1.3.19:

Proof. (\Leftarrow) that $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$, then $W_1 \cup W_2 = W_1$ or W_2 . Since W_1 and W_2 are subspaces V, we have $W_1 \cup W_2$ is also a subspace of V

 $\begin{array}{l} (\Rightarrow) \text{ Suppose that } W_1 \cup W_2 \text{ is a subspace of } V. \\ \text{Also suppose that } W_1 \not\subseteq W_2 \text{ and } W_2 \not\subseteq W_1, \text{ then there exist } u, v \in V \text{ such that } u \in W_1 - W_2, v \in W_2 - W_1. \\ \Rightarrow u, v \in W_1 \cup W_2 \Rightarrow u + v \in W_1 \cup W_2. \\ \text{If } u + v \in W_1, \text{ then } (-u) + (u + v) \in W_1 \Rightarrow v \in W_1 \rightarrow \leftarrow \\ \text{If } u + v \in W_2, \text{ then } (u + v) + (-v) \in W_2 \Rightarrow u \in W_2 \rightarrow \leftarrow \\ \text{Hence } W_1 \subseteq W_2 \text{ or } W_2 \subset W_1. \end{array}$

1.3.23 (a)

Proof. Assume that W_1, W_2 are subspaces of V.

We have $0 = 0 + 0 \in W_1 + W_2$.
Let $x_1, y_1 \in W_1$, then $x_1 + y_1 \in W_1$.
Similarly, let $x_2, y_2 \in W_2$, then $x_2 + y_2 \in W_2$.
By the definition of $W_1 + W_2$, we have $(x_1 + x_2) + (y_1 + y_2) = (x_1 + y_1) + (x_2 + y_2) \in W_1 + W_2$.
Let $x_1 \in W_1, x_2 \in W_2$ and c be a scalar, then $c(x_1 + x_2) = cx_1 + cx_2 \in W_1 + W_2$.
Finally, $W_1 = \{x + 0 : x \in W_1, 0 \in W_2\} \subseteq W_1 + W_2$ and, similarly, $W_2 = \{0 + x : 0 \in W_1, x \in W_2\} \subseteq W_1 + W_2$.

1.3.23 (b)

Proof. Suppose that W is a subspace of V containing both W_1 and W_2 . We want to show that $W_1 + W_2 \subseteq W$. Let $u = x + y \in W_1 + W_2$ for some $x \in W_1, y \in W_2$. Since $x \in W$ and $y \in W$, then we have $x + y \in W$. Hence $W_1 + W_2 \subseteq W$.

1.3.30:

Proof. (⇒) Suppose that W_1 , W_2 are subspaces of V and $V = W_1 \oplus W_2$. Then, for any vector v in V, if $v = x_1 + x_2 = y_1 + y_2$, where $x_1, y_1 \in W_1$ and $x_2, y_2 \in W_2$, then $x_1 - y_1 = y_2 - x_2 \in W_1 \cap W_2 = \{0\}$. $\Rightarrow x_=y_1, x_2 = y_2$.

(\Leftarrow) Clearly we have $V = W_1 + W_2$.

If $W_1 \cap W_2$ contains a nonzero vector x, then we have $x = x + 0 \in W_1 + W_2$ and also $x = 0 + x \in W_1 + W_2$ which contradicts to our hypothesis that x can be uniquely written as $x_1 + x_2$, where $x_1 \in W_1, x_2 \in W_2$.