2.4.9:

Proof. If $A B$ is invertible, then $L_{A B}$ is invertible. So $L_{A B}=L_{A} L_{B}$ is injective and surjective. By 2.3.12(a)(b), we have L_{B} is injective and L_{A} is surjective. Since L_{A} and L_{B} are linear transformations from \mathbb{F}^{n} to \mathbb{F}^{n}. By Theorem 2.5, L_{B} is surjective and L_{A} is injective. So both L_{A} and L_{B} are invertible. Hence A and B are invertible.

2.4.13:

Proof. 1. (Reflexivity) $I_{V}: V \rightarrow V$ is an isomorphism.
2. (Symmetry) If $T: V \rightarrow W$ is an isomorphism, then $T^{-1}: W \rightarrow V$ is an isomorphism also.
3. (Transitivity) If $T: V \rightarrow W$ is an isomorphism and $U: W \rightarrow Z$ is an isomorphism, then $U T: V \rightarrow Z$ is an isomorphism also. Hence \sim is an equivalence relation on the class of vector spaces over F.

2.4.15:

Proof. $(\Rightarrow) T$ is an isomorphism. $\Rightarrow T$ is invertible. $\Rightarrow T$ is injective and surjective. Since T is injective, by 2.1.14 (a), we know that $T(\beta)$ is linearly independent. Since T is surjective, we know that $\operatorname{span}(T(\beta))=R(T)=W$. Hence $T(\beta)$ is a basis for W.
(\Leftarrow) Since $T(\beta)$ is a basis, we know $\operatorname{span}(T(\beta))=R(T)=W$. This implies that T is surjective and $\operatorname{dim} R(T)=\operatorname{dim} W=n$. By assumption, we have $\operatorname{dim} V=$ $\operatorname{dim} W=n$. By Dimension Theorem, we have $n=\operatorname{dim} V=\operatorname{dim} R(T)+\operatorname{dim} N(T)$. This implies that $\operatorname{dim} N(T)=0$, i.e. $N(T)=\{0\}$. So T is injective. Therefore, we show that T is an isomorphism.

