NAME: \qquad ID No.: \qquad Class: \qquad
Problem 1: Prove that if W_{1} is any subspace of a finite-dimensional vector space V, then there exists a subspace W_{2} of V such that $V=W_{1} \oplus W_{2}$.
Hint: Let $\beta=\left\{u_{1}, \cdots, u_{n}\right\}$ be a basis for W_{1}. Since W_{1} is a subspace of V. By Replacement Theorem, we can extend β to a basis for V, say $\alpha=\left\{u_{1}, \cdots, u_{n}, u_{n+1}, \cdots, u_{m}\right\}$. Let $W_{2}=\operatorname{span}\left(\left\{u_{n+1}, \cdots, u_{m}\right\}\right)$. Finish the proof by showing the following two steps.
(1) (4 points) Show that $V=W_{1}+W_{2}$.

Proof. If $v \in V$, then

$$
v=\sum_{i=1}^{m} a_{i} u_{i}=\sum_{i=1}^{n} a_{i} u_{i}+\sum_{i=n+1}^{m} a_{i} u_{i} \in W_{1}+W_{2},
$$

for some scalars $a_{i}, i=1, \cdots, m$.
This implies that $V \subseteq W_{1}+W_{2}$. But by the definition of $W_{1}+W_{2}$, we also know that $W_{1}+W_{2} \subseteq V$. Hence $V=W_{1}+W_{2}$.
(2) (4 points) Show that $W_{1} \cap W_{2}=\{0\}$.

Proof. Let $u \in W_{1} \cap W_{2}$. Then $u=\sum_{i=1}^{n} b_{i} u_{i}=\sum_{i=n+1}^{m} c_{i} u_{i}$, for some scalars $b_{1}, \cdots, b_{n}, c_{n+1}, \cdots, c_{m}$. Then we have

$$
\sum_{i=1}^{n} b_{i} u_{i}+\sum_{i=n+1}^{m}\left(-c_{i}\right) u_{i}=0
$$

But α is linearly independent, since α is a basis. Hence $b_{1}=\cdots=b_{n}=c_{n+1}=$ $\cdots=c_{m}=0$. This implies that $u=0$. That is $W_{1} \cap W_{2}=\{0\}$.

Problem 2: Suppose that $T: M_{2 \times 2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$ is the linear map defined by

$$
T(A)=B A-A^{t}, \quad \text { where } B=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)
$$

(1) (4 points) Find bases for range and kernel of T.

Solution.

$$
\left\{\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right),\left(\begin{array}{cc}
2 & -1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right)\right\} \quad \text { is a basis for range of } T
$$

and

$$
\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\right\} \quad \text { is a basis for kernel of } T \text {. }
$$

(2) (2 points) Find rank and nullity of T.

Solution. $\operatorname{rank}(\mathrm{T})=3, \quad$ nullity $(\mathrm{T})=1$.
(3) (3 points) Let

$$
\alpha=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right\}
$$

be an ordered basis of $M_{2 \times 2}(\mathbb{R})$. Find the matrix representation $[T]_{\alpha}$ of T with respect to α.

Solution.

$$
[T]_{\alpha}=\left(\begin{array}{cccc}
0 & 0 & 2 & 0 \\
0 & 1 & -1 & 2 \\
0 & -1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

(4) (2 points) Compute the determinant of the 4×4 matrix you've found in part (3). Solution.

$$
\operatorname{det}\left([T]_{\alpha}\right)=0
$$

Problem 3: Suppose that $T: P_{4}(\mathbb{R}) \rightarrow P_{4}(\mathbb{R})$ is the linear map

$$
T(p(x))=x^{2} \frac{d^{2} p(x)}{d x^{2}}+x \frac{d p(x)}{d x}+p(x) .
$$

(1) (2 points) Show that T is a linear map.

