
Linear Algebra Midterm 2

Name: Id No.: Class:

Problem 1: Let V,W, and Z be vector spaces, and let T : V → W and U : W → Z be

linear.

(1) Prove that if UT is one-to-one, then T is one-to-one. (3 points)

Proof. Suppose that UT is one-to-one, then N(UT ) = {0}. Let v ∈ V such that

T (v) = 0, then U(T (v)) = UT (v) = 0, i.e. v ∈ N(UT ) = {0}. Hence v = 0. That

means N(T ) = {0}, i.e. T is one-to-one. �

(2) Prove that if UT is onto, then U is onto. (3 points)

Proof. Suppose that UT is onto, then for all z ∈ Z, there exists a v ∈ V such that

UT (v) = z. This implies that, for all z ∈ Z, there exists a T (v) ∈ W such that

U(T (v)) = UT (v) = z. Therefore, U is onto. �

(3) Let A and B be n × n matrices such that AB is invertible. Prove that A and B

are invertible. (5 pints)

Proof. Suppose that AB is invertible, then, by Theorem, LAB is invertible. This

implies that LAB = LALB is one-to-one and onto. By (1) and (2), LA is onto

and LB is one-to-one. Since LA, LB, LAB are linear maps from F n to F n and

dimF n = dimF n = n, by Theorem 2.5, we have LA is one-to-one and LB is onto.

Hence LA and LB are invertible. This implies that A and B are invertible. �

Problem 2: Let V be a finite-dimensional vector space, and let T : V → V be linear.

Assume that rank(T ) = rank(T 2).

(1) Suppose that β = {v1, · · · , vn} is a basis for R(T ). Show that {T (v1), · · · , T (vn)}
forms a basis for R(T 2). (4 points)

Proof. For any u ∈ R(T 2), there exists v ∈ R(T ) such that u = T (v). Let

v =
∑n

i=1 aivi, for some scalars a1, · · · , an. Then u = T (v) =
∑n

i=1 aiT (vi), i.e.

span({T (v1), · · · , T (vn)}) = R(T 2). The fact that span({T (v1), · · · , T (vn)}) =

R(T 2) and rank(T ) = rank(T 2) = n, by assumption, imply that {T (v1), · · · , T (vn)}
forms a basis for R(T 2). �

(2) Prove that R(T ) ∩N(T ) = {0}. (4 points)

Proof. Let w ∈ R(T )∩N(T ), then w =
∑n

i=1 bivi, for some scalars b1, · · · , bn, and

T (w) = 0. This implies
∑n

i=1 biT (vi) = 0. Since {T (v1), · · · , T (vn)} is a basis for

R(T 2), we have b1 = · · · = bn = 0. Hence w = 0 and R(T ) ∩N(T ) = {0}. �
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(3) Deduce that V = R(T )⊕N(T ). (4 points)

Proof. Note that R(T ) + N(T ) ⊆ V , since R(T ) and N(T ) are subspaces of V .

We also have dim(R(T ) +N(T )) = dimR(T ) + dimN(T )− dim(R(T )∩N(T )) =

dimR(T )+dimN(T ) = dimV , where the last equality follows from the Dimension

Theorem. Therefore V = R(T )⊕N(T ). �

Problem 3: Let V and W be n-dimensional vector spaces, and let T : V → W be a

linear transformation.

(1) Prove that T is one-to-one if and only if T carries linearly independent subsets of

V onto linearly independent subsets of W . (9 points)

Proof. (⇒) Suppose that T is one-to-one. Let S be a linearly independent subset

of V . We want to show that T (S) is linearly independent. Suppose that T (S) is

linearly dependent. Then there exist v1, · · · , vn ∈ S and some not all zero scalars

a1, · · · , an such that

a1T (v1) + · · ·+ anT (vn) = 0.

Since T is linear,

a1T (v1) + · · ·+ anT (vn) = T (a1v1 + · · ·+ anvn) = 0.

By assumption that T is one-to-one, we also know that N(T ) = {0}. Hence

a1v1 + · · ·+ anvn = 0.

But S is linearly independent and v1, · · · , vn ∈ S, we have a1 = · · · = an = 0.

→←
Since S is arbitrary, T carries linearly independent subsets of V onto linerly inde-

pendent subsets of W .

(⇐) Suppose that T carries linearly independent subsets of V onto linearly inde-

pendent subsets of W . Assume that T (x) = 0. If the set {x} is linearly indepen-

dent, then by assumption we conclude that {0} is linearly independent, which is

a contradiction. Hence the set {x} is linearly dependent. This implies that x = 0.

That is, N(T ) = {0}. Therefore, T is one-to-one. �

(2) Suppose that β is a basis for V . Prove that T is an isomorphism if and only if

T (β) is a basis for W . (8 points)

Proof. (⇒) T is an isomorphism. ⇒ T is invertible. ⇒ T is injective and surjective.

Since T is injective, by 2.1.14 (a), we know that T (β) is linearly independent. Since

T is surjective, we know that span(T (β)) = R(T ) = W . Hence T (β) is a basis for

W .



(⇐) Since T (β) is a basis, we know span(T (β)) = R(T ) = W. This implies that

T is surjective and dimR(T ) = dimW = n. By assumption, we have dimV =

dimW = n. By Dimension Theorem, we have n = dimV = dimR(T )+dimN(T ).

This implies that dimN(T ) = 0, i.e. N(T ) = {0}. So T is injective. Therefore,

we show that T is an isomorphism. �

Problem 4: Let T : P3(R)→ P3(R) be the map defined by

T (p(x)) =
d2p(x)

dx2
+ 2

dp(x)

dx
,

for all p(x) ∈ P3(R).

(1) Show that T is a linear transformation. (3 points)

Proof. Let f(x), g(x) ∈ P3(R) and c ∈ R. Then T (cf(x) + g(x)) = d2(cf(x)+g(x))
dx2

+

2d(cf(x)+g(x))
dx

= c
(
d2f(x)
dx2

+ 2df(x)
dx

)
+
(
d2g(x)
dx2

+ 2dg(x)
dx

)
= cT (f(x)) +T (g(x)). Hence

T is linear. �

(2) Find the matrices [T ]α and [T ]β representing T with respect to the ordered bases

α = {1, x, x2, x3} and β = {1, 1 + x, 1 + x + x2, 1 + x + x2 + x3}, respectively. (4

points)

Solution. [T ]α =


0 2 2 0

0 0 4 6

0 0 0 6

0 0 0 0

 and [T ]β =


0 2 0 −6

0 0 4 4

0 0 0 6

0 0 0 0

 . �

(3) Find the inverse matrix A−1 of A =


1 1 1 1

0 1 1 1

0 0 1 1

0 0 0 1

. Hint: Notice that the matrix

A = [I]αβ is the change of coordinate matrix that change β-coordinates into α-

coordinates. (4 points)

Solution. A−1 =


1 −1 0 0

0 1 −1 0

0 0 1 −1

0 0 0 1

. �


