2.2.13:

Proof. Suppose that $\{T, U\}$ is linearly dependent. Then there exists some nonzero scalar $c T=U$. Since T is a nonzero transformation from V to W, there exists some vector $u \in V$ and some nonzero vector $v \in W$ such that $T(u)=v \neq 0$. Then $U(u)=c v$. But we also have $v=\frac{1}{c}(c v)=\frac{1}{c} U(u)=U\left(\frac{1}{c} u\right) \in R(U)$. This implies that $0 \neq v \in R(T) \cap R(U)$ which contradicts our assumption. Hence $\{T, U\}$ is linearly independent.

2.2.15(c):

Proof. Since $V_{1} \subseteq V_{1}+V_{2}$, by (b), we have $\left(V_{1}+V_{2}\right)^{0} \subseteq V_{1}^{0}$. Similarly, we have $\left(V_{1}+V_{2}\right)^{0} \subseteq V_{2}^{0}$. Hence $\left(V_{1}+V_{2}\right)^{0} \subseteq V_{1}^{0} \cap V_{2}^{0}$.
Now assume that $T \in V_{1}^{0} \cap V_{2}^{0}$. Then for x in V_{1} or V_{2}, we have $T(x)=0$. Let $v=v_{1}+v_{2} \in V_{1}+V_{2}$, where $v_{1} \in V_{1}$ and $v_{2} \in V_{2}$, then

$$
T(v)=T\left(v_{1}+v_{2}\right)=T\left(v_{1}\right)+T\left(v_{2}\right)=0+0=0 .
$$

This implies $T \in\left(V_{1}+V_{2}\right)^{0}$, then $V_{1}^{0} \cap V_{2}^{0} \subseteq\left(V_{1}+V_{2}\right)^{0}$. Therefore $\left(V_{1}+V_{2}\right)^{0}=$ $V_{1}^{0} \cap V_{2}^{0}$.

2.2.16:

Proof. Assume that $\operatorname{dim} V=\operatorname{dim} W=n$. Let $\left\{v_{1}, \cdots, v_{k}\right\}$ be a basis for $N(T)$. Then by Replacement Theorem, we can extend it to a basis $\beta=\left\{v_{1}, \cdots, v_{k}, v_{k+1}, \cdots, v_{n}\right\}$ for V. Let $T\left(v_{i}\right)=w_{i}$, for $i=k+1, \cdots, n$. Claim: $\left\{w_{k+1}, \cdots, w_{n}\right\}$ is linearly independent.
......
Since $\left\{w_{k+1}, \cdots, w_{n}\right\}$ is linearly independent, again by Replacement Theorem, we can extend it to a basis $\gamma=\left\{w_{1}, \cdots, w_{k}, w_{k+1}, \cdots, w_{n}\right\}$ for W.

We find that $[T]_{\beta}^{\gamma}$ is the diagonal matrix $\left(\begin{array}{cc}0 & 0 \\ 0 & I_{n-k}\end{array}\right)$, where I_{n-k} is the $(n-k) \times$ $(n-k)$ identity matrix.

