NAME: \qquad Id No.: \qquad Class: \qquad
Problem 1: Let V, W, and Z be vector spaces, and let $T: V \rightarrow W$ and $U: W \rightarrow Z$ be linear.
(1) Prove that if $U T$ is one-to-one, then T is one-to-one. (3 points)

Proof. Suppose that $U T$ is one-to-one, then $N(U T)=\{0\}$. Let $v \in V$ such that $T(v)=0$, then $U(T(v))=U T(v)=0$, i.e. $v \in N(U T)=\{0\}$. Hence $v=0$. That means $N(T)=\{0\}$, i.e. T is one-to-one.
(2) Prove that if $U T$ is onto, then U is onto. (3 points)

Proof. Suppose that $U T$ is onto, then for all $z \in Z$, there exists a $v \in V$ such that $U T(v)=z$. This implies that, for all $z \in Z$, there exists a $T(v) \in W$ such that $U(T(v))=U T(v)=z$. Therefore, U is onto.
(3) Let A and B be $n \times n$ matrices such that $A B$ is invertible. Prove that A and B are invertible. (5 pints)

Proof. Suppose that $A B$ is invertible, then, by Theorem, $L_{A B}$ is invertible. This implies that $L_{A B}=L_{A} L_{B}$ is one-to-one and onto. By (1) and (2), L_{A} is onto and L_{B} is one-to-one. Since $L_{A}, L_{B}, L_{A B}$ are linear maps from F^{n} to F^{n} and $\operatorname{dim} F^{n}=\operatorname{dim} F^{n}=n$, by Theorem 2.5, we have L_{A} is one-to-one and L_{B} is onto. Hence L_{A} and L_{B} are invertible. This implies that A and B are invertible.

Problem 2: Let V be a finite-dimensional vector space, and let $T: V \rightarrow V$ be linear. Assume that $\operatorname{rank}(T)=\operatorname{rank}\left(T^{2}\right)$.
(1) Suppose that $\beta=\left\{v_{1}, \cdots, v_{n}\right\}$ is a basis for $R(T)$. Show that $\left\{T\left(v_{1}\right), \cdots, T\left(v_{n}\right)\right\}$ forms a basis for $R\left(T^{2}\right)$. (4 points)

Proof. For any $u \in R\left(T^{2}\right)$, there exists $v \in R(T)$ such that $u=T(v)$. Let $v=\sum_{i=1}^{n} a_{i} v_{i}$, for some scalars a_{1}, \cdots, a_{n}. Then $u=T(v)=\sum_{i=1}^{n} a_{i} T\left(v_{i}\right)$, i.e. $\operatorname{span}\left(\left\{T\left(v_{1}\right), \cdots, T\left(v_{n}\right)\right\}\right)=R\left(T^{2}\right)$. The fact that $\operatorname{span}\left(\left\{T\left(v_{1}\right), \cdots, T\left(v_{n}\right)\right\}\right)=$ $R\left(T^{2}\right)$ and $\operatorname{rank}(T)=\operatorname{rank}\left(T^{2}\right)=n$, by assumption, imply that $\left\{T\left(v_{1}\right), \cdots, T\left(v_{n}\right)\right\}$ forms a basis for $R\left(T^{2}\right)$.
(2) Prove that $R(T) \cap N(T)=\{0\}$. (4 points)

Proof. Let $w \in R(T) \cap N(T)$, then $w=\sum_{i=1}^{n} b_{i} v_{i}$, for some scalars b_{1}, \cdots, b_{n}, and $T(w)=0$. This implies $\sum_{i=1}^{n} b_{i} T\left(v_{i}\right)=0$. Since $\left\{T\left(v_{1}\right), \cdots, T\left(v_{n}\right)\right\}$ is a basis for $R\left(T^{2}\right)$, we have $b_{1}=\cdots=b_{n}=0$. Hence $w=0$ and $R(T) \cap N(T)=\{0\}$.
(3) Deduce that $V=R(T) \oplus N(T)$. (4 points)

Proof. Note that $R(T)+N(T) \subseteq V$, since $R(T)$ and $N(T)$ are subspaces of V. We also have $\operatorname{dim}(R(T)+N(T))=\operatorname{dim} R(T)+\operatorname{dim} N(T)-\operatorname{dim}(R(T) \cap N(T))=$ $\operatorname{dim} R(T)+\operatorname{dim} N(T)=\operatorname{dim} V$, where the last equality follows from the Dimension Theorem. Therefore $V=R(T) \oplus N(T)$.

