
Linear Algebra Final Exam Solution

Name: Id No.: Class:

Problem 1: Prove that if W1 is any subspace of a finite-dimensional vector space V ,

then there exists a subspace W2 of V such that V = W1 ⊕W2.

Hint: Let β = {u1, · · · , un} be a basis for W1. Since W1 is a subspace of V . By Replace-

ment Theorem, we can extend β to a basis for V , say α = {u1, · · · , un, un+1, · · · , um}. Let
W2 = span({un+1, · · · , um}). Finish the proof by showing the following two steps.

(1) (4 points) Show that V = W1 +W2.

Proof. If v ∈ V , then

v =
m∑
i=1

aiui =
n∑
i=1

aiui +
m∑

i=n+1

aiui ∈ W1 +W2,

for some scalars ai, i = 1, · · · ,m.
This implies that V ⊆ W1 +W2. But by the definition of W1 +W2, we also know

that W1 +W2 ⊆ V . Hence V = W1 +W2.

�

(2) (4 points) Show that W1 ∩W2 = {0}.

Proof. Let u ∈ W1 ∩ W2. Then u =
∑n

i=1 biui =
∑m

i=n+1 ciui, for some scalars

b1, · · · , bn, cn+1, · · · , cm. Then we have
n∑
i=1

biui +
m∑

i=n+1

(−ci)ui = 0.

But α is linearly independent, since α is a basis. Hence b1 = · · · = bn = cn+1 =

· · · = cm = 0. This implies that u = 0. That is W1 ∩W2 = {0}. �

Problem 2: Suppose that T : M2×2(R)→M2×2(R) is the linear map defined by

T (A) = BA− At, where B =

(
1 2

0 1

)
.

(1) (4 points) Find bases for range and kernel of T .

Solution.{(
0 1

−1 0

)
,

(
2 −1

1 0

)
,

(
0 2

0 0

)}
is a basis for range of T

and {(
1 0

0 0

)}
is a basis for kernel of T.
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�

(2) (2 points) Find rank and nullity of T .

Solution. rank(T)=3, nullity(T)=1. �

(3) (3 points) Let

α =

{(
1 0

0 0

)
,

(
0 1

0 0

)
,

(
0 0

1 0

)
,

(
0 0

0 1

)}
be an ordered basis of M2×2(R). Find the matrix representation [T ]α of T with

respect to α.

Solution.

[T ]α =


0 0 2 0

0 1 −1 2

0 −1 1 0

0 0 0 0


�

(4) (2 points) Compute the determinant of the 4× 4 matrix you’ve found in part (3).

Solution.

det([T ]α) = 0.

�

Problem 3: Suppose that T : P4(R)→ P4(R) is the linear map

T (p(x)) = x2
d2p(x)

dx2
+ x

dp(x)

dx
+ p(x).

(1) (2 points) Show that T is a linear map.

Proof. Let f(x), g(x) ∈ P4(R) and c ∈ R. Then

T (f(x) + cg(x))

= x2
d2(f(x) + cg(x))

dx2
+ x

d(f(x)) + cg(c)

dx
+ (f(x) + cg(x))

=

(
x2
d2f(x)

dx2
+ x

df(x)

dx
+ f(x)

)
+ c

(
x2
d2g(x)

dx2
+ x

dg(x)

dx
+ g(x)

)
= T (f(x)) + cT (g(x)).

Hence T is linear. �

(2) (3 points) Is T one-to-one? Verify your assertion.



Solution. Let f(x) = ax4 + bx3 + cx2 + dx + e ∈ P4(R). Then T (f(x)) = · · · =

17ax4 + 10bx3 + 5cx2 + 2dx+ e = 0 only when f(x) = 0, i.e. N(T ) = {0}. Hence

T is one-to-one. �

(3) (2 points) Is T onto? Verify your assertion. (Hint: Use part (2).)

Solution. By the dimension theorem and (2), we have dimR(T ) = dimP4(R).

Hence R(T ) = P4(R), i.e. T is onto. �

Problem 4: Suppose A is a n × n square matrix with Ak = 0 for some positive integer

k, and I is the n× n identity matrix.

(1) (2 points) Show that det(A) = 0.

Proof.

0 = det(0) = det(Ak) = (det(A))k = 0

implies

det(A) = 0.

�

(2) (3 points) Show that I + A is invertible by finding its inverse (I + A)−1.

Proof. Since

(I + A)
(
I − A+ A2 + · · ·+ (−1k−1)Ak−1

)
=

(
I − A+ A2 + · · ·+ (−1k−1)Ak−1

)
(I + A)

= I + (−1)k−1Ak = I.

Hence I + A is invertible and

(I + A)−1 = I − A+ A2 + · · ·+ (−1k−1)Ak−1.

�

(3) (3 points) Suppose that x is a n × 1 matrix such that Ak−1x 6= 0. Show that{
x,Ax, · · · , Ak−1x

}
is linearly independent.

Proof. Let

a0x+ a1Ax+ · · ·+ ak−1A
k−1x = 0,

where a0, a1, · · · , ak−1 are scalars. Multiplying the equality by Ak−1 from both

sides implies that

Ak−1
(
a0x+ a1Ax+ · · ·+ ak−1A

k−1x
)

= a0A
k−1x = Ak−10 = 0,



where we have used the assumptions that Ak = 0 and Ak−1x 6= 0. Hence a0 = 0.

Similarly,

Ak−2
(
a1Ax+ · · ·+ ak−1A

k−1x
)

= a1A
k−1x = 0

implies that a1 = 0. Continuing this process, we have a0 = a1 = · · · = ak−1 = 0.

Hence we have shown that
{
x,Ax, · · · , Ak−1x

}
is linearly independent. �

Problem 5: Let T : Pn(F ) → F n+1 be the linear transformation defined by T (f) =

(f(c0), f(c1), · · · , f(cn)), where c0, c1, · · · , cn are distinct scalars in an infinite field F . Let

β be the standard ordered basis for Pn(F ) and γ be the standard ordered basis for F n+1.

(1) (3 points) Show that M = [T ]γβ has the form
1 c0 c20 · · · cn0
1 c1 c21 · · · cn1
...

...
...

. . .
...

1 cn c2n · · · cnn

 .

A matrix with this form is called a Vandermonde matrix.

Proof.

T (1) = (1, 1, · · · , 1), T (x) = (c0, c1, · · · , cn), · · · , T (xn) = (cn0 , c
n
1 , · · · , cnn)

implies that 
1 c0 c20 · · · cn0
1 c1 c21 · · · cn1
...

...
...

. . .
...

1 cn c2n · · · cnn

 .

�

(2) (5 points) Prove that

det(M) = Π0≤i<j≤n(cj − ci),

the product of all terms of the form cj − ci for 0 ≤ i < j ≤ n.



Proof.

f(c0, c1, · · · , cn) = det


1 c0 c20 · · · cn0
1 c1 c21 · · · cn1
...

...
...

. . .
...

1 cn c2n · · · cnn



= det


1 0 0 · · · 0

1 c1 − c0 c21 − c0c1 · · · cn1 − c0cn−1
1

...
...

...
. . .

...

1 cn − c0 c2n − c0cn · · · cnn − c0cn−1
n



= det


c1 − c0 c21 − c0c1 · · · cn1 − c0cn−1

1

c2 − c0 c22 − c0c2 · · · cn2 − c0cn−1
2

...
...

...
. . .

...

cn − c0 c2n − c0cn · · · cnn − c0cn−1
n



= (c1 − c0)(c2 − c0) · · · (cn − c0) det


1 0 0 · · · 0

1 1 c1 · · · cn−1
1

...
...

...
. . .

...

1 1 cn · · · cn−1
n


= (c1 − c0)(c2 − c0) · · · (cn − c0)f(c1, c2, · · · , cn).

By induction, det(A) = Π0≤i<j≤n(cj − ci). �

Problem 6: (4 points) Let A ∈Mn×n(F ) such that

A =


1 + x1 x2 x3 · · · xn
x1 1 + x2 x3 · · · xn
...

...
...

. . .
...

x1 x2 x3 · · · 1 + xn

 .

Compute det(A).

Solution.

det(A) = 1 +
n∑
i=1

xi.

�


