2.3.16 (a):

Proof. For any $u \in R\left(T^{2}\right)$, there exists $v \in R(T)$ such that $u=T(v)$. Let $\beta=$ $\left\{v_{1}, \cdots, v_{n}\right\}$ be a basis for $R(T)$ and $v=\sum_{i=1}^{n} a_{i} v_{i}$, for some scalars a_{1}, \cdots, a_{n}. Then $u=T(v)=\sum_{i=1}^{n} a_{i} T\left(v_{i}\right)$, i.e. $\operatorname{span}\left(\left\{T\left(v_{1}\right), \cdots, T\left(v_{n}\right)\right\}\right)=R\left(T^{2}\right)$. Since $\operatorname{rank}(T)=\operatorname{rank}\left(T^{2}\right)=n$. This implies that $\left\{T\left(v_{1}\right), \cdots, T\left(v_{n}\right)\right\}$ forms a basis for $R\left(T^{2}\right)$. Let $w \in R(T) \cap N(T)$, then $w=\sum_{i=1}^{n} b_{i} v_{i}$, for some scalars b_{1}, \cdots, b_{n}, and $T(w)=0$. This implies $\sum_{i=1}^{n} b_{i} T\left(v_{i}\right)=0$. Since $\left\{T\left(v_{1}\right), \cdots, T\left(v_{n}\right)\right\}$ is a basis for $R\left(T^{2}\right)$, we have $b_{1}=\cdots=b_{n}=0$. Hence $w=0$ and $R(T) \cap N(T)=\{0\}$.
Note that $R(T)+N(T) \subseteq V$, since $R(T)$ and $N(T)$ are subspaces of V. We also have $\operatorname{dim}(R(T)+N(T))=\operatorname{dim} R(T)+\operatorname{dim} N(T)-\operatorname{dim}(R(T) \cap N(T))=$ $\operatorname{dim} R(T)+\operatorname{dim} N(T)=\operatorname{dim} V$, where the last equality follows from the Dimension Theorem. Therefore $V=R(T) \oplus N(T)$.

2.3.16 (b):

Proof. First note that $\operatorname{rank}\left(T^{i+1}\right) \leq \operatorname{rank}\left(T^{i}\right)$, since $T^{i+1}(V)=T^{i}(R(V)) \subseteq$ $T^{i}(V)$. But $\operatorname{rank}\left(T^{i}\right)$ is an integer and $0 \leq \operatorname{rank}\left(T^{i}\right) \leq \operatorname{dim} V$. So there exists some integer k such that $\operatorname{rank}\left(T^{k}\right)=\operatorname{rank}\left(T^{k+1}\right)$ and hence $T^{k}(V)=T^{k+1}(V)$. Hence $T^{k}(V)=T^{i}(V)$ for all $i \geq k$. So we have $\operatorname{rank}\left(T^{k}\right)=\operatorname{rank}\left(T^{2 k}\right)$. By (a), we have $V=R\left(T^{k}\right) \oplus N\left(T^{k}\right)$ for some integer k.

2.3.17:

Proof. Note that for $x=T(x)+(x-T(x))$ for every $x \in V$. By assumption, $T(T(x))=T(x)$, so $T(x) \in\{y: T(y)=y\}$ and $x-T(x) \in N(T)$. So $V=\{y$: $T(y)=y\}+N(T)$.
If $y \in\{y: T(y)=y\} \cap N(T)$, then $x=T(x)=0$, i.e. $\{y: T(y)=y\} \cap N(T)=$ $\{0\}$. Hence $V=\{y: T(y)=y\} \oplus N(T)$.
(It is enough for you to show that $V=\{y: T(y)=y\} \oplus N(T)$. If fact, T is a projection on W_{1} along W_{2} for some subspaces W_{1} and W_{2} of V such that $\left.V=W_{1} \oplus W_{2}.\right)$

