LINEAR ALGEBRA

MIDTERM 2

NAME:_____ ID NO.:_____ CLASS: _____

Problem 1: Let V, W, and Z be vector spaces, and let $T : V \to W$ and $U : W \to Z$ be linear.

(1) Prove that if UT is one-to-one, then T is one-to-one. (3 points)

Proof. Suppose that UT is one-to-one, then $N(UT) = \{0\}$. Let $v \in V$ such that T(v) = 0, then U(T(v)) = UT(v) = 0, i.e. $v \in N(UT) = \{0\}$. Hence v = 0. That means $N(T) = \{0\}$, i.e. T is one-to-one.

(2) Prove that if UT is onto, then U is onto. (3 points)

Proof. Suppose that UT is onto, then for all $z \in Z$, there exists a $v \in V$ such that UT(v) = z. This implies that, for all $z \in Z$, there exists a $T(v) \in W$ such that U(T(v)) = UT(v) = z. Therefore, U is onto.

(3) Let A and B be $n \times n$ matrices such that AB is invertible. Prove that A and B are invertible. (5 pints)

Proof. Suppose that AB is invertible, then, by Theorem, L_{AB} is invertible. This implies that $L_{AB} = L_A L_B$ is one-to-one and onto. By (1) and (2), L_A is onto and L_B is one-to-one. Since L_A, L_B, L_{AB} are linear maps from F^n to F^n and dim $F^n = \dim F^n = n$, by Theorem 2.5, we have L_A is one-to-one and L_B is onto. Hence L_A and L_B are invertible. This implies that A and B are invertible.

Problem 2: Let V be a finite-dimensional vector space, and let $T : V \to V$ be linear. Assume that $\operatorname{rank}(T) = \operatorname{rank}(T^2)$.

(1) Suppose that $\beta = \{v_1, \dots, v_n\}$ is a basis for R(T). Show that $\{T(v_1), \dots, T(v_n)\}$ forms a basis for $R(T^2)$. (4 points)

Proof. For any $u \in R(T^2)$, there exists $v \in R(T)$ such that u = T(v). Let $v = \sum_{i=1}^{n} a_i v_i$, for some scalars a_1, \dots, a_n . Then $u = T(v) = \sum_{i=1}^{n} a_i T(v_i)$, i.e. span $(\{T(v_1), \dots, T(v_n)\}) = R(T^2)$. The fact that span $(\{T(v_1), \dots, T(v_n)\}) = R(T^2)$ and rank $(T) = \operatorname{rank}(T^2) = n$, by assumption, imply that $\{T(v_1), \dots, T(v_n)\}$ forms a basis for $R(T^2)$.

(2) Prove that $R(T) \cap N(T) = \{0\}$. (4 points)

Proof. Let $w \in R(T) \cap N(T)$, then $w = \sum_{i=1}^{n} b_i v_i$, for some scalars b_1, \dots, b_n , and T(w) = 0. This implies $\sum_{i=1}^{n} b_i T(v_i) = 0$. Since $\{T(v_1), \dots, T(v_n)\}$ is a basis for $R(T^2)$, we have $b_1 = \dots = b_n = 0$. Hence w = 0 and $R(T) \cap N(T) = \{0\}$.

(3) Deduce that $V = R(T) \oplus N(T)$. (4 points)

Proof. Note that $R(T) + N(T) \subseteq V$, since R(T) and N(T) are subspaces of V. We also have $\dim(R(T) + N(T)) = \dim R(T) + \dim N(T) - \dim(R(T) \cap N(T)) = \dim R(T) + \dim N(T) = \dim V$, where the last equality follows from the Dimension Theorem. Therefore $V = R(T) \oplus N(T)$.

Problem 3: Let V and W be n-dimensional vector spaces, and let $T: V \to W$ be a linear transformation.

