LINEAR ALGEBRA

Solutions

3.2.14:

Proof of (a). For any $v \in R(T+U)$, we can write it as $v = (T+U)(w) = T(w) + U(w) \in R(T) + R(U)$ for some $w \in V$. Hence $R(T+U) \subseteq R(T) + R(U)$.

Proof of (b).

$$\operatorname{rank}(T+U) = \dim (R(T+U))$$

$$\stackrel{(a)}{\leq} \dim (R(T) + R(U))$$

$$\stackrel{1.6.29(a)}{=} \dim (R(T)) + \dim (R(U)) - \dim (R(T) \cap R(U))$$

$$\leq \dim (R(T)) + \dim (R(U))$$

$$= \operatorname{rank}(T) + \operatorname{rank}(U).$$

Proof of (c).

$$\operatorname{rank}(A+B) \stackrel{def.}{=} \operatorname{rank}(L_{A+B}) = \operatorname{rank}(L_A+L_B) \stackrel{(b)}{\leq} \operatorname{rank}(L_A) + \operatorname{rank}(L_B) \stackrel{def.}{=} \operatorname{rank}(A) + \operatorname{rank}(B).$$

3.2.15:

Proof. Suppose that A and B are matrices having n rows and M is an $m \times n$ matrix. Let C = M(A|B) and D = (MA|MB). Assume that A has k columns and B has l columns. For $j = 1, \dots, k$, we have

$$C_{ij} = \sum_{s=1}^{n} M_{is} A_{sj} = (MA)_{ij} = D_{ij},$$

and, for $j = k + 1, \dots, k + l$, we have

$$C_{ij} = \sum_{s=1}^{n} M_{is} B_{sj} = (MB)_{ij} = D_{ij}$$

Hence M(A|B) = (MA|MB) for any $m \times n$ matrix M.

1

3.2.17:

Proof. Let $B \in M_{3\times 1}(F)$, $C \in M_{1\times 3}(F)$, then $\operatorname{rank}(BC) \overset{\text{Theorem 3.7}}{\leq} \operatorname{rank}(B) \leq 1$. Conversely, suppose that A is a 3×3 matrix having rank 1, then by Corollary 1 for Theorem 3.5, there exist invertible 3×3 matrixes B_1 and C_1 such that

$$B_1 A C_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \end{pmatrix}.$$

This implies that

$$A = B_1^{-1} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} C_1^{-1}.$$

Let *B* be the 3 × 1 matrix such that $B = B_1^{-1} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ and *C* be the 1 × 3 matrix such that $C = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} C_1^{-1}$, then A = BC.

3.2.21:

Proof. Suppose that A is an $m \times n$ matrix with rank m. By definition, $m = \operatorname{rank}(A) = \operatorname{rank}(L_A) = \dim R(L_A)$, where $L_A : F^n \to F^m$ is the left multiplication transformation. Let $\beta = \{e_1, e_2, \cdots, e_m\}$ be the standard ordered basis for F^m . Since $m = \dim R(L_A) = \dim F^m$, L_A is surjective. So, for each $i = 1, \cdots, m$, there exists $v_i \in F^n$ such that $L_A(v_i) = Av_i = e_i$. This implies that $A[v_1, \cdots, v_m] = [e_1, \cdots, e_m] = I_m$. Let B be the matrix with column vectors $v_i, i = 1, \cdots, m$, i.e. $B = [v_1, \cdots, v_m]$. Thus B is an $n \times m$ matrix such that $AB = I_m$.

3.2.22:

Proof. Let B be an $n \times m$ matrix with rank m, then B^t is an $m \times n$ matrix with rank m. By Exercise 3.2.21, there exists an $n \times m$ matrix C such that $B^tC = I_m$. Let $A = C^t$, then $AB = C^tB = (B^tC)^t = (I_m)^t = I_m$.