NAME: \qquad ID No.: \qquad Class: \qquad
Problem 1: The set of all $n \times n$ matrices having trace equal to zero is a subspace W of $\mathrm{M}_{n \times n}(F)$. Find a basis for W. What is the dimension of W ? (5 points) Solution.
$\beta=\left\{E_{i j}, i \neq j,-E_{11}+E_{k k}, k=2, \cdots, n\right\}$ is a basis for W.
$\operatorname{dim} W=n^{2}-1$.
Problem 2: Let

$$
V=M_{2 \times 2}(F), \quad W_{1}=\left\{\left(\begin{array}{ll}
a & b \\
c & a
\end{array}\right) \in V: a, b, c \in F\right\}
$$

and

$$
W_{2}=\left\{\left(\begin{array}{cc}
0 & a \\
-a & b
\end{array}\right) \in V: a, b \in F\right\} .
$$

Prove that W_{1} and W_{2} are subspaces of V, and find the dimensions of $W_{1}, W_{2}, W_{1}+$ W_{2} and $W_{1} \cap W_{2}$. (Hint: $\operatorname{dim}\left(W_{1}+W_{2}\right)=\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)-\operatorname{dim}\left(W_{1} \cap W_{2}\right)$.) (10 points)
Solution.
Show that $\beta=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)\right\}$ is a basis for W_{1}.
Then $\operatorname{span}(\beta)=W_{1}$ is a subspace of V by Theorem 1.5.
Show that $\beta^{\prime}=\left\{\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right\}$ is a basis for W_{2}.
Then $\operatorname{span}\left(\beta^{\prime}\right)=W_{2}$ is a subspace of V by Theorem 1.5.
Show that $\gamma=\left\{\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)\right\}$ is a basis for $W_{1} \cap W_{2}$.
$\operatorname{dim} W_{1}=3, \operatorname{dim} W_{2}=2, \operatorname{dim} W_{1} \cap W_{2}=1 . \operatorname{dim} W_{1}+W_{2}=4$.

