1.6.21:

Proof. (\Rightarrow) Let V be an infinite dimensional vector space, then $V \neq \{0\}$. Pick up a nonzero vector v_1 in V. Then span $\{v_1\} \neq V$, otherwise dim(V) = 1 which contradicts our assumption. So there exists a nonzero vector v_2 in V such that $v_2 \notin \text{span}\{v_1\}$. By Theorem 1.7, $\{v_1, v_2\}$ is linearly independent. Continuing this process, we obtain an infinite linearly independent subset of V. (\Leftarrow) Assume that V contains an infinite linearly independent subset α . Suppose that V is finite dimensional, say dim V = n, and β is a basis of V, then $\#(\beta) = n$. Let γ be an subset of α and $\#(\gamma) = n + 1$.

Then γ is linearly independent.

By Replacement Theorem, we have the contradiction that $n+1 \ge n$. Hence, V is infinite dimensional.

1.6.22:

Proof. We claim that $W_1 v \subseteq W_2$ if and only if $\dim(W_1 \cap W_2) = \dim(W_1)$. (\Leftarrow) If $W_1 \subseteq W_2$, then $W_1 \cap W_2 = W_1$. Hence $\dim(W_1 \cap W_2) = \dim(W_1)$. (\Rightarrow) Assume that $\dim(W_1 \cap W_2) = \dim(W_1)$. Since W_1 is a subspace of V, hence $\dim(W_1) < \infty$. Theorem 1.11 says that $W_1 \cap W_2 = W_1$. Hence $W_1 \subseteq W_2$.

1.6.29(a):

Proof. dim $(W_1 \cap W_2) \leq \dim(V)$ $\Rightarrow W_1 \cap W_2$ has a finite basis $\beta = \{u_1, u_2, \cdots, u_k\}$. We can extend β to a basis $\beta_1 = \{u_1, u_2, \cdots, u_k, v_1, v_2, \cdots, v_m\}$ for W_1 and to a basis $\beta_2 = \{u_1, u_2, \cdots, u_k, k_1, k_2, \cdots, k_p\}$ for W_2 . Let $\alpha = \{u_1, u_2, \cdots, u_k, v_1, v_2, \cdots, v_m, w_1, w_2, \cdots, w_p\}$. We claim that α is a basis for $W_1 + W_2$. To proof the claim, we need to check that 1. $W_1 + W_2 = \operatorname{span}(\alpha)$ 2. α is linearly independent.

1.6.34(a):

Proof. Assume that V is a finite-dimensional vector space with dim(V) = n. Let $\alpha = \{u_1, u_2, \cdots, u_m\}$ be a basis of W_1 . By Replacement Theorem, we can extend α to a basis $\beta = \{u_1, u_2, \cdots, u_m, u_{m+1}, u_{m+2}, \cdots, u_n\}$ of V. Let $W_2 = \text{span}(\{u_{m+1}, u_{m+2}, \cdots, u_n\})$. <u>Claim</u>: $V = W_1 \oplus W_2$. 1. Check $V = W_1 + W_2$ 2. Check $W_1 \cap W_2 = \{0\}$.