Proof. Let $f(x), g(x) \in P_{4}(\mathbb{R})$ and $c \in \mathbb{R}$. Then

$$
\begin{aligned}
& T(f(x)+c g(x)) \\
= & x^{2} \frac{d^{2}(f(x)+c g(x))}{d x^{2}}+x \frac{d(f(x))+c g(c)}{d x}+(f(x)+c g(x)) \\
= & \left(x^{2} \frac{d^{2} f(x)}{d x^{2}}+x \frac{d f(x)}{d x}+f(x)\right)+c\left(x^{2} \frac{d^{2} g(x)}{d x^{2}}+x \frac{d g(x)}{d x}+g(x)\right) \\
= & T(f(x))+c T(g(x)) .
\end{aligned}
$$

Hence T is linear.
(2) (3 points) Is T one-to-one? Verify your assertion.

Solution. Let $f(x)=a x^{4}+b x^{3}+c x^{2}+d x+e \in P_{4}(\mathbb{R})$. Then $T(f(x))=\cdots=$ $17 a x^{4}+10 b x^{3}+5 c x^{2}+2 d x+e=0$ only when $f(x)=0$, i.e. $N(T)=\{0\}$. Hence T is one-to-one.
(3) (2 points) Is T onto? Verify your assertion. (Hint: Use part (2).)

Solution. By the dimension theorem and (2), we have $\operatorname{dim} R(T)=\operatorname{dim} P_{4}(\mathbb{R})$. Hence $R(T)=P_{4}(\mathbb{R})$, i.e. T is onto.

Problem 4: Suppose A is a $n \times n$ square matrix with $A^{k}=0$ for some positive integer k, and I is the $n \times n$ identity matrix.
(1) (2 points) Show that $\operatorname{det}(A)=0$.

Proof.

$$
0=\operatorname{det}(0)=\operatorname{det}\left(A^{k}\right)=(\operatorname{det}(A))^{k}=0
$$

implies

$$
\operatorname{det}(A)=0
$$

(2) (3 points) Show that $I+A$ is invertible by finding its inverse $(I+A)^{-1}$. Proof. Since

$$
\begin{aligned}
& (I+A)\left(I-A+A^{2}+\cdots+\left(-1^{k-1}\right) A^{k-1}\right) \\
= & \left(I-A+A^{2}+\cdots+\left(-1^{k-1}\right) A^{k-1}\right)(I+A) \\
= & I+(-1)^{k-1} A^{k}=I .
\end{aligned}
$$

Hence $I+A$ is invertible and

$$
(I+A)^{-1}=I-A+A^{2}+\cdots+\left(-1^{k-1}\right) A^{k-1}
$$

(3) (3 points) Suppose that x is a $n \times 1$ matrix such that $A^{k-1} x \neq 0$. Show that $\left\{x, A x, \cdots, A^{k-1} x\right\}$ is linearly independent.

Proof. Let

$$
a_{0} x+a_{1} A x+\cdots+a_{k-1} A^{k-1} x=0
$$

where $a_{0}, a_{1}, \cdots, a_{k-1}$ are scalars. Multiplying the equality by A^{k-1} from both sides implies that

$$
A^{k-1}\left(a_{0} x+a_{1} A x+\cdots+a_{k-1} A^{k-1} x\right)=a_{0} A^{k-1} x=A^{k-1} 0=0
$$

where we have used the assumptions that $A^{k}=0$ and $A^{k-1} x \neq 0$. Hence $a_{0}=0$. Similarly,

$$
A^{k-2}\left(a_{1} A x+\cdots+a_{k-1} A^{k-1} x\right)=a_{1} A^{k-1} x=0
$$

implies that $a_{1}=0$. Continuing this process, we have $a_{0}=a_{1}=\cdots=a_{k-1}=0$. Hence we have shown that $\left\{x, A x, \cdots, A^{k-1} x\right\}$ is linearly independent.

