1.6.21:

Proof. (\Rightarrow) Let V be an infinite dimensional vector space, then $V \neq\{0\}$.
Pick up a nonzero vector v_{1} in V.
Then $\operatorname{span}\left\{v_{1}\right\} \neq V$, otherwise $\operatorname{dim}(V)=1$ which contradicts our assumption.
So there exists a nonzero vector v_{2} in V such that $v_{2} \notin \operatorname{span}\left\{v_{1}\right\}$.
By Theorem 1.7, $\left\{v_{1}, v_{2}\right\}$ is linearly independent.
Continuing this process, we obtain an infinite linearly independent subset of V.
(\Leftarrow) Assume that V contains an infinite linearly independent subset α.
Suppose that V is finite dimensional, say $\operatorname{dim} V=n$, and β is a basis of V, then $\#(\beta)=n$.
Let γ be an subset of α and $\#(\gamma)=n+1$.
Then γ is linearly independent.
By Replacement Theorem, we have the contradiction that $n+1 \geq n$.
Hence, V is infinite dimensional.

1.6.22:

Proof. We claim that $W_{1} v \subseteq W_{2}$ if and only if $\operatorname{dim}\left(W_{1} \cap W_{2}\right)=\operatorname{dim}\left(W_{1}\right)$.
(\Leftarrow) If $W_{1} \subseteq W_{2}$, then $W_{1} \cap W_{2}=W_{1}$.
Hence $\operatorname{dim}\left(W_{1} \cap W_{2}\right)=\operatorname{dim}\left(W_{1}\right)$.
(\Rightarrow) Assume that $\operatorname{dim}\left(W_{1} \cap W_{2}\right)=\operatorname{dim}\left(W_{1}\right)$.
Since W_{1} is a subspace of V, hence $\operatorname{dim}\left(W_{1}\right)<\infty$.
Theorem 1.11 says that $W_{1} \cap W_{2}=W_{1}$.
Hence $W_{1} \subseteq W_{2}$.

1.6.29(a):

Proof. $\operatorname{dim}\left(W_{1} \cap W_{2}\right) \leq \operatorname{dim}(V)$
$\Rightarrow W_{1} \cap W_{2}$ has a finite basis $\beta=\left\{u_{1}, u_{2}, \cdots, u_{k}\right\}$.
We can extend β to a basis $\beta_{1}=\left\{u_{1}, u_{2}, \cdots, u_{k}, v_{1}, v_{2}, \cdots, v_{m}\right\}$ for W_{1} and to a basis $\beta_{2}=\left\{u_{1}, u_{2}, \cdots, u_{k}, k_{1}, k_{2}, \cdots, k_{p}\right\}$ for W_{2}.
Let $\alpha=\left\{u_{1}, u_{2}, \cdots, u_{k}, v_{1}, v_{2}, \cdots, v_{m}, w_{1}, w_{2}, \cdots, w_{p}\right\}$.
We claim that α is a basis for $W_{1}+W_{2}$.
To proof the claim, we need to check that

1. $W_{1}+W_{2}=\operatorname{span}(\alpha)$.
2. α is linearly independent.

1.6.34(a):

Proof. Assume that V is a finite-dimensional vector space with $\operatorname{dim}(V)=n$.
Let $\alpha=\left\{u_{1}, u_{2}, \cdots, u_{m}\right\}$ be a basis of W_{1}.
By Replacement Theorem, we can extend α to a basis $\beta=\left\{u_{1}, u_{2}, \cdots, u_{m}, u_{m+1}, u_{m+2}, \cdots, u_{n}\right\}$ of V.
Let $W_{2}=\operatorname{span}\left(\left\{u_{m+1}, u_{m+2}, \cdots, u_{n}\right\}\right)$.
Claim: $V=W_{1} \oplus W_{2}$.

1. Check $V=W_{1}+W_{2}$.
2. Check $W_{1} \cap W_{2}=\{0\}$.
