NaME: \qquad Id No.: \qquad Class: \qquad
Problem 1: Let V and W be vector spaces and $T: V \rightarrow W$ be linear. Prove that T is one-to-one if and only if T carries linearly independent subsets of V onto linearly independent subsets of W. (9 points)

Proof. (\Rightarrow) Suppose that T is one-to-one. Let S be a linearly independent subset of V. We want to show that $T(S)$ is linearly independent. Suppose that $T(S)$ is linearly dependent. Then there exist $v_{1}, \cdots, v_{n} \in S$ and some not all zero scalars a_{1}, \cdots, a_{n} such that

$$
a_{1} T\left(v_{1}\right)+\cdots+a_{n} T\left(v_{n}\right)=0 .
$$

Since T is linear,

$$
a_{1} T\left(v_{1}\right)+\cdots+a_{n} T\left(v_{n}\right)=T\left(a_{1} v_{1}+\cdots+a_{n} v_{n}\right)=0 .
$$

By assumption that T is one-to-one, we also know that $N(T)=\{0\}$. Hence

$$
a_{1} v_{1}+\cdots+a_{n} v_{n}=0 .
$$

But S is linearly independent and $v_{1}, \cdots, v_{n} \in S$, we have $a_{1}=\cdots=a_{n}=0$.
$\rightarrow \leftarrow$
Since S is arbitrary, T carries linearly independent subsets of V onto linerly independent subsets of W.
(\Leftarrow) Suppose that T carries linearly independent subsets of V onto linearly independent subsets of W. Assume that $T(x)=0$. If the set $\{x\}$ is linearly independent, then by assumption we conclude that $\{0\}$ is linearly independent, which is a contradiction. Hence the set $\{x\}$ is linearly dependent. This implies that $x=0$. That is, $N(T)=\{0\}$. Therefore, T is one-to-one.

Problem 2: Let $T: M_{n \times n}(\mathbb{R}) \rightarrow \mathbb{R}$ be a linear transformation defined by $T(A)=$ $\operatorname{tr}(A)$. Recall that $\operatorname{tr}(A)=\sum_{i=1}^{n} A_{i i}$.
(1) Find a basis for $N(T)$. (6 points)
(2) Find a basis for $R(T)$. (3 points)

Solution. (1) $\beta=\left\{E_{i j}, i \neq j,-E_{11}+E_{k k}, k=2, \cdots, n\right\}$ is a basis for $N(T)$.
(2) $\{1\}$ is a basis for $R(T)$.