Problem 5: Let $T: P_{n}(F) \rightarrow F^{n+1}$ be the linear transformation defined by $T(f)=$ $\left(f\left(c_{0}\right), f\left(c_{1}\right), \cdots, f\left(c_{n}\right)\right)$, where $c_{0}, c_{1}, \cdots, c_{n}$ are distinct scalars in an infinite field F. Let β be the standard ordered basis for $P_{n}(F)$ and γ be the standard ordered basis for F^{n+1}.
(1) (3 points) Show that $M=[T]_{\beta}^{\gamma}$ has the form

$$
\left(\begin{array}{ccccc}
1 & c_{0} & c_{0}^{2} & \cdots & c_{0}^{n} \\
1 & c_{1} & c_{1}^{2} & \cdots & c_{1}^{n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & c_{n} & c_{n}^{2} & \cdots & c_{n}^{n}
\end{array}\right)
$$

A matrix with this form is called a Vandermonde matrix.

Proof.

$$
T(1)=(1,1, \cdots, 1), T(x)=\left(c_{0}, c_{1}, \cdots, c_{n}\right), \cdots, T\left(x^{n}\right)=\left(c_{0}^{n}, c_{1}^{n}, \cdots, c_{n}^{n}\right)
$$

implies that

$$
\left(\begin{array}{ccccc}
1 & c_{0} & c_{0}^{2} & \cdots & c_{0}^{n} \\
1 & c_{1} & c_{1}^{2} & \cdots & c_{1}^{n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & c_{n} & c_{n}^{2} & \cdots & c_{n}^{n}
\end{array}\right) .
$$

(2) (5 points) Prove that

$$
\operatorname{det}(M)=\Pi_{0 \leq i<j \leq n}\left(c_{j}-c_{i}\right),
$$

the product of all terms of the form $c_{j}-c_{i}$ for $0 \leq i<j \leq n$.

Proof.

$$
\begin{aligned}
f\left(c_{0}, c_{1}, \cdots, c_{n}\right) & =\operatorname{det}\left(\begin{array}{ccccc}
1 & c_{0} & c_{0}^{2} & \cdots & c_{0}^{n} \\
1 & c_{1} & c_{1}^{2} & \cdots & c_{1}^{n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & c_{n} & c_{n}^{2} & \cdots & c_{n}^{n}
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{cccccc}
1 & 0 & 0 & \cdots & 0 \\
1 & c_{1}-c_{0} & c_{1}^{2}-c_{0} c_{1} & \cdots & c_{1}^{n}-c_{0} c_{1}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & c_{n}-c_{0} & c_{n}^{2}-c_{0} c_{n} & \cdots & c_{n}^{n}-c_{0} c_{n}^{n-1}
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{ccccc}
c_{1}-c_{0} & c_{1}^{2}-c_{0} c_{1} & \cdots & c_{1}^{n}-c_{0} c_{1}^{n-1} \\
c_{2}-c_{0} & c_{2}^{2}-c_{0} c_{2} & \cdots & c_{2}^{n}-c_{0} c_{2}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
c_{n}-c_{0} & c_{n}^{2}-c_{0} c_{n} & \cdots & c_{n}^{n}-c_{0} c_{n}^{n-1}
\end{array}\right) \\
& =\left(c_{1}-c_{0}\right)\left(c_{2}-c_{0}\right) \cdots\left(c_{n}-c_{0}\right) \operatorname{det}\left(\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
1 & 1 & c_{1} & \cdots & c_{1}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 1 & c_{n} & \cdots & c_{n}^{n-1}
\end{array}\right) \\
& =\left(c_{1}-c_{0}\right)\left(c_{2}-c_{0}\right) \cdots\left(c_{n}-c_{0}\right) f\left(c_{1}, c_{2}, \cdots, c_{n}\right) .
\end{aligned}
$$

By induction, $\operatorname{det}(A)=\Pi_{0 \leq i<j \leq n}\left(c_{j}-c_{i}\right)$.
Problem 6: (4 points) Let $A \in M_{n \times n}(F)$ such that

$$
A=\left(\begin{array}{ccccc}
1+x_{1} & x_{2} & x_{3} & \cdots & x_{n} \\
x_{1} & 1+x_{2} & x_{3} & \cdots & x_{n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
x_{1} & x_{2} & x_{3} & \cdots & 1+x_{n}
\end{array}\right) .
$$

Compute $\operatorname{det}(A)$.
Solution.

$$
\operatorname{det}(A)=1+\sum_{i=1}^{n} x_{i}
$$

