Problem 1: Let $V=\left\{\left(a_{1}, a_{2}\right): a_{1}, a_{2} \in \mathbb{R}\right\}$. For $\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right) \in V$ and $c \in \mathbb{R}$, define

$$
\left(a_{1}, a_{2}\right)+\left(b_{1}, b_{2}\right)=\left(2 a_{1}+b_{1}, a_{2}+2 b_{2}\right) \quad \text { and } \quad c\left(a_{1}, a_{2}\right)=\left(c a_{1}, c a_{2}\right) .
$$

Is V a vector space over \mathbb{R} with these operations? Justify your answer.
Solution. No!
We have

$$
\left(a_{1}, a_{2}\right)+\left(b_{1}, b_{2}\right)=\left(2 a_{1}+b_{1}, a_{2}+2 b_{2}\right) .
$$

But

$$
\left(b_{1}, b_{2}\right)+\left(a_{1}, a_{2}\right)=\left(2 b_{1}+a_{1}, b_{2}+2 a_{2}\right) .
$$

So, (VS1) fails to hold.
Hence V is not a vector space over \mathbb{R} with these operations.
Problem 2: Let W_{1}, W_{2} be subspaces of a vector space V. State whether the following is also a subspace of V. Prove or give a counterexample.
(1) $W_{1} \cap W_{2}$

Proof. 1. Since W_{1} and W_{2} are subspaces of $V, 0 \in W_{1}$ and $0 \in W_{2}$. This implies $0 \in W_{1} \cap W_{2}$.
2. Let $x, y \in W_{1} \cap W_{2}$. Then $x, y \in W_{1}$ and $x+y \in W_{1}$, since W_{1} is a subspace of V. Similarly, $x, y \in W_{2}$ and $x+y \in W_{2}$, since W_{2} is a subspace of V. This implies $x+y \in W_{1} \cap W_{2}$.
3. Let $x \in W_{1} \cap W_{2}$ and c be a scalar. Then $x \in W_{1}$ and $c x \in W_{1}$, since W_{1} is a subspace of V. Similarly, $x \in W_{2}$ and $c x \in W_{2}$, since W_{2} is a subspace of V. This implies $c x \in W_{1} \cap W_{2}$.
Hence $W_{1} \cap W_{2}$ is a subspace of V.
(2) $W_{1} \cup W_{2}$

Solution. No, $W_{1} \cup W_{2}$ may not be a subspace of V.
For example, let $V=\mathbb{R}^{2}, W_{1}=x$ - axis and $W_{2}=y$ - axis, then $W_{1} \cup W_{2}$ is not a subspace of V. Since $(1,0)+(0,1)=(1,1) \notin W_{1} \cup W_{2}$.
(3) $\left(V-W_{1}\right) \cap W_{2}$.

Solution. No, $\left(V-W_{1}\right) \cap W_{2}$ may not be a subspace of V.
For example, let $V=\mathbb{R}^{2}, W_{1}=x$ - axis and $W_{2}=y$ - axis, then $(V-$ $\left.W_{1}\right) \cap W_{2}=y-\operatorname{axis} \backslash\{(0,0)\}$. Since there is no zero vector, it is not s subspace of \mathbb{R}^{2}.

