NAME: \qquad Id No.: \qquad Class: \qquad
Problem 1: (6 points) Express the invertible matrix $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 0\end{array}\right)$ as a product of elementary matrices.

Solution. For example,

$$
\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 1 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Problem 2: For each of the following linear transformations T, determine whether T is invertible, and compute T^{-1} if it exists.
(1) (6 points) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by

$$
T\left(a_{1}, a_{2}, a_{3}\right)=\left(a_{1}+2 a_{2}+a_{3},-a_{1}+a_{2}+2 a_{3}, a_{1}+a_{3}\right) .
$$

Solution.

$$
\begin{gathered}
{[T]_{\alpha}^{\beta}=\left(\begin{array}{ccc}
1 & 2 & 1 \\
-1 & 1 & 2 \\
1 & 0 & 1
\end{array}\right), \quad\left[T^{-1}\right]_{\beta}^{\alpha}=\left(\begin{array}{ccc}
\frac{1}{6} & -\frac{1}{3} & \frac{1}{2} \\
\frac{1}{2} & 0 & -\frac{1}{2} \\
-\frac{1}{6} & \frac{1}{3} & \frac{1}{2}
\end{array}\right)} \\
T(a, b, c)=\left(\frac{1}{6} a-\frac{1}{3} b+\frac{1}{2} c, \frac{1}{2} a-\frac{1}{2} c,-\frac{1}{6} a+\frac{1}{3} b+\frac{1}{2} c\right) .
\end{gathered}
$$

(2) (6 points) $T: M_{2 \times 2}(\mathbb{R}) \rightarrow \mathbb{R}^{4}$ defined by

$$
T(A)=\left(\operatorname{tr}(A), \operatorname{tr}\left(A^{t}\right), \operatorname{tr}(E A), \operatorname{tr}(A E)\right)
$$

where $E=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.
Solution. T is not invertible, since T is not one-to-one, ex. $T(A)=T\left(A^{t}\right)$.

