1.3.19:

Proof. (\Leftarrow) that $W_{1} \subseteq W_{2}$ or $W_{2} \subseteq W_{1}$, then $W_{1} \cup W_{2}=W_{1}$ or W_{2}.
Since W_{1} and W_{2} are subspaces V, we have $W_{1} \cup W_{2}$ is also a subspace of V
(\Rightarrow) Suppose that $W_{1} \cup W_{2}$ is a subspace of V.
Also suppose that $W_{1} \nsubseteq W_{2}$ and $W_{2} \nsubseteq W_{1}$, then there exist $u, v \in V$ such that $u \in W_{1}-W_{2}, v \in W_{2}-W_{1}$.
$\Rightarrow u, v \in W_{1} \cup W_{2} \Rightarrow u+v \in W_{1} \cup W_{2}$.
If $u+v \in W_{1}$, then $(-u)+(u+v) \in W_{1} \Rightarrow v \in W_{1} \rightarrow \leftarrow$
If $u+v \in W_{2}$, then $(u+v)+(-v) \in W_{2} \Rightarrow u \in W_{2} \rightarrow \leftarrow$
Hence $W_{1} \subseteq W_{2}$ or $W_{2} \subset W_{1}$.

1.3.23 (a)

Proof. Assume that W_{1}, W_{2} are subspaces of V.

1. We have $0=0+0 \in W_{1}+W_{2}$.
2. Let $x_{1}, y_{1} \in W_{1}$, then $x_{1}+y_{1} \in W_{1}$.

Similarly, let $x_{2}, y_{2} \in W_{2}$, then $x_{2}+y_{2} \in W_{2}$.
By the definition of $W_{1}+W_{2}$, we have $\left(x_{1}+x_{2}\right)+\left(y_{1}+y_{2}\right)=\left(x_{1}+y_{1}\right)+\left(x_{2}+y_{2}\right) \in$ $W_{1}+W_{2}$.
3. Let $x_{1} \in W_{1}, x_{2} \in W_{2}$ and c be a scalar, then $c\left(x_{1}+x_{2}\right)=c x_{1}+c x_{2} \in W_{1}+W_{2}$. Finally, $W_{1}=\left\{x+0: x \in W_{1}, 0 \in W_{2}\right\} \subseteq W_{1}+W_{2}$ and, similarly, $W_{2}=\{0+x$: $\left.0 \in W_{1}, x \in W_{2}\right\} \subseteq W_{1}+W_{2}$.

1.3.23 (b)

Proof. Suppose that W is a subspace of V containing both W_{1} and W_{2}. We want to show that $W_{1}+W_{2} \subseteq W$.
Let $u=x+y \in W_{1}+W_{2}$ for some $x \in W_{1}, y \in W_{2}$.
Since $x \in W$ and $y \in W$, then we have $x+y \in W$.
Hence $W_{1}+W_{2} \subseteq W$.

1.3.30:

Proof. (\Rightarrow) Suppose that W_{1}, W_{2} are subspaces of V and $V=W_{1} \oplus W_{2}$.
Then, for any vector v in V, if $v=x_{1}+x_{2}=y_{1}+y_{2}$, where $x_{1}, y_{1} \in W_{1}$ and $x_{2}, y_{2} \in W_{2}$, then $x_{1}-y_{1}=y_{2}-x_{2} \in W_{1} \cap W_{2}=\{0\}$.
$\Rightarrow x_{=} y_{1}, x_{2}=y_{2}$.
(\Leftarrow) Clearly we have $V=W_{1}+W_{2}$.
If $W_{1} \cap W_{2}$ contains a nonzero vector x, then we have $x=x+0 \in W_{1}+W_{2}$ and also $x=0+x \in W_{1}+W_{2}$ which contradicts to our hypothesis that x can be uniquely written as $x_{1}+x_{2}$, where $x_{1} \in W_{1}, x_{2} \in W_{2}$.

