Name: \qquad ID No.: \qquad Class: \qquad
Problem 1: Show that a subset W of a vector space V is a subspace of V if and only if $\operatorname{span}(W)=W$. (4 points)

Proof. (\Rightarrow) It is clear that $W \subseteq \operatorname{span}(W)$.
We need to show that if W is a subspace of V, then $\operatorname{span}(W) \subseteq W$.
For any $u \in \operatorname{span}(W)$,

$$
u=a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{n} v_{n}
$$

for some $v_{1}, v_{2}, \cdots, v_{n} \in W$ and some scalars $a_{1}, a_{2}, \cdots, a_{n}$.
Since W is a subspace of V and $v_{1}, v_{2}, \cdots, v_{n} \in W$,

$$
u=a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{n} v_{n} \in W .
$$

So, $\operatorname{span}(W) \subseteq W$.
Hence, if W is a subspace of V, then $\mathrm{W}=W$.
(\Leftarrow) By Theorem 1.5, we have that $\operatorname{span}(W)=W$ is a subspace of V.

Problem 2: Prove that a set S is linearly dependent if and only if $S=\{0\}$ or there exist distinct vectors $v, u_{1}, u_{2}, \cdots, u_{n}$ in S such that v is a linear combination of $u_{1}, u_{2}, \cdots, u_{n}$. (5 points)
Proof. (\Rightarrow) If S is linearly dependent and $S \neq\{0\}$, then there exist distinct vectors $u_{0}, u_{1}, \cdots, u_{n} \in S$ such that

$$
a_{0} u_{0}+a_{1} u_{1}+\cdots+a_{n} u_{n}=0
$$

with at least one of the scalars $a_{0}, a_{1}, \cdots, a_{n}$ is not zero, say $a_{0} \neq 0$.
Then we have

$$
u_{0}=\left(-\frac{a_{1}}{a_{0}}\right) u_{1}+\left(-\frac{a_{2}}{a_{0}}\right) u_{2}+\cdots+\left(-\frac{a_{n}}{a_{0}}\right) u_{n} .
$$

Hence $v=u_{0}$ is a linear combination of $u_{1}, u_{2}, \cdots, u_{n}$.
(\Leftarrow) If $S=\{0\}$, then it's clear that S is linearly dependent.
Assume that there exist distinct vectors $v, u_{1}, u_{2}, \cdots, u_{n} \in S$ such that v is a linear combination of $u_{1}, u_{2}, \cdots, u_{n}$, say

$$
v=a_{1} u_{1}+a_{2} u_{2}+\cdots a_{n} u_{n}
$$

for some scalars $a_{1}, a_{2}, \cdots, a_{n}$.
Then we have

$$
0=(-1) v+a_{1} u_{1}+a_{2} u_{2}+\cdots a_{n} u_{n} .
$$

Hence S is linearly dependent.

Problem 3:

(1) Give an example in which $\operatorname{span}\left(S_{1} \cap S_{2}\right)$ and $\operatorname{span}\left(S_{1}\right) \cap \operatorname{span}\left(S_{2}\right)$ are not equal. (3 points)
Solution of (1). For example, let $S_{1}=\{(1,0)\}$ and $S_{2}=\{(2,0)\}$, then

$$
\operatorname{span}\left(S_{1} \cap S_{2}\right)=\operatorname{span}(\phi)=\{(0,0)\}
$$

and

$$
\operatorname{span}\left(S_{1}\right) \cap \operatorname{span}\left(S_{2}\right)=x-\operatorname{axis}
$$

(2) Let $f, g \in \mathcal{F}(\mathbb{R}, \mathbb{R})$ be the functions defined by $f(t)=e^{t}$ and $g(t)=e^{2 t}$. Prove that f and g are linearly independent in $\mathcal{F}(\mathbb{R}, \mathbb{R})$. (3 points) Solution of (2). Let

$$
a e^{t}+b e^{2 t}=0
$$

where $a, b \in \mathbb{R}$.
Differentiate the equation with respect to t on both sides, we obtain

$$
a e^{t}+2 b e^{2 t}=0 .
$$

By solving the system of the equations, we obtain $a=b=0$.
Hence f and g are linearly independent in $\mathcal{F}(\mathbb{R}, \mathbb{R})$.

