Quiz 2

CLASS:

NAME:_____ ID NO.:_____

Problem 1: Show that a subset W of a vector space V is a subspace of V if and only if span(W) = W. (4 points)

Proof. (\Rightarrow) It is clear that $W \subseteq \operatorname{span}(W)$. We need to show that if W is a subspace of V, then $\operatorname{span}(W) \subseteq W$. For any $u \in \operatorname{span}(W)$,

 $u = a_1v_1 + a_2v_2 + \dots + a_nv_n$

for some $v_1, v_2, \dots, v_n \in W$ and some scalars a_1, a_2, \dots, a_n . Since W is a subspace of V and $v_1, v_2, \dots, v_n \in W$,

$$u = a_1 v_1 + a_2 v_2 + \dots + a_n v_n \in W_n$$

So, $\operatorname{span}(W) \subseteq W$.

Hence, if W is a subspace of V, then W = W.

(\Leftarrow) By Theorem 1.5, we have that span(W) = W is a subspace of V.

Problem 2: Prove that a set S is linearly dependent if and only if $S = \{0\}$ or there exist distinct vectors v, u_1, u_2, \dots, u_n in S such that v is a linear combination of u_1, u_2, \dots, u_n . (5 points)

Proof. (\Rightarrow) If S is linearly dependent and $S \neq \{0\}$, then there exist distinct vectors $u_0, u_1, \dots, u_n \in S$ such that

$$a_0u_0 + a_1u_1 + \dots + a_nu_n = 0$$

with at least one of the scalars a_0, a_1, \dots, a_n is not zero, say $a_0 \neq 0$. Then we have

$$u_0 = \left(-\frac{a_1}{a_0}\right)u_1 + \left(-\frac{a_2}{a_0}\right)u_2 + \dots + \left(-\frac{a_n}{a_0}\right)u_n.$$

Hence $v = u_0$ is a linear combination of u_1, u_2, \cdots, u_n .

(\Leftarrow) If $S = \{0\}$, then it's clear that S is linearly dependent. Assume that there exist distinct vectors $v, u_1, u_2, \dots, u_n \in S$ such that v is a linear combination of u_1, u_2, \dots, u_n , say

$$v = a_1u_1 + a_2u_2 + \cdots + a_nu_n,$$

for some scalars a_1, a_2, \cdots, a_n . Then we have

Then we have

 $0 = (-1)v + a_1u_1 + a_2u_2 + \cdots + a_nu_n.$

Hence S is linearly dependent.

1

Problem 3:

(1) Give an example in which $\operatorname{span}(S_1 \cap S_2)$ and $\operatorname{span}(S_1) \cap \operatorname{span}(S_2)$ are not equal. (3 points) Solution of (1). For example, let $S_1 = \{(1,0)\}$ and $S_2 = \{(2,0)\}$, then $\operatorname{span}(S_1 \cap S_2) = \operatorname{span}(\phi) = \{(0,0)\}$

and

$$\operatorname{span}(S_1) \cap \operatorname{span}(S_2) = x - \operatorname{axis}.$$

(2) Let $f, g \in \mathcal{F}(\mathbb{R}, \mathbb{R})$ be the functions defined by $f(t) = e^t$ and $g(t) = e^{2t}$. Prove that f and g are linearly independent in $\mathcal{F}(\mathbb{R}, \mathbb{R})$. (3 points) Solution of (2). Let

$$ae^t + be^{2t} = 0$$

where $a, b \in \mathbb{R}$.

Differentiate the equation with respect to t on both sides, we obtain

$$ae^t + 2be^{2t} = 0.$$

By solving the system of the equations, we obtain a = b = 0. Hence f and g are linearly independent in $\mathcal{F}(\mathbb{R}, \mathbb{R})$.