}(M)=A_{11} \operatorname{det}\left(\widetilde{M}_{11}\right)=M_{11} \operatorname{det}(C)=\operatorname{det}(A) \operatorname{det}(C)
$$

So the result holds for $k=1$.
Suppose that the result holds for $k-1$.
Now, taking the cofactor expansion along the first column gives

$$
\begin{aligned}
\operatorname{det}(M) & =A_{11} \operatorname{det}\left(\widetilde{M}_{11}\right)-\cdots+(-1)^{k+1} A_{k 1} \operatorname{det}\left(\widetilde{M}_{k 1}\right) \\
& =A_{11} \operatorname{det}\left(\begin{array}{cc}
\widetilde{A}_{11} & \widetilde{B}_{1} \\
0 & C
\end{array}\right)-\cdots+(-1)^{k+1} A_{k 1} \operatorname{det}\left(\begin{array}{cc}
\widetilde{A}_{k 1} & \widetilde{B}_{k} \\
0 & C
\end{array}\right),
\end{aligned}
$$

where $\widetilde{B}_{i}, i=1, \cdots, k$, is obtained from B by deleting the i th row.
Since $\widetilde{A}_{i 1}, i=1, \cdots, k$, is an $(k-1) \times(k-1)$ matrix, induction hypothesis implies that

$$
\begin{aligned}
\operatorname{det}(M) & =A_{11} \operatorname{det}\left(\widetilde{A}_{11}\right) \operatorname{det}(C)-\cdots+(-1)^{k+1} A_{k 1} \operatorname{det}\left(\widetilde{A}_{k 1}\right) \operatorname{det}(C) \\
& =\left(A_{11} \operatorname{det}\left(\widetilde{A}_{11}\right)-\cdots+(-1)^{k+1} A_{k 1} \operatorname{det}\left(\widetilde{A}_{k 1}\right)\right) \operatorname{det}(C) \\
& =\operatorname{det}(A) \operatorname{det}(C),
\end{aligned}
$$

where the last equality follows from the cofactor expansion of A along the first column. Thus the result holds for all k.

