NAME: \qquad ID No.: \qquad Class: \qquad
Problem 1: (4 points) Let $A=\left(\begin{array}{lll}1 & 1 & 3 \\ 2 & 1 & 4 \\ 1 & 2 & 4 \\ 2 & 3 & 8\end{array}\right)$ and $B=\left(\begin{array}{lll}1 & 1 & 2 \\ 2 & 1 & 3 \\ 1 & 2 & 2 \\ 2 & 3 & 5\end{array}\right)$. Try to find an elementary matrix such that $B=A E$.

Solution. $E=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1\end{array}\right)$

Problem 2: (8 points) Express the invertible matrix $\left(\begin{array}{lll}1 & 0 & 0 \\ 2 & 0 & 2 \\ 0 & 1 & 0\end{array}\right)$ as a product of elementary matrices.

Solution.

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

Problem 3: (8 points) Let $T: P_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ be defined by

$$
T(f(x))=f(x)+f^{\prime}(x)+f^{\prime \prime}(x)
$$

Determine whether T is invertible, and compute T^{-1} if it exists.

Solution. See the solution for Example 7 of Sec.3.2 in the textbook.

Problem 4: Let $T, U: V \rightarrow W$ be linear transformations.
(1) (4 points) Prove that

$$
R(T+U) \subseteq R(T)+R(U)
$$

(2) (4 points) Prove that if W is finite-dimensional, then

$$
\operatorname{rank}(T+U) \leq \operatorname{rank}_{1}(T)+\operatorname{rank}(U)
$$

(3) (4 points) Deduce from (2) that

$$
\operatorname{rank}(A+B) \leq \operatorname{rank}(A)+\operatorname{rank}(B)
$$

for any $m \times n$ matrices A and B.

Proof of (1). For any $v \in R(T+U)$, we can write it as $v=(T+U)(w)=T(w)+U(w) \in$ $R(T)+R(U)$ for some $w \in V$. Hence $R(T+U) \subseteq R(T)+R(U)$.

Proof of (2).

$$
\begin{array}{rll}
\operatorname{rank}(T+U) & = & \operatorname{dim}(R(T+U)) \\
& \stackrel{(a)}{\leq} & \operatorname{dim}(R(T)+R(U)) \\
1.6 .2^{29}(a) \\
& \operatorname{dim}(R(T))+\operatorname{dim}(R(U))-\operatorname{dim}(R(T) \cap R(U)) \\
& \operatorname{dim}(R(T))+\operatorname{dim}(R(U)) \\
& =\operatorname{rank}(T)+\operatorname{rank}(U)
\end{array}
$$

Proof of (3).

$$
\operatorname{rank}(A+B)=\operatorname{rank}\left(L_{A+B}\right)=\operatorname{rank}\left(L_{A}+L_{B}\right) \leq \operatorname{rank}(A)+\operatorname{rank}(B)
$$

Problem 5: (8 points) Let the reduced row echelon form of A be $\left(\begin{array}{ccccc}1 & 0 & 3 & 0 & 2 \\ 0 & 1 & -4 & 0 & -3 \\ 0 & 0 & 0 & 1 & 5\end{array}\right)$.
Determine A if the first, second, and fourth columns of A are $\left(\begin{array}{c}1 \\ -1 \\ 3\end{array}\right),\left(\begin{array}{c}0 \\ -1 \\ 1\end{array}\right)$ and $\left(\begin{array}{c}1 \\ -2 \\ 0\end{array}\right)$, respectively.

Solution. $A=\left(\begin{array}{ccccc}1 & 0 & 3 & 1 & 7 \\ -1 & -1 & 1 & -2 & -9 \\ 3 & 1 & 5 & 0 & 3\end{array}\right)$.
Problem 6: (8 points) Let W be the subspace of $M_{2 \times 2}(\mathbb{R})$ consisting of the symmetric 2×2 matrices. The set

$$
S=\left\{\left(\begin{array}{cc}
0 & -1 \\
-1 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right),\left(\begin{array}{ll}
2 & 1 \\
1 & 9
\end{array}\right),\left(\begin{array}{cc}
1 & -2 \\
-2 & 4
\end{array}\right),\left(\begin{array}{cc}
-1 & 2 \\
2 & -1
\end{array}\right)\right\}
$$

generates W. Find a subset of S that is a basis for W.

Proof.

$$
\left\{\left(\begin{array}{cc}
0 & -1 \\
-1 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right),\left(\begin{array}{cc}
1 & -2 \\
-2 & 4
\end{array}\right)\right\}
$$

forms a basis for W.

