3.2.14:

Proof of (a). For any $v \in R(T+U)$, we can write it as $v=(T+U)(w)=T(w)+U(w) \in$ $R(T)+R(U)$ for some $w \in V$. Hence $R(T+U) \subseteq R(T)+R(U)$.

Proof of (b).

$$
\begin{array}{rll}
\operatorname{rank}(T+U) & = & \operatorname{dim}(R(T+U)) \\
& \stackrel{(a)}{\leq} & \operatorname{dim}(R(T)+R(U)) \\
1.6 .29(a) \\
& \operatorname{dim}(R(T))+\operatorname{dim}(R(U))-\operatorname{dim}(R(T) \cap R(U)) \\
\leq & \operatorname{dim}(R(T))+\operatorname{dim}(R(U)) \\
& =\operatorname{rank}(T)+\operatorname{rank}(U)
\end{array}
$$

Proof of (c).
$\operatorname{rank}(A+B) \stackrel{\text { def. }}{=} \operatorname{rank}\left(L_{A+B}\right)=\operatorname{rank}\left(L_{A}+L_{B}\right) \stackrel{(b)}{\leq} \operatorname{rank}\left(L_{A}\right)+\operatorname{rank}\left(L_{B}\right) \stackrel{\text { def. }}{=} \operatorname{rank}(A)+\operatorname{rank}(B)$.

3.2.15:

Proof. Suppose that A and B are matrices having n rows and M is an $m \times n$ matrix. Let $C=M(A \mid B)$ and $D=(M A \mid M B)$. Assume that A has k columns and B has l columns. For $j=1, \cdots, k$, we have

$$
C_{i j}=\sum_{s=1}^{n} M_{i s} A_{s j}=(M A)_{i j}=D_{i j},
$$

and, for $j=k+1, \cdots, k+l$, we have

$$
C_{i j}=\sum_{s=1}^{n} M_{i s} B_{s j}=(M B)_{i j}=D_{i j} .
$$

Hence $M(A \mid B)=(M A \mid M B)$ for any $m \times n$ matrix M.

3.2.17:

Proof. Let $B \in M_{3 \times 1}(F), C \in M_{1 \times 3}(F)$, then $\operatorname{rank}(B C) \stackrel{\text { Theorem3.7 }}{\leq} \operatorname{rank}(B) \leq 1$.
Conversely, suppose that A is a 3×3 matrix having rank 1, then by Corollary 1 for Theorem 3.5, there exist invertible 3×3 matrixes B_{1} and C_{1} such that

$$
B_{1} A C_{1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right)
$$

This implies that

$$
A=B_{1}^{-1}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right) C_{1}^{-1}
$$

Let B be the 3×1 matrix such that $B=B_{1}^{-1}\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ and C be the 1×3 matrix such that $C=\left(\begin{array}{lll}1 & 0 & 0\end{array}\right) C_{1}^{-1}$, then $A=B C$.

3.2.21:

Proof. Suppose that A is an $m \times n$ matrix with rank m. By definition, $m=\operatorname{rank}(A)=$ $\operatorname{rank}\left(L_{A}\right)=\operatorname{dim} R\left(L_{A}\right)$, where $L_{A}: F^{n} \rightarrow F^{m}$ is the left multiplication transformation. Let $\beta=\left\{e_{1}, e_{2}, \cdots, e_{m}\right\}$ be the standard ordered basis for F^{m}. Since $m=\operatorname{dim} R\left(L_{A}\right)=$ $\operatorname{dim} F^{m}, L_{A}$ is surjective. So, for each $i=1, \cdots, m$, there exists $v_{i} \in F^{n}$ such that $L_{A}\left(v_{i}\right)=A v_{i}=e_{i}$. This implies that $A\left[v_{1}, \cdots, v_{m}\right]=\left[e_{1}, \cdots, e_{m}\right]=I_{m}$. Let B be the matrix with column vectors $v_{i}, i=1, \cdots, m$, i.e. $B=\left[v_{1}, \cdots, v_{m}\right]$. Thus B is an $n \times m$ matrix such that $A B=I_{m}$.

3.2.22:

Proof. Let B be an $n \times m$ matrix with rank m, then B^{t} is an $m \times n$ matrix with rank m. By Exercise 3.2.21, there exists an $n \times m$ matrix C such that $B^{t} C=I_{m}$. Let $A=C^{t}$, then $A B=C^{t} B=\left(B^{t} C\right)^{t}=\left(I_{m}\right)^{t}=I_{m}$.

