
Linear Algebra Solutions

2.3.16 (a):

Proof. For any u ∈ R(T 2), there exists v ∈ R(T ) such that u = T (v). Let β =
{v1, · · · , vn} be a basis for R(T ) and v =

∑n
i=1 aivi, for some scalars a1, · · · , an.

Then u = T (v) =
∑n

i=1 aiT (vi), i.e. span({T (v1), · · · , T (vn)}) = R(T 2). Since
rank(T ) = rank(T 2) = n. This implies that {T (v1), · · · , T (vn)} forms a basis for
R(T 2). Let w ∈ R(T ) ∩ N(T ), then w =

∑n
i=1 bivi, for some scalars b1, · · · , bn,

and T (w) = 0. This implies
∑n

i=1 biT (vi) = 0. Since {T (v1), · · · , T (vn)} is a basis
for R(T 2), we have b1 = · · · = bn = 0. Hence w = 0 and R(T ) ∩N(T ) = {0}.
Note that R(T ) + N(T ) ⊆ V , since R(T ) and N(T ) are subspaces of V . We
also have dim(R(T ) + N(T )) = dimR(T ) + dimN(T ) − dim(R(T ) ∩ N(T )) =
dimR(T )+dimN(T ) = dimV , where the last equality follows from the Dimension
Theorem. Therefore V = R(T )⊕N(T ). �

2.3.16 (b):

Proof. First note that rank(T i+1) ≤ rank(T i), since T i+1(V ) = T i(R(V )) ⊆
T i(V ). But rank(T i) is an integer and 0 ≤ rank(T i) ≤ dimV . So there exists
some integer k such that rank(T k) = rank(T k+1) and hence T k(V ) = T k+1(V ).
Hence T k(V ) = T i(V ) for all i ≥ k. So we have rank(T k) = rank(T 2k). By (a),
we have V = R(T k)⊕N(T k) for some integer k. �

2.3.17:

Proof. Note that for x = T (x) + (x − T (x)) for every x ∈ V . By assumption,
T (T (x)) = T (x), so T (x) ∈ {y : T (y) = y} and x − T (x) ∈ N(T ). So V = {y :
T (y) = y}+N(T ).
If y ∈ {y : T (y) = y} ∩ N(T ), then x = T (x) = 0, i.e. {y : T (y) = y} ∩ N(T ) =
{0}. Hence V = {y : T (y) = y} ⊕N(T ).
(It is enough for you to show that V = {y : T (y) = y} ⊕ N(T ). If fact, T
is a projection on W1 along W2 for some subspaces W1 and W2 of V such that
V = W1 ⊕W2.)
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