Problem 3: Let V and W be n-dimensional vector spaces, and let $T: V \rightarrow W$ be a linear transformation.
(1) Prove that T is one-to-one if and only if T carries linearly independent subsets of V onto linearly independent subsets of W. (9 points)

Proof. (\Rightarrow) Suppose that T is one-to-one. Let S be a linearly independent subset of V. We want to show that $T(S)$ is linearly independent. Suppose that $T(S)$ is linearly dependent. Then there exist $v_{1}, \cdots, v_{n} \in S$ and some not all zero scalars a_{1}, \cdots, a_{n} such that

$$
a_{1} T\left(v_{1}\right)+\cdots+a_{n} T\left(v_{n}\right)=0 .
$$

Since T is linear,

$$
a_{1} T\left(v_{1}\right)+\cdots+a_{n} T\left(v_{n}\right)=T\left(a_{1} v_{1}+\cdots+a_{n} v_{n}\right)=0
$$

By assumption that T is one-to-one, we also know that $N(T)=\{0\}$. Hence

$$
a_{1} v_{1}+\cdots+a_{n} v_{n}=0
$$

But S is linearly independent and $v_{1}, \cdots, v_{n} \in S$, we have $a_{1}=\cdots=a_{n}=0$.
$\rightarrow \leftarrow$
Since S is arbitrary, T carries linearly independent subsets of V onto linerly independent subsets of W.
(\Leftarrow) Suppose that T carries linearly independent subsets of V onto linearly independent subsets of W. Assume that $T(x)=0$. If the set $\{x\}$ is linearly independent, then by assumption we conclude that $\{0\}$ is linearly independent, which is a contradiction. Hence the set $\{x\}$ is linearly dependent. This implies that $x=0$. That is, $N(T)=\{0\}$. Therefore, T is one-to-one.
(2) Suppose that β is a basis for V. Prove that T is an isomorphism if and only if $T(\beta)$ is a basis for W. (8 points)

Proof. $(\Rightarrow) T$ is an isomorphism. $\Rightarrow T$ is invertible. $\Rightarrow T$ is injective and surjective. Since T is injective, by 2.1.14 (a), we know that $T(\beta)$ is linearly independent. Since T is surjective, we know that $\operatorname{span}(T(\beta))=R(T)=W$. Hence $T(\beta)$ is a basis for W.
(\Leftarrow) Since $T(\beta)$ is a basis, we know $\operatorname{span}(T(\beta))=R(T)=W$. This implies that T is surjective and $\operatorname{dim} R(T)=\operatorname{dim} W=n$. By assumption, we have $\operatorname{dim} V=$ $\operatorname{dim} W=n$. By Dimension Theorem, we have $n=\operatorname{dim} V=\operatorname{dim} R(T)+\operatorname{dim} N(T)$. This implies that $\operatorname{dim} N(T)=0$, i.e. $N(T)=\{0\}$. So T is injective. Therefore, we show that T is an isomorphism.
Problem 4: Let $T: P_{3}(\mathbb{R}) \rightarrow P_{3}(\mathbb{R})$ be the map defined by

$$
T(p(x))=\frac{d^{2} p(x)}{d x^{2}}+2 \frac{d p(x)}{d x},
$$

for all $p(x) \in P_{3}(\mathbb{R})$.
(1) Show that T is a linear transformation. (3 points)

Proof. Let $f(x), g(x) \in P_{3}(\mathbb{R})$ and $c \in \mathbb{R}$. Then $T(c f(x)+g(x))=\frac{d^{2}(c f(x)+g(x))}{d x^{2}}+$ $2 \frac{d(c f(x)+g(x))}{d x}=c\left(\frac{d^{2} f(x)}{d x^{2}}+2 \frac{d f(x)}{d x}\right)+\left(\frac{d^{2} g(x)}{d x^{2}}+2 \frac{d g(x)}{d x}\right)=c T(f(x))+T(g(x))$. Hence T is linear.
(2) Find the matrices $[T]_{\alpha}$ and $[T]_{\beta}$ representing T with respect to the ordered bases $\alpha=\left\{1, x, x^{2}, x^{3}\right\}$ and $\beta=\left\{1,1+x, 1+x+x^{2}, 1+x+x^{2}+x^{3}\right\}$, respectively. (4 points)
Solution. $[T]_{\alpha}=\left(\begin{array}{cccc}0 & 2 & 2 & 0 \\ 0 & 0 & 4 & 6 \\ 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0\end{array}\right)$ and $[T]_{\beta}=\left(\begin{array}{cccc}0 & 2 & 0 & -6 \\ 0 & 0 & 4 & 4 \\ 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0\end{array}\right)$.
(3) Find the inverse matrix A^{-1} of $A=\left(\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right)$. Hint: Notice that the matrix $A=[I]_{\beta}^{\alpha}$ is the change of coordinate matrix that change β-coordinates into α coordinates. (4 points)
Solution. $A^{-1}=\left(\begin{array}{cccc}1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1\end{array}\right)$.