(1) Prove that T is one-to-one if and only if T carries linearly independent subsets of V onto linearly independent subsets of W. (9 points)

Proof. (\Rightarrow) Suppose that T is one-to-one. Let S be a linearly independent subset of V. We want to show that T(S) is linearly independent. Suppose that T(S) is linearly dependent. Then there exist $v_1, \dots, v_n \in S$ and some not all zero scalars a_1, \dots, a_n such that

$$a_1T(v_1) + \dots + a_nT(v_n) = 0.$$

Since T is linear,

$$a_1T(v_1) + \dots + a_nT(v_n) = T(a_1v_1 + \dots + a_nv_n) = 0.$$

By assumption that T is one-to-one, we also know that $N(T) = \{0\}$. Hence

$$a_1v_1 + \dots + a_nv_n = 0.$$

But S is linearly independent and $v_1, \dots, v_n \in S$, we have $a_1 = \dots = a_n = 0$. $\rightarrow \leftarrow$

Since S is arbitrary, T carries linearly independent subsets of V onto linerly independent subsets of W.

(\Leftarrow) Suppose that *T* carries linearly independent subsets of *V* onto linearly independent subsets of *W*. Assume that T(x) = 0. If the set $\{x\}$ is linearly independent, then by assumption we conclude that $\{0\}$ is linearly independent, which is a contradiction. Hence the set $\{x\}$ is linearly dependent. This implies that x = 0. That is, $N(T) = \{0\}$. Therefore, *T* is one-to-one.

(2) Suppose that β is a basis for V. Prove that T is an isomorphism if and only if $T(\beta)$ is a basis for W. (8 points)

Proof. (\Rightarrow) *T* is an isomorphism. \Rightarrow *T* is invertible. \Rightarrow *T* is injective and surjective. Since *T* is injective, by 2.1.14 (a), we know that $T(\beta)$ is linearly independent. Since *T* is surjective, we know that span($T(\beta)$) = R(T) = W. Hence $T(\beta)$ is a basis for *W*. (\Leftarrow) Since $T(\beta)$ is a basis, we know span $(T(\beta)) = R(T) = W$. This implies that T is surjective and dim $R(T) = \dim W = n$. By assumption, we have dim $V = \dim W = n$. By Dimension Theorem, we have $n = \dim V = \dim R(T) + \dim N(T)$. This implies that dim N(T) = 0, i.e. $N(T) = \{0\}$. So T is injective. Therefore, we show that T is an isomorphism.

Problem 4: Let $T: P_3(\mathbb{R}) \to P_3(\mathbb{R})$ be the map defined by

$$T(p(x)) = \frac{d^2 p(x)}{dx^2} + 2\frac{dp(x)}{dx},$$

for all $p(x) \in P_3(\mathbb{R})$.

(1) Show that T is a linear transformation. (3 points)

Proof. Let $f(x), g(x) \in P_3(\mathbb{R})$ and $c \in \mathbb{R}$. Then $T(cf(x) + g(x)) = \frac{d^2(cf(x) + g(x))}{dx^2} + 2\frac{d(cf(x) + g(x))}{dx} = c\left(\frac{d^2f(x)}{dx^2} + 2\frac{df(x)}{dx}\right) + \left(\frac{d^2g(x)}{dx^2} + 2\frac{dg(x)}{dx}\right) = cT(f(x)) + T(g(x))$. Hence T is linear.

(2) Find the matrices $[T]_{\alpha}$ and $[T]_{\beta}$ representing T with respect to the ordered bases $\alpha = \{1, x, x^2, x^3\}$ and $\beta = \{1, 1 + x, 1 + x + x^2, 1 + x + x^2 + x^3\}$, respectively. (4 points)

Solution.
$$[T]_{\alpha} = \begin{pmatrix} 0 & 2 & 2 & 0 \\ 0 & 0 & 4 & 6 \\ 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 and $[T]_{\beta} = \begin{pmatrix} 0 & 2 & 0 & -6 \\ 0 & 0 & 4 & 4 \\ 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.

(3) Find the inverse matrix A^{-1} of $A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$. Hint: Notice that the matrix

 $A = [I]^{\alpha}_{\beta}$ is the change of coordinate matrix that change β -coordinates into α coordinates. (4 points)

Solution.
$$A^{-1} = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$