NAME: \qquad Id No.: \qquad Class: \qquad

Problem 1: Let V and W be vector spaces, and let T and U be nonzero linear transformations from V into W. If $R(T) \cap R(U)=\{0\}$, prove that $\{T, U\}$ is a linearly independent subset of $\mathcal{L}(V, W)$. (8 points)

Proof. Suppose that $\{T, U\}$ is linearly dependent. Then there exists some nonzero scalar $c T=U$. Since T is a nonzero transformation from V to W, there exists some vector $u \in V$ and some nonzero vector $v \in W$ such that $T(u)=v \neq 0$. Then $U(u)=c v$. But we also have $v=\frac{1}{c}(c v)=\frac{1}{c} U(u)=U\left(\frac{1}{c} u\right) \in R(U)$. This implies that $0 \neq v \in R(T) \cap R(U)$ which contradicts our assumption. Hence $\{T, U\}$ is linearly independent.
Problem 2: Let $U: P_{2}(\mathbb{R}) \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by

$$
U\left(a+b x+c x^{2}\right)=(a-b, c, a+b)
$$

Let β and γ be the standard ordered bases of $P_{2}(\mathbb{R})$ and \mathbb{R}^{3}, respectively. Let $h(x)=1-2 x+4 x^{2}$. Compute $[U]_{\beta}^{\gamma},[h(x)]_{\beta}$ and $[U(h(x))]_{\gamma}$. Then verify that $[U(h(x))]_{\gamma}=[U]_{\beta}^{\gamma}[h(x)]_{\beta}$. (10 points)
Solution. $[U]_{\beta}^{\gamma}=\left(\begin{array}{ccc}1 & -1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0\end{array}\right),[h(x)]_{\beta}=\left(\begin{array}{c}1 \\ -2 \\ 4\end{array}\right),[U(h(x))]_{\gamma}=\left(\begin{array}{c}3 \\ 4 \\ -1\end{array}\right)$.

