NAME:_____ ID NO.:_____ CLASS: __

Problem 1: Let V and W be vector spaces and $T: V \to W$ be linear. Prove that T is one-to-one if and only if T carries linearly independent subsets of V onto linearly independent subsets of W. (9 points)

Proof. (\Rightarrow) Suppose that T is one-to-one. Let S be a linearly independent subset of V. We want to show that T(S) is linearly independent. Suppose that T(S) is linearly dependent. Then there exist $v_1, \dots, v_n \in S$ and some not all zero scalars a_1, \dots, a_n such that

$$a_1T(v_1) + \dots + a_nT(v_n) = 0$$

Since T is linear,

$$a_1T(v_1) + \dots + a_nT(v_n) = T(a_1v_1 + \dots + a_nv_n) = 0.$$

By assumption that T is one-to-one, we also know that $N(T) = \{0\}$. Hence

$$a_1v_1 + \dots + a_nv_n = 0.$$

But S is linearly independent and $v_1, \dots, v_n \in S$, we have $a_1 = \dots = a_n = 0$. $\rightarrow \leftarrow$

Since S is arbitrary, T carries linearly independent subsets of V onto linerly independent subsets of W.

(\Leftarrow) Suppose that *T* carries linearly independent subsets of *V* onto linearly independent subsets of *W*. Assume that T(x) = 0. If the set $\{x\}$ is linearly independent, then by assumption we conclude that $\{0\}$ is linearly independent, which is a contradiction. Hence the set $\{x\}$ is linearly dependent. This implies that x = 0. That is, $N(T) = \{0\}$. Therefore, *T* is one-to-one.

Problem 2: Let $T: M_{n \times n}(\mathbb{R}) \to \mathbb{R}$ be a linear transformation defined by $T(A) = \operatorname{tr}(A)$. Recall that $\operatorname{tr}(A) = \sum_{i=1}^{n} A_{ii}$.

- (1) Find a basis for N(T). (6 points)
- (2) Find a basis for R(T). (3 points)

Solution. (1) $\beta = \{E_{ij}, i \neq j, -E_{11} + E_{kk}, k = 2, \cdots, n\}$ is a basis for N(T). (2) $\{1\}$ is a basis for R(T).