3.1.6:

Proof. If B can be obtained from A by an elementary row [column] operation, then $B=E A[B=A E]$. So we have $B^{t}=(E A)^{t}=A^{t} E^{t} .\left[B^{t}=(A E)^{t}=E^{t} A^{t}\right]$ and this means that B^{t} can be obtained by A^{t} by elementary column [row] operation with corresponding elementary matrix E^{t}.

3.1.8:

Proof. If Q can be obtained from P by an elementary row operation, then we can write $Q=E P$. So we have $P=E^{-1} Q$. By Theorem 3.2, E^{-1} is an elementary matrix of the same type as E is. Hence P can be obtained from Q by an elementary row operation of the same type.

3.1.9:

Proof. An elementary row operation of type 1 can be obtained by a succession of the following steps:
(1) adding $(-1) \times$ the i-th row to the j-row (e.r.o. of type 3);
(2) adding the j-th row to the i-th row (e.r.o. of type 3);
(3) adding $(-1) \times$ the i-th row to the j-row (e.r.o. of type 3);
(4) multiplying the i-th row by (-1) (e.r.o. of type 2).

3.1.12:

Proof. We will prove the assertion by induction on the number of rows m.
If $m=1$, then there is nothing to prove.
Suppose that the assertion holds for $m-1$.
Let j be the index of the first column of A that has nonzero entry so that $A_{i j^{\prime}}=0$ for $i=1, \cdots, m, j^{\prime}<j$. By a sequence of elementary row operations of type 1 , we may assume that $A_{1 j} \neq 0$. By adding $-\frac{A_{i j}}{A_{1 j}}$ times the first row to the i-th row for $i=2, \cdots, m$, we obtain a new matrix A^{\prime}. Let B be the $(m-1) \times n$-matrix by deleting the first row of A^{\prime}. Then by induction assumption we can make B an upper triangular matrix by a sequence of elementary row operations of types 1 and 3 . Hence, we transforms A into an upper triangular matrix by a sequence of elementary row operations of types 1 and 3 